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Despite being around for only a little more than a decade, design patterns have proved
to be successful reuse artifacts. However, the fact that they are mostly described in-
formally gives rise to ambiguity and hinders correct usage. This paper discusses how
to formally specify the “solution element” of patterns using TLA+, the formal speci-
fication language of Temporal Logic of Actions (TLA). The focus is first on formally
specifying the most abstract version of a pattern before validly doing stepwise refine-
ments by adding more details along the way until reaching a concrete implementation.
Checking that the refinement properties hold was done using TLC — the TLA+ model
checker.
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1 INTRODUCTION

A design pattern is a description of a set of successful solutions of a recurring problem
within a context. A pattern is therefore made-of three pillars: a problem, a context
and a solution [1]. Reusing patterns yields good quality designs as well as improves
the productivity of designers.

Design patterns are mostly described using a combination of text, Unified Mod-
eling Language (UML) [13] diagrams and sample code fragments. The intention is
to make them easy to read and use, build a pattern vocabulary and a community
of writers and users. However, these informal descriptions give rise to ambiguity,
hinder correct usage, and limit tool support.

As such, formal specification of design patterns can complement informal ones
by allowing rigorous reasoning about design patterns and facilitating tool support
for their usage. Tool support could play a great role in automated pattern mining,
detection of pattern variants, refactoring, code generation from specifications of
patterns, or, simply checking if implementations adhere to properties of patterns.
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In this paper, we present a formal framework to specify the “solution element”
of a pattern. The solution element corresponds to the structure, participants and
collaborations sections of the GoF catalog [5] description. These sections are the
most coherent and as such the most valuable to formalize.

The framework uses Temporal Logic of Actions (TLA) as formal basis [10]. We
will show that the framework is very expressive. In particular, patterns can be
specified at different levels of abstraction. More importantly, these versions can be
formally related through refinement, which is defined in the same framework. At
the same time, validation through model checking will establish that a specification
in a given level of abstraction is indeed a refinement of a specification of a higher
level.

The rest of the paper is organized as follows. TLA is presented in Section 2.
Section 3 presents our framework for formally specifying design patterns (using
TLA) at different levels of abstraction as well as validating refinements relations
between them.

Section 4 introduces a case study that will act as a proof of concept for our pro-
posed framework. In this case study, specifications have been written in TLA+ [11],
which is a fully-fledged specification language based on TLA. The specifications are
as follows:

• Our own abstract specification of the Observer pattern (at least more ab-
stract than the description of the pattern in [5]),

• A refinement of that specification that follows all details of the Observer
pattern as described in [5], and

• The specification of an instance (concrete implementation) of the Observer
pattern.

In Section 5 we use TLC (the TLA+ model checker), to check that the instance
of the Observer pattern is a refinement of the GoF version which is in turn a
refinement of the most abstract version. Section 6 describes related work, while
section 7 concludes the paper.

2 OVERVIEW OF TLA

In order to make the paper self-contained, this section provides a detailed description
(with examples) of TLA. TLA [10] was developed for describing and reasoning about
concurrent and distributed systems. It is essentially used to specify the behavioral
properties of a system i.e what the system is supposed to do. TLA specifies a system
by describing its allowed behaviors i.e what it may do in the course of an execution.
A behavior is an infinite sequence of states.
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A step is a pair of successive states in a behavior.

A state is a function from variables (or flexible variables) of the system to values.

Assuming a system with one variable x , s0 = {x 7→ 0}, s1 = {x 7→ 1}, s2 = {x 7→
”abc”} and s3 = {x 7→ red} are states of the system.

A state function is a non-Boolean expression built from variables and constants
of the system, i.e. a state function is a mapping from states to values. In our
example, x + 1 is a state function that maps s0 to 1, s1 to 2 and s2 and s3 to an
undefined value.

A predicate (or state predicate) is a Boolean expression built from variables and
constants of the system, i.e. a predicate is a mapping from states to Booleans. In
our example, x ∈ Nat (Nat is the set of natural numbers) is a predicate that maps
s0 and s1 to true and s2 and s3 to false.

An action is a Boolean expression built from variables, primed variables (flexible
variables adorned with “′”) and constants of the system. An action represents a
relation between old states and new states, where unprimed variables refer to the
old state and primed variables refer to the new state. Thus, an action is a mapping
from pair of states to Booleans where the first state maps unprimed variables and
the second state maps primed variables.

In our example, x ′ = x + 1 is an action that maps (s0, s1) to true and any other
pair of the previous example states to false.

State functions and actions can be given a name in a definition (followed by
the symbol ,) and can be parametrized with rigid variables that denote fixed but
unknown values, i.e. the values of rigid variables do not change and remain the same
in the old and new state. Quantification (∀ and ∃) over rigid variables is allowed. In
our example, definition Test(n) , n = x introduces a unary predicate named Test
and action A , ∃n ∈ Nat : x ′ = x + n relates states where x is greater or equal
than its value in the previous state.

A formula (or temporal formula) is built from actions using logical connectives
(basically ∧ and ¬ as the others can be derived from these two), and the unary
operator 2 (always). Unary operator 3 (eventually) can be derived from 2 by
¬2¬F .

