
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 2, March-April 2009

Farid Mokhati, Mourad Badri: “Generating Maude Specifications From UML Use Case Diagrams”,
in Journal of Object Technology, vol. 8, no. 2, March-April 2009, pp. 119-136
http://www.jot.fm/issues/issue_2009_03/article2/

Generating Maude Specifications From
UML Use Case Diagrams

Farid Mokhati, Department of Computer Science, University of Oum-El-
Bouaghi, Algeria
Mourad Badri, Department of Mathematics and Computer Science, University
of Québec at Trois-Rivières, Canada

Abstract
This paper presents a systematic approach supporting the translation of UML use case
diagrams, describing the functional requirements of a system, into a Maude formal
specification. The proposed approach also considers the static and dynamic features of
object-oriented systems. The formal and object-oriented language Maude, based on
rewriting logic, supports formal specification and programming of concurrent systems.
The major motivations of this work are: (1) translating the functional requirements of an
object-oriented system, specified using UML use case diagrams, into a Maude
specification, (2) translating its static and dynamic aspects, described using UML class,
communication and state-transitions diagrams respectively, into a Maude specification,
and (3) integrating the formal verification of the consistency of the models, since the
analysis phase. A case study is presented to illustrate our approach.

1 INTRODUCTION

UML (Unified Modeling Language) is a language for specifying, visualizing and
constructing the artifacts of software systems [OMG05]. UML has become a standard for
object-oriented modeling. Its graphical notation makes it easy to understand, in particular
during the first phases of the development process. However, the fact that UML lacks
formal semantics can lead to serious problems [Led01]. This weakness can lead, in
particular, to inconsistencies within the developed models. Requirements analysis is a
primordial step of the development process. The quality of the models produced at this
phase is extremely important for the remaining phases of the development process. Their
formal validation allows avoiding many problems that may affect the quality of the
development as well as its cost [Dan07].

In this context, the use case diagrams and their related UML models play an
important role. The use case diagram allows describing the functional requirements of an
object-oriented system and represents an interesting communication tool between
developers and users. However, like the other UML diagrams, it offers only a graphical

GENERATING MAUDE SPECIFICATIONS FROM UML USE CASE DIAGRAMS

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2

and semi-formal description of requirements. A more formal approach, in the description
of the use cases, will reduce confusion and misunderstanding risks between developers
and users [She03]. As mentioned in [Sno01, Bru98], an appropriate combination of
object-oriented techniques and formal methods may make practically the software
development more rigorous. To achieve this purpose, one of the possible approaches
consists in deriving formal specifications (Maude in our case) from UML models and
analyzing them formally. An object based development process begins [Jac93, Rum94,
Gli00], by building the use case diagram and the class diagram of the application domain.
Communication and state-transitions diagrams are also added to these models in the
following steps of the analysis process to describe, respectively, the collective and
individual behaviour of objects. Each use case is described by at least one communication
diagram where exchanged messages between objects appear as methods in the class
diagram. The behaviour of objects of the same class is described by one state-transitions
diagram. The collaborative behaviour of objects, described by UML communication
diagrams, shows how objects (a group of objects) interact to realize the use cases
(operations of use cases). These different models allow describing, in a complementary
manner, several facets of the use cases. They represent the first models of an object-
oriented iterative development. It is important to ensure, at this level, their consistency.

This paper presents a systematic approach supporting the translation of UML use
case diagrams into a Maude formal specification. The proposed approach also considers,
the static (UML class diagram) and dynamic (UML communication and state-transitions
diagrams) features of the system. The formal and object-oriented language Maude, based
on rewriting logic, offers formal and sound basis for the specification and programming
of concurrent systems. Furthermore, a Maude specification constitutes a coherent and
executable representation of the specifications described using UML artefacts. The
principal motivations of this work are: (1) translating the functional requirements of an
object-oriented system, specified using UML use case diagrams, into a Maude
specification, (2) translating its static and dynamic aspects, described by UML class,
communication and state-transitions diagrams respectively, into a Maude specification,
and (3) integrating the formal verification of the consistency of the models, since the
analysis phase. A case study is presented to illustrate our approach.

The remainder of the paper is organized as follows. In section 2, we give a brief
overview of related works. Section 3 briefly presents the UML diagrams we use. In
section 4 we give an overview of rewriting logic and Maude. The proposed translation
process is presented in section 5. Section 6 illustrates the translation process using a
concrete case study. Finally, we give a conclusion and future work directions in section 7.