Formulas are assertions about behaviors. Let σ = 〈s0, s1, . . .〉 be a behaviour. σ
satisfies an action A iff A maps (s0, s1) to true. σ satisfies F ∧ G iff σ satisfies F
and σ satisfies G . σ satisfies ¬F iff σ does not satisfies F . σ satisfies 2F if any
behavior 〈sn , sn+1, . . .〉 (n being a natural number) satisfies F .

In our example, formula 2(((x = 0) ∧ (x ′ = x + 1)) ∨ ((x = 1) ∧ (x ′ = x − 1)))
is satisfied by 〈{x 7→ 0}, {x 7→ 1}, {x 7→ 0}, {x 7→ 1}, . . .〉 and by 〈{x 7→ 1}, {x 7→
0}, {x 7→ 1}, {x 7→ 0}, . . .〉 and it is not satisfied by 〈{x 7→ 1}, {x 7→ 1}, {x 7→
0}, {x 7→ 0}, . . .〉.

For any state function or predicate E , we define E ′ to be the expression ob-
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tained by replacing each variable v in E by the primed variable v ′. The expression
unchanged f means f ′ = f (f is a state function).

Stuttering on action A under the vector of variables f occurs when either the
action A occurs or the variables in f remain unchanged. The stuttering operator
and its dual angle operator are defined as follows. [A]f , A ∨ (f ′ = f ) and 〈A〉f ,
A∧(f ′ 6= f ). Stuttering allows to compose systems and interleave actions of different
systems.

For any action A, enabled A is a predicate that is true for a state iff it is
possible to take an A step starting in that state.

TLA recommends a style in which conjuncts and disjuncts are preceded by ∧
or ∨ respectively. This eliminates the need for parenthesis making the notation
especially useful when conjunctions and disjunctions are nested.

Specification are usually written to handle two types of properties of a system:
safety and liveness. Safety properties ensure what a system must not do, while
liveness properties ensure that something does happen. Safety is handled by the
way specifications are written, which implicitly defines behaviors that could satisfy
them. Liveness is handled through “explicit” fairness requirement.

TLA defines two types of fairness properties: weak fairness and strong fairness
as follows:

• WFf (A) , (23〈A〉f )∨((23¬Enabled〈A〉f ), which means that either infinitely
many A steps occur or A is infinitely often disabled. In other words [11], an
A step must eventually occur if A is repeatedly enabled without interruption.

• SFf (A) , (23〈A〉f )∨ ((32¬Enabled〈A〉f ), which means that either infinitely
many A steps occur or A is eventually disabled forever. In other words [11],
an A step must eventually occur if A is repeatedly enable, possibly with inter-
ruptions.

In TLA, systems are represented as a tuple of variables f , a conjunction of an
initial condition InitS , an action NextS (which can be in fact a disjunction of actions
AiS) that is continually repeated under stuttering, and a set of fairness conditions
FairS (conjunction of 0 or more formulas of the form WFf (Aj S) or SFf (Aj S)). Here
Aj S represents a disjunction of actions in NextS . As such, TLA specifications can

be written as S , InitS ∧ 2[NextS ]f ∧ FairS . Theorems (proof obligations) of the
form S ⇒ P can be added to the specification in order to establish that property P
should be valid in specification S.

To wrap-up this section, let us model a light switch and provide concrete exam-
ples of some concepts defined above.

Invariant , x ∈ {0, 1}
Init , x = 0

On , x = 0 ∧ x ′ = 1

Off , x = 1 ∧ x ′ = 0

Next , On ∨Off

Spec , Init ∧2[Next ]S ∧WFS (Off )
theorem Spec ⇒ 2Invariant
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The above specification has only two possible states. The state where the light
switch is off ({x 7→ 0} which is also the initial state) and the state where the light
switch is on({x 7→ 1}). x ′ = 1 is an example of an action that assigns the value 1 to
x after action On is executed. The following are examples of behaviors that satisfy
formula Spec:

〈{x 7→ 0}, {x 7→ 1}, {x 7→ 0}, {x 7→ 1}, {x 7→ 1}, {x 7→ 1}, {x 7→ 0}, . . .〉
〈{x 7→ 0}, {x 7→ 0}, {x 7→ 1}, {x 7→ 1}, {x 7→ 0}, {x 7→ 0}, {x 7→ 0}, . . .〉

The weak fairness condition stipulates that action Off should be executed in-
finitely often (provided it is enabled) as we wish the light to be off to save energy
especially if there are many stuttering steps in which x = 1 and the light is not
being used.

TLA possesses a fully-fledged language called TLA+ that allows the specifica-
tion of the behavior of virtually any system. For years it has been successfully used
to specify hardware systems and is gaining popularity in specifying software sys-
tems [11]. Moreover, TLA+ has a model checker named TLC that allows to check
if a given model satisfies a given TLA formula as well as allowing the verification of
the satisfiability of invariants and properties of the system.

3 A FRAMEWORK FOR THE FORMAL SPECIFICATION OF DESIGN
PATTERNS

In this sections we introduce our framework which allows the specification of patterns
at different levels of abstraction and the validation of the refinement relationships
which exist between the different specifications.

Patterns Specification

The structural aspect of patterns is represented by sub-classes participating in the
pattern and associations between them. Classes are represented as sets of instances
(objects), each of which is represented by an identity taken from an infinite set of ob-
ject identities. As such we use the terms object and object identity interchangeably.
Associations are represented as mathematical relations between objects.

In our framework, classes are defined as TLA+ constants, while associations
between classes are defined as TLA+ flexible variables.

The behavioral aspect of a pattern is captured using actions which describe valid
changes in the association between objects.

The structure of a TLA+ specification of a design pattern is shown in Figure 1.
All TLA+ specifications shown in this paper have been well commented (in shaded
gray) in order to make them as self-explanatory as possible. Moreover, TLA+
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constructs used will not be detailed here. The reader is advised to see [11] for
further details.

module Pattern
constants

C 1, C 2, . . . , Cq Classes as constant set of instances
variables

u1, u2, . . . , un Variables that represent associations of the pattern

Invariants
∆
= I 1 ∧ I 2 ∧ . . . ∧ Ik Invariants capture type and cardinality of associations

Properties
∆
= P1 ∧ P2 ∧ . . . ∧ Pl Properties of the pattern

Init
∆
= P Initial predicate defines valid initial states

Ai
∆
= . . . Valid state transition, with i from 1 to m

Next
∆
= A1 ∨ A2 ∨ . . . ∨ Am Valid state transitions defined as disjuntion of actions

u
∆
= 〈u1, u2, . . . , un〉 A name for the tuple of variables

WF u(Bj )/SF u(Bj ) means either strong or weak fairness
Bj represent any disjunction of actions Ai

F
∆
= WFu(B1)/SFu(B1) ∧ . . . ∧WFu(Bp)/SFu(Bp)

Spec
∆
= Init ∧2[Next ]u ∧ F The specification of the pattern

Theorems are proof obligations that reflect that state changes described by actions preserve in-
variants and satisfy pattern properties.

theorem Spec ⇒ 2Invariants Pattern invariants must be always preserved
theorem Spec ⇒ Properties Pattern properties must be satisfied

Figure 1: Structure of a TLA+ specification of patterns

The Refinement Process

The main advantage of our approach is that the focus is first given to specifying the
most abstract version of a given pattern such that “low-level” programming details
are avoided. In later versions of the specification, other “implementation-level”
details can be “gradually” introduced. What should be kept and what should be
left out in a higher level specification is pattern specific and is of course influenced
by the experience of the specifier.

A design pattern Q is a refinement (or a lower-level version) of a design pattern
P if every allowed behavior in Q is allowed in P [10]. If Q is specified using a TLA
formula Ψ and P is specified using TLA formula Φ, Q is a refinement of P if Ψ is a
refinement of Φ.

In order to formally define refinement, we need first to formally define the concept
of “refinement mapping” [10]. If ∆ is a TLA specification, let C∆ be the set of
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constants of ∆ and V∆ is the set of variables of ∆.

Definition 3.1 (Refinement mapping). Let Ψ and Φ be two specifications and let
ρ : CΦ ∪ VΦ → CΨ ∪ VΨ. ρ is a refinement mapping from Ψ to Φ iff ρ is a total
function and Ψ⇒ ρ(Φ). ρ(Φ) represents the substitution of constants and variables
of Φ by those of Ψ.

Definition 3.2 (Refinement). Let Ψ and Φ be two specifications. Ψ is a refinement
of Φ if there exists a refinement mapping from Φ to Ψ.

As shown in Figure 2, we must explicitly relate states in the concrete specification
with states in abstract specifications and this can be done in the form of substitu-
tions (or refinement mappings) of constant and flexible variables of the abstract
specification with those of the concrete specification.

This technique is used in Section 5 to validate that the GoF version of the
Observer pattern in [5] is a refinement of our abstract version of the same pattern
and to check that a concrete implementation is an instance of the GoF version of
the Observer pattern.

module QrefinesP
Concrete design pattern

extends Q

Assume P has m constants (C 1, . . . , Cm) and n variables (x1, . . . , xn)
Assume Q has p constants (K 1, . . . , Kp) and q variables (y1, . . . , yq)
f 1, . . . , fm and g1, . . . , gn are refinement mappings

Abstract
∆
= instance P with

C 1← f 1(K 1, . . . , Kp),
. . . ,
Cm ← fm(K 1, . . . , Kp),
x1 ← g1(K 1, . . . , Kp, y1, . . . , yq),
. . . ,
xn ← gn(K 1, . . . , Kp, y1, . . . , yq)

AbstractSpec
∆
= Abstract !Spec This is P ’s specification

theorem Spec ⇒ AbstractSpec Spec is Q ’s specification

Figure 2: Structure of a TLA+ refinement of patterns

4 CASE STUDY

Our case study includes the specification of an abstract version of the Observer
pattern, the specification of the GoF version of the same pattern and the specification
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of an instance(concrete implementation) of the same pattern.

Abstract Version of the Observer Pattern

In the Observer pattern [5] there are concrete observers and concrete subjects.
A concrete subject has data (attributes) whose values can be modified. Concrete
observers can be interested in changes that occur in a concrete subject’s data. The
pattern describes how concrete subjects and concrete observers are connected with
each other and how they communicate in order to preserve data consistency. A
concrete subject notifies its concrete observers whenever a change occurs that could
make their data inconsistent with its own. After being notified of the change, con-
crete observers query a concrete subject to get the latest values of its data.