2 RELATED WORK

In [Mor99], the authors have proposed a translation process of the use case model into
Object-Z. They have formalized use cases using temporal logic to define invariants in the
Object-Z classes schemes. However, in their work, they only consider use case and

VOL. 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 121

sequence diagrams. The structural aspects of the system have not been covered.
Furthermore, the adopted approach does not allow the formal validation of the considered
models. The developed framework also does not take into account concurrency aspects
such as an object that receives a same message from several senders simultaneously.

With the objective of using jointly UML and B in a rigorous, unified and practically
development process, Ledang et al. [Led01] have proposed an approach for translating
the class, communication and use case diagrams into a B specification. In this approach,
the UML descriptions are analyzed through the generated B specification. However, this
approach does not consider explicitely the concurrential aspects of the described system.
Furthermore, the B notation is not object-oriented and consequently the abstract
specification generated form an object modeling may be different from which we would
write directly [Tat01].

In [Fer07], the authors have proposed an approach for translating the UML 2.0 use
case and sequence diagrams into a CPN formal description. The objective of this work is
to develop a tool allowing software engineers to use jointly UML and CPNs. Although
the CPN description is formal, it remains graphical and needs to be supported by a tool
for a formal verification. The structural aspects are not covered in this approach.

We present in this paper, a generic approach supporting the generation of a Maude
specification describing the functional requirements of an object-oriented system. The
approach takes into account jointly the UML models mentioned in section 1, and also
considers the concurrential aspects of the system. Furthermore, the use of UML and
Maude is motived by the desire to use them jointly in a practically, unified and rigorous
development approach. Our choice of Maude is mainly motivated by its powerful
description of object-oriented concurrent systems. It offers, indeed, a powerful formal
framework for the description of intra and inter objects concurrency. Furthermore, Maude
is supported by a tool, which allows validating the UML diagrams through their Maude
description. This tool also incorporates a model-checker which allows analysing and
verifying formally the system’s properties.

3 UML DIAGRAMS

Class diagram

UML class diagrams express the static structure of a system, in terms of classes and
relationships between classes. Classes are essentially organized through aggregation,
inheritance or association relationships [Mul00, OMG05].

State diagram

UML state diagrams [Mul00] describe, using finite state machines, the life cycle of
objects. Different types of events are defined by UML. We will focus only on the events
of the “Call” type.

GENERATING MAUDE SPECIFICATIONS FROM UML USE CASE DIAGRAMS

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2

Communication diagram

UML communication diagrams [Boo98, Mul00] describe how a set of objects collaborate
to accomplish a specific task (for example an operation of a use case). They emphasize
the dynamic interactions between those objects (message exchanges) as well as their
synchronization. The concept of synchronization between messages is accomplished
using the "/" symbol. A synchronization point is used to note the necessity of the
completion of a particular message before the execution of another can begin, for
example.

Use case diagram

UML use case diagrams describe, in the form of action and reaction, the system’s
behaviour from the user’s point of view. They allow defining the system’s limits and the
relationships between the system and the environment [Mul00]. The use case diagrams
represent use cases, actors and the relationships between the use cases and the actors.

4 REWRITING LOGIC AND MAUDE

Rewriting Logic

Rewriting logic, having a sound and complete semantic, was introduced by Meseguer
[Mes92]. It allows describing concurrent systems [Mes03, McC03, Eke02, Cla05]. This
logic unifies all the formal models that express concurrency [Mes92]. The rewriting rules
are based on the general form of R: [t] → [t’] if C, which indicates that, according to rule
R, term t becomes or is transformed into t’ if a certain condition C is verified. This rule is
of the conditional form. There also exist unconditional rules where the conditional term C
is not present.

1. sort Configuration .
2. sort Object .
3. sort Msg .
4. subsort Object < Configuration .
5. subsort Msg < Configuration .
6. op null : -> Configuration .
7. op_ _ : Configuration Configuration -> Configuration [assoc
comm id : null] .

Figure 1. Example of a portion of a Maude program.