Figure 3 depicts the UML class diagram of an abstract version of the Observer
pattern. This version is more abstract than the one appearing in [5] because the
focus is only on modeling and specifying the relations between participating classes
rather than on their attributes. As such, details of attributes and methods appearing
in [5] have been omitted from Figure 3 because they are not needed at this level of
abstraction.

Figure 3: UML class diagram of the most abstract version of the Observer pattern

Figures 4, 5 and 6 depict the TLA+ specifications of the abstract version of the
Observer pattern. The specification was split into three modules for reasons of
space and clarity: ObserverStruct , ObserverBehav and Observer .

In module ObserverStruct (Figure 4), classes Concrete Subject and Concrete
Observer are defined as TLA+ constants ConcreteSubject and ConcreteObserver re-
spectively. Two associations between concrete subjects and concrete observers have
been introduced. The first one handles the case of a concrete observer attached
to a concrete subject, while the second handles the case of a concrete observer
updated after a state change in its attached concrete subject. These associations
are represented by TLA+ variables (mathematical relations) attached and updated
respectively. In module ObserverBehav (Figure 5), predicate (s , o) ∈ attached in-
dicates that o is attached to s and (s , o) ∈ updated indicates that the data of o is
consistent with the data of s .
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module ObserverStruct
constant ConcreteSubject , ConcreteObserver
variable attached , updated

Auxiliary definitions

u ∆= 〈attached , updated〉
CS CO ∆= ConcreteSubject × ConcreteObserver
attached to(s) ∆= {y ∈ ConcreteObserver : 〈s, y〉 ∈ attached}
updated wrt(s) ∆= {y ∈ ConcreteObserver : 〈s, y〉 ∈ updated}

Invariant ∆= attached ⊆ CS CO ∧ updated ⊆ attached

Init ∆= attached = {} ∧ updated = {}

Figure 4: TLA+ module ObserverSruct

Module ObserverStruct captures the above properties through an invariant that
establishes that attached and updated are subsets of the Cartesian product ConcreteSubject×
ConcreteObserver (type definition) and that updated is always a subset of attached .
The initial state predicate Init initializes the relations attached and updated as empty
relations.

Behavioral requirements of the abstract version of the Observer pattern are
captured in module ObserverBehav (Figure 5) as follows:

• A concrete observer o can attach to a concrete subject s showing that o is
interested in changes in the data of s . This is reflected by action Attach(s , o).

• A change in data occurs in a concrete subject s . This is reflected by action
Set state(s).

• Based on the above, all concrete observers attached to a concrete subject s
should have their data updated in order to be consistent with the one of s .
This is reflected by action Update.

• A concrete observer o can detach from a concrete subject s showing that it is
no longer interested in its data change. This is reflected by action Detach(s , o).

Finally, module Observer (Figure 6) provides the complete specification of this
abstract version of the Observer pattern. Since the action to be executed is se-
lected non-deterministically (provided that its precondition is true), a weak fairness
requirement was introduced. It states that the action Update should be executed
infinitely often. The theorem reflects that the execution of the actions must preserve
the invariant.
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module ObserverBehav
extends ObserverStruct

A concrete observer o can attach to a concrete subject s (not previously attached to) showing that
o is interested in changes in the data of s.
Attach(s, o) ∆=
∧ 〈s, o〉 /∈ attached
∧ attached ′ = attached ∪ {〈s, o〉} ∧ updated ′ = updated ∪ {〈s, o〉}

A change in subject s occurs once observer were notified about previous change and then attached
observers became not updated.
Set state(s) ∆=
∧ attached to(s) = updated wrt(s) ∧ attached to(s) 6= {}
∧ updated ′ = updated \ {〈x , y〉 ∈ CS CO : x = s}
∧ unchanged attached

Observers attached to a subject s and not yet notified about a change should have their data
updated in order to be consistent with the one of s.
Update ∆=
∧ ∃ s ∈ ConcreteSubject :

( ∧ attached to(s) 6= updated wrt(s)
∧ updated ′ = updated ∪ {〈x , y〉 ∈ attached : x = s})

∧ unchanged attached

A concrete (already updated) observer o can detach from a concrete subject s showing that it is
no longer interested in its data change.
Detach(s, o) ∆=
∧ 〈s, o〉 ∈ attached
∧ 〈s, o〉 ∈ updated
∧ attached ′ = attached \ {〈s, o〉}
∧ updated ′ = updated \ {〈s, o〉}

Figure 5: TLA+ module ObserverBehav

module Observer
extends ObserverBehav

Next ∆= ∃ s ∈ ConcreteSubject , o ∈ ConcreteObserver :
∨Attach(s, o) ∨ Set state(s) ∨Update ∨Detach(s, o)

Liveness ∆= WFu(Update)
Spec ∆= Init ∧2[Next ]u ∧ Liveness

theorem Spec ⇒ 2Invariant

Figure 6: TLA+ module Observer
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Model Checking Specifications Using TLC

TLA+ models can be validated in order to make sure that a formula is satisfied by
all behaviors of a given system. Model checkers can explore behaviors allowed by
the model, possibly detecting deadlock or violation of invariants.

TLC [11] is a model checker for specifications written in TLA+. TLC is an
explicit-state, on-the-fly model checker. TLA+ and TLC have been successfully
used in many practical situations, particularly by hardware engineers to check the
correctness of hardware protocols. It is being gradually used by software engineers
to specify and check concurrent algorithms and protocols for software systems.

TLC requires a configuration file that defines the finite-state model and the
formula that represent the system specification to analyze and the properties to
check. Let us have a look at the self-explanatory configuration file for our module
Observer :

With this file, TLC is instructed to check Spec ⇒ 2Invariant (indicated by
clauses SPECIFICATION and INVARIANTS in a model where ConcreteSubject and ConcreteObserver
are defined as sets {s1, s2} and {o1, o2, o3, o4} respectively, where elements repre-
sent different objects).

TLC firsts checks the syntactic and semantic correctness and well-formedness
of a TLA+ specification. It then computes the graph of reachable states for the
instance of the model defined by the configuration file, while verifying the invariants.
Finally, the temporal properties are verified over the state space. TLC also reports
the number of states it generated during its analysis, the number of distinct states,
and the depth of the state graph (the length of the longest path). For small models
TLC run completes after few seconds. Trying to analyze somewhat larger models,
leads to the well-known problem of state-space explosion.

Figure 7: TLC detecting an invariant violation in the Observer module

To show how TLC can detect errors, let’s re-define action Detach(s , o) in module
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ObserverBehav as follows:

Detach(s , o) ,
∧ 〈s , o〉 ∈ attached
∧ attached ′ = attached \ {〈s , o〉}
∧ UNCHANGED updated

The TLC output in Figure 7 indicates an invariant violation. More precisely,
updated ⊆ attached is not preserved by action Detach. The problem was that the
precondition of Detach is too weak because 〈s , o〉 should belong to relation updated
and because such relation must be changed by removing the detached pair.

GoF Version of the Observer Pattern

Figure 8: UML class diagram of the GoF version of the Observer pattern

Figure 8 shows the UML class diagram of the GoF version of the Observer
pattern [5]. Again, the TLA+ specification of this version of the pattern has been
divided into three parts. The structural part represents classes, attributes, invariants
and the initial state (Figure 9 depicting module ObserverGOFStruct). The behav-
ioral part shows allowed actions (Figure 10 depicting module ObserverGOFBehav).
The last part defines the TLA+ formula specifying the pattern (Figure 11 depicting
module ObserverGOF ).

Below is a list of changes introduced in the specification ObserverGOFStruct
(Figure 9) as compared to ObserverStruct defined in the previous subsection:

• Instead of using mathematical relations attached and updated , a concrete sub-
ject maintains an attribute called observers representing a sequence of concrete
observers attached to it, while each concrete observer maintains an attribute
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module ObserverGOFStruct
local instance Naturals
local instance Sequences

constant Observer , Subject , Data Classes
variable

observers, subject , Attributes that keep structural relations
subjectState, observerState Internal state representation

Auxiliary definitions
u

∆
= 〈subject , observers, subjectState, observerState〉

Element x in sequence s
in seq(x , s)

∆
= ∃ i ∈ domain s : s[i ] = x

Set of observers attached to a subject s according to subject attribute
observer list according to subject attribute(s)

∆
=

{x ∈ domain subject : in seq(s, subject [x ])}

Set of observers attached to a subject s according to observers attribute
observers list according to observers attribute(s)

∆
=

{x ∈ Observer : in seq(x , observers[s])}

Predicate that establishes subject s and observer o are attached
attached P(s, o)

∆
= in seq(o, observers[s]) ∧ in seq(s, subject [o])

Predicate that establishes observer o is updated wrt subject s
updated P(s, o)

∆
= attached P(s, o) ∧ subjectState[s] = observerState[o]

Set of observers attached to subject s
attached to(s)

∆
= {x ∈ Observer : attached P(s, x)}

Set of observers updated wrt to subject s
updated wrt(s)

∆
= {x ∈ attached to(s) : updated P(s, x)}

Invariant and properties
Types

∆
=

∧ subject ∈ [Observer → Seq(Subject)]
∧ observers ∈ [Subject → Seq(Observer)]
∧ subjectState ∈ [Subject → Data]
∧ observerState ∈ [Observer → Data]

Cardinality
∆
= ∀ x ∈ domain subject : Len(subject [x ]) ≤ 1

Invariant
∆
=

∧ Types ∧ Cardinality

No repeated observers in the observers field of every subject
∧ ∀ s ∈ domain observers :

∀ i , j ∈ domain observers[s] :
observers[s][i ] = observers[s][j ]⇒ i = j

subject and observers fields must be consistent
∧ ∀ x ∈ Subject :

observer list according to subject attribute(x)
= observers list according to observers attribute(x)

Init
∆
=

∧ subject = [x ∈ Observer 7→ 〈〉]
∧ observers = [x ∈ Subject 7→ 〈〉]
∧ subjectState = [x ∈ Subject 7→ 0]
∧ observerState = [x ∈ Observer 7→ 0]

Figure 9: TLA+ module ObserverGOFStruct

called subject with a sequence containing no more than a unique concrete
subject to which it is attached.
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• State change in concrete subjects and concrete observers is explicitly shown
using the attributes subjectState and observerState. The set Data has been
introduced to contain any valid values for subjectState and observerState.

• All above four attributes are represented as TLA+ variables that have been
defined as functions.

• The specification now defines an invariant containing four conjuncts. The first
is about the type of TLA variables used. The second is in fact a constraint
that concrete observers should be attached to at most one concrete subject.
The third ensures that the list of concrete observers maintained by a concrete
subject does not contain duplication. Finally the last ensures consistency
between the list of concrete observers attached to a concrete subject and the
concrete subject to which a concrete observer is attached to.

With respect to the behavioral part of the specification (Figure 10), actions
have been adapted to the newly introduced variables but semantically they achieve
the same purpose as in the previous version. This refinement step will be validated
in Section 5 by using TLC.

An Instance of the Observer Pattern

Figure 12 shows the UML class diagram of an instance (concrete implementation)
of the Observer pattern. It appeared in [5] in the sample code section of the
Observer pattern. ClockTimer is concrete subject for storing and maintaining
the time of the day. It notifies its concrete observers after every tick. ClockTimer
provides a method for retrieving the time. The tick() method gets called by an
internal timer at regular intervals. Method tick () updates the Clock Timer’s internal
state and calls method notify() to inform concrete observers of the change.

The classes DigitalClock and AnalogClock are concrete observers used to display
the time in a digital and analog fashion respectively. When time ticks, the two clocks
will be updated and will re-display themselves appropriately. The TLA+ specifica-
tion of this instance of the Observer pattern can be found in Appendix A (module
ClockObserver) and it is very similar to the specifications in Figures 9, 10 and 11
with the following substitutions: Subject becomes ClockTimer , Observer becomes
Clock (which is DigitalClock ∪AnalogClock), subjectState becomes subjectTime and
observerState becomes observerTime.

5 STEPWISE REFINEMENT VALIDATION USING TLC

In this section we show how to validate the refinement between the three versions
of the Observer pattern. Figure 13 and Figure 14 depict refinement mappings
written to validate that the GoF version of the Observer pattern is a refinement
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module ObserverGOFBehav
extends ObserverGOFStruct
local instance Naturals
local instance Sequences

Attach(s, o) ∆=
∧ ¬attached P(s, o) ∧ Len(subject [o]) = 0
∧ observers ′ = [observers except ![s] = Append(@, o)]
∧ subject ′ = [subject except ![o] = 〈s〉]
∧ unchanged subjectState
∧ observerState ′ = [observerState except ![o] = subjectState[s]]

Set state(s) ∆=
∧ attached to(s) = updated wrt(s) ∧ attached to(s) 6= {}
∧ subjectState ′ = [subjectState except ![s] = choose d ∈ Data : d 6= @]
∧ unchanged subject ∧ unchanged observers ∧ unchanged observerState

Update ∆=
∧ ∃ s ∈ Subject :

( ∧ attached to(s) 6= updated wrt(s)
∧ observerState ′ = [x ∈ Observer 7→

if attached P(s, x )
then subjectState[s]
else observerState[x ]])

∧ unchanged subject ∧ unchanged observers ∧ unchanged subjectState

Detach(s, o) ∆=
∧ attached P(s, o) ∧ updated P(s, o)
∧ observers ′ = [observers except ![s] =

let DifFromO(x ) ∆= x 6= o
in SelectSeq(@, DifFromO)]

∧ subject ′ = [subject except ![o] = 〈〉]
∧ unchanged subjectState ∧ unchanged observerState

Figure 10: TLA+ module ObserverGOFBehav

of the abstract version and that the instance of the GoF version (ClockObserver) is
in turn a refinement of the GoF version.

Figure 15 and Figure 16 show the outputs of running TLC on the TLA+ spec-
ifications given in Figure 13 and Figure 14 respectively. Both were without errors
and showing indeed that the concrete implementation is a refinement of the GoF
version of the Observer pattern and that the later is in turn a refinement of the
more abstract version.
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module ObserverGOF
extends ObserverGOFBehav

Next ∆= ∃ s ∈ Subject , o ∈ Observer :
∨ Attach(s, o) ∨ Set state(s) ∨Update ∨Detach(s, o)

Liveness ∆= WFu(Update)
Spec ∆= Init ∧2[Next ]u ∧ Liveness

theorem Spec ⇒ 2Invariant

Figure 11: TLA+ module ObserverGOF

Figure 12: UML class diagram of an instance of the Observer pattern

6 RELATED WORK

The approach presented in this paper builds on our previous work on Balanced Pat-
tern Specification Language (BPSL) [16], a language which used First-Order Logic
(FOL) [8] and Temporal Logic of Actions (TLA) [10] as formal basis to formally
specify the structural and behavioral aspects of patterns respectively. In this new
version we solely use TLA+ to specify both aspects of patterns. Additionally, we
have developed a framework in which patterns can be specified at different levels
of abstraction and techniques (using model checking) to validate the existence of
refinement relationships. Furthermore, we can now automatically validate that a
given implementation is indeed an instance of a given pattern.

[15] provided an in-depth description of 16 different design pattern formalization
techniques. In this section we will summarize the features of the techniques that are
the closest to our approach.

[12] describes Design Pattern Modeling Language (DPML), a notation support-
ing the specification of design pattern solutions and their instantiation into UML
design models. DPML uses a simple set of visual abstractions and readily lends itself
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module ObserverGOFRefinesObserver
ObserverGOFRefinesObserver .tla - Specification of the validation that ObserverGOF specification
refines the absract Observer pattern specification.

Refinement specification

extends ObserverGOF

Abstract specification. ← represents substitution of variables

Abstract ∆= instance Observer with
ConcreteSubject ← Subject ,
ConcreteObserver ← Observer ,
attached ← {〈x , y〉 ∈ Subject ×Observer : attached P(x , y)},
updated ← {〈x , y〉 ∈ Subject ×Observer : updated P(x , y)}

AbstractSpec ∆= Abstract !Spec

The theorem reflects the refinement property to be checked between the two versions of patterns

theorem Spec ⇒ AbstractSpec

Figure 13: TLA+ Module ObserverGOFRefinesObserver

module ClockObserverRefinesObserverGOF
Refinement Specifiction

extends ClockObserver

Abstract Specification. ← represents substitution of variables

OGOF ∆= instance ObserverGOF with
Subject ← ClockTimer ,
Observer ← Clock ,
subjectState ← subjectTime,
observerState ← observerTime

OGOF Spec ∆= OGOF !Spec

The theorem reflects the refinement property to be checked between the two versions of patterns

theorem Spec ⇒ OGOF Spec

Figure 14: TLA+ Module ClockObserverRefinesObserverGOF

to tool support. DPML design pattern solution specifications are used to construct
visual, formal specifications of design patterns. DPML instantiation diagrams are
used to link a design pattern solution specification to instances of a UML model,
indicating the roles played by different UML elements in the generic design pattern
solution. The main drawback of this approach is being based on UML meta-modeling
techniques which can be described as semi-formal at best.
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Figure 15: Running TLC on the ObserverGOFRefinesObserver with the shown con-
figuration file

Figure 16: Running TLC on the ClockObserverRefinesObserverGOF module with
the shown configuration file

[4] shows how formal specifications of GoF patterns, based on the Rigorous
Approach to Industrial Software Engineering (RAISE) language, have been helpful
to develop tool support. Thus, the OO design process is extended by the inclusion of
pattern-based modeling and verification steps. The latter involving checking design
correctness and appropriate pattern application through the use of a supporting
tool, called DePMoVe (Design and Pattern Modeling and Verification). The main
drawback of this approach is again its heavy reliance on meta-modeling techniques
based on the RAISE language.

[6] describes an abstraction mechanism for collective behavior in reactive dis-
tributed systems. The mechanism allows to express recurring patterns of object
interactions in a parametric form, and to formally verify temporal safety properties
induced by applications of the patterns. The authors, discuss how the emphasis on
full formality affects what can be expressed and achieved in terms of patterns of ob-
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ject interactions. This approach focuses more on specifying the behavioral aspect of
patterns than on their structural aspect. We believe that both aspects are equality
important and deserve an equal attention.

[2] separated the structural and behavioral aspects of design patterns and pro-
posed specification methods based on first-order logic, temporal logic, temporal logic
of action, process calculus, and Prolog. It also explored verification techniques based
on theorem proving. This approach lacks the integration between the specification
of structural and behavioral aspects of patterns.

[9] describes a UML-based pattern specification language called Role-Based
Meta-modeling Language (RBML) which defines the solution domain of design pat-
terns in terms of roles at the meta-model level. This work discusses benefits of the
RBML and presents notation for capturing various perspectives of pattern proper-
ties. As mentioned before, this approach suffers from the same weaknesses of any
technique based on UML meta-models.

In [7], the formal specification of a design pattern is given as a class operator
that transform a design given as a set of classes into a new design that takes into
account the description and properties of the design pattern. The operator is spec-
ified in the SLAM-SL specification language, in terms of pre and post-conditions.
Precondition collects properties required to apply the pattern and post-condition
relates input classes and result classes encompassing most of the intent and con-
sequences sections of the pattern. Many ideas of this work have been applied to
our framework. However, although SLAM-SL is an executable language, it does not
provide support for validating refinements.

[3] presents LePUS, a formal language for modeling OO design patterns. The
authors demonstrated the language’s unique efficacy in producing precise, concise,
scalable, generic and appropriately abstract specifications modeling the GoF design
patterns. Mathematical logic is used as a main frame of reference: the language is
defined as a subset of first-order predicate calculus and implementations (programs)
are modeled as finite structures in model theory. The main drawback of LePUS is
that it focuses more on specifying the structural aspect of patterns than on their
behavioral aspect.

Our approach is based on specifying both aspects (structural and behavioral) of
patterns using one formalism i.e TLA. Moreover, we start by specifying the most
abstract version of patterns and follow a stepwise refinement approach to formally
specify other versions of the pattern up-to concrete implementations. We believe
that specifying patterns at the highest level of abstraction first, make them easy to
understand and hence easy to use. Furthermore, with our approach we were able
to formally specify pattern composition [14]. We have used TLA+ to specify many
GoF patterns (including their stepwise refinements) and we are in the process of
completing the catalog.
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7 CONCLUSION

Design patterns are means of improving design quality, flexibility and productivity.
However, their inherent benefits cannot be fully exploited by the existing informal
means of specification. Formal specification of patterns brings accuracy and facili-
tates tool support for their application.

In this paper, we defined a framework that uses TLA+ to formally specify pat-
terns at different levels of abstractions. This has facilitated their understandability
and hence their usability. The framework uses stepwise refinement to incremen-
tally and validly add details to a specification after starting from the most abstract
one. TLC was used to check the correctness of TLA+ specifications as well as
the satisfiability of invariants and properties (defining the validation of refinement).
The applicability of our approach was shown using three versions of the Observer
patterns as a case study.

In summary, the framework encompasses three characteristics:

• It allows the specification of the most abstract version of a pattern.

• It allows the specification of refinements or more concrete versions

• It allows the automatic validation of coherence of pattern descriptions as well
as the refinement of patterns.

We are now in the process of defining (in TLA+) object creation and destruction
in order to specify creational patterns. Also, we are in the process of defining a
domain specific (subset of TLA+) language to describe patterns. This will allow us
to develop tools to check the syntax and semantics of pattern specification and allows
the forward and reverse engineering of design patterns and their specifications.
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A TLA SPECIFICATION OF THE INSTANCE OF OBSERVER

This is the TLA+ specification of the instance of the Observer pattern shown in
Figure 12.

module ClockObserver
ClockObserver .tla– Specification of an instance of the Observer pattern. This file is very similar
to ObseverGOF .tla expect that the concrete subject is ClockTimer and the concrete observers are
DigitalClock and AnalogClock .

local instance Naturals

local instance Sequences

constant

Classes of the system

ClockTimer , DigitalClock , AnalogClock , Data

variable

Structural relations: associations in the class diagram

subject , DigitalClock ’s and AnalogClock ’s field

observers, ClockTimer ’s field

How to represent that observers are up-to-date or not after a change of their subject state?

subjectTime,

observerTime

Clock ∆= DigitalClock ∪AnalogClock

Types ∆=

∧ subject ∈ [Clock → Seq(ClockTimer)]

∧ observers ∈ [ClockTimer → Seq(Clock)]

∧ subjectTime ∈ [ClockTimer → Data]

∧ observerTime ∈ [Clock → Data]

Cardinality ∆=

∧ ∀ o ∈ domain subject : Len(subject [o]) ≤ 1

InSeq(x , s) ∆= ∃ i ∈ domain s : s[i ] = x

Definitions used in the specification
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ObserverListAccordingToSubjectAttribute(s) ∆=

{x ∈ domain subject : InSeq(s, subject [x ])}

ObserversListAccordingToObserversAttribute(s) ∆=

{x ∈ DigitalClock ∪AnalogClock : InSeq(x , observers[s])}

AttachedP(s, o) ∆=

∧ InSeq(o, observers[s])

∧ InSeq(s, subject [o])

UpdatedP(s, o) ∆=

∧ subjectTime[s] = observerTime[o]

Attached List(s) ∆=

{x ∈ Clock : AttachedP(s, x )}

Updated List(s) ∆=

{x ∈ Clock : UpdatedP(s, x )}

Invariant ∆= ∧ Types

∧ Cardinality

∧ ∀ x ∈ ClockTimer : ObserverListAccordingToSubjectAttribute(x )

= ObserversListAccordingToObserversAttribute(x )

Init ∆=

∧ subject = [x ∈ Clock 7→ 〈〉]

∧ observers = [x ∈ ClockTimer 7→ 〈〉]

∧ subjectTime = [x ∈ ClockTimer 7→ 0]

∧ observerTime = [x ∈ Clock 7→ 0]

Attach(s, o) ∆=

∧ ¬AttachedP(s, o)

∧ Len(subject [o]) = 0

∧ observers ′ = [observers except ![s] = Append(@, o)]

∧ subject ′ = [subject except ![o] = 〈s〉]

∧ unchanged subjectTime

∧ observerTime ′ = [observerTime except ![o] = subjectTime[s]]

Set state(s) ∆=

∧Attached List(s) = Updated List(s)

∧Attached List(s) 6= {}

∧ subjectTime ′ = [subjectTime except ![s] = choose d ∈ Data : d 6= @]
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∧ unchanged subject

∧ unchanged observers

∧ unchanged observerTime

Update ∆=

∧ ∃ s ∈ ClockTimer :

( ∧Attached List(s) 6= Updated List(s)

∧ observerTime ′ = [x ∈ Clock 7→

if AttachedP(s, x )

then subjectTime[s]

else observerTime[x ]])

∧ unchanged subject

∧ unchanged observers

∧ unchanged subjectTime

Detach(s, o) ∆=

∧AttachedP(s, o)

∧UpdatedP(s, o)

∧ observers ′ = [observers except ![s] =

let DifFromO(x ) ∆= x 6= o

in SelectSeq(@, DifFromO)]

∧ subject ′ = [subject except ![o] = 〈〉]

∧ unchanged subjectTime

∧ unchanged observerTime

Next ∆=

∨ (∃ s ∈ ClockTimer , o ∈ Clock : Attach(s, o))

∨ (∃ s ∈ ClockTimer : Set state(s))

∨ Update

∨ (∃ s ∈ ClockTimer , o ∈ Clock : Detach(s, o))

u ∆= 〈subject , observers, subjectTime, observerTime〉

Liveness ∆= WFu(Update)

Spec ∆= Init ∧2[Next ]u ∧ Liveness

theorem Spec ⇒ 2Invariant
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