The example shown in Figure 1 gives the definition of three types: Configuration, Object
and Msg (those two last being subtypes of Configuration). In the case where there is no
floating messages or live objects, the global configuration of the system is empty. The
construction of a new configuration, in terms of other configurations, is done with the
operation given on line 7. This operation satisfies the structural laws of associability and
commutability and possesses a neutral element called null.

VOL. 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 123

Maude

Maude is a specification and programming language based on rewriting logic [Mes92,
Cla01, Cla05, McC03]. Three types of modules are defined in Maude. Functional
modules allow defining data types and their functions. System modules allow defining
the dynamic behaviour of a system. This type of module augments the functional
modules by introducing rewriting rules. Finally, object-oriented modules, which can be
reduced to system modules, offer a more appropriate syntax to describe the basic entities
of the object paradigm. Maude environment has an incorporated model checker.
However, model checking is out of the scope of this paper, but will be addressed in a
future work.

5 TRANSLATION PROCESS

Figure 2 illustrates the translation process supported by our approach. The methodology
of our approach needs, in a first time, defining the system’s functional requirements using
a use case diagram. For realizing use cases, we associate to each use case one or several
communication diagrams, representing different possible scenarios. The messages
exchanged between objects carry on methods defined in the class diagram.

GENERATING MAUDE SPECIFICATIONS FROM UML USE CASE DIAGRAMS

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2

The individual behaviours of objects involved in the collaboration, to realize an operation
of a use case, are described by state-transitions diagrams. The considered diagrams go
through a first step of an inter-models validation in order to verify the system
consistency. For example, each message sent to a destination object in the
communication diagram must exist in the state diagram of the object and it is accessible.
In the same way, each use case in the use case diagram must be realized by at least one
communication diagram.

The proposed translation process consists of generating a Maude formal description
from use case, class communication and state diagrams analysis (Figure 2). During this
process, several modules are generated. Figure 3 illustrates those modules. Please note
that the modules in bold are object-oriented modules, while all others are functional
modules.

Validation and translation

Maude Formal Description

Structural Aspects

Use case Diagram Class Diagram

Communication Diagrams

 State-Transition Diagrams

Collective Behaviour

Individual Behaviour

Dynamic Aspects

Functional Requirements

Figure 2: Methodology of the approach.

VOL. 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 125

Figure 3: Generated Modules.

The functional module METHOD (Figure 4) contains all the types used to describe a
method. Types Parameter and ParameterList are generic. They describe the type of
parameters a method uses. Furthermore, ResultType and Void describe the type of the
result returned by the method. ResultType is generic, and Void is a particular case of
ResultType. The operation (_,_) is a constructor for the parameter list of a function.

fmod METHOD is
 sorts ParameterList ResultType Parameter Void .
 subsort Parmeter < ParamaeerList .
 subsort Void < ResultType .
 op EmptyParameterList : -> ParameterList .
 op _,_ : Parameter ParameterList -> ParameterList .
endfm

Figure 4. The functional module METHOD.

A functional module is associated to each state diagram for which the name is the
concatenation of the class’ name and the string ‘STATEVALUES’. This module describes
the state values a class can take according to its state diagram. The functional module
IDENTIFICATION is generated to describe the identification mechanism of the objects of
the communication diagram. For each class of the class diagram, we associate an object-
oriented module bearing the same name as the class, while adopting a generic form for
the classes (Figure 5).

In the case where one of such a class is in relation to other classes in the class
diagram, the module associated to it must import all the other modules associated to those
classes. The class is declared in a module with a state attribute called State and for which
its type is declared in the corresponding functional module. In the case of an aggregation
class, an identification list of all the aggregated classes must also be present.

…

METHOD

ClassNamen-STATEVALUES

ClassName1-STATEVALUES

ClassName2-STATEVALUES

 Class1

 Class2

 Classn

Use-Case1

…
Use-Case2

Use-Casem

IDENTIFICATION

SYSTEM
REQUIREMENTS

Importation
 Mandatory
 optional
 Module

…

MESSAGE

GENERATING MAUDE SPECIFICATIONS FROM UML USE CASE DIAGRAMS

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2

class ClassName | State : ClassNameStateValues [,
ComponentList] .

Figure 5. Generic form adopted for the classes.

The methods of a class are also defined in the corresponding module using the following
form (Figure 6):

op FunctionName : ParameterList -> ResultType .

Figure 6. Form adopted for the methods.

We define an object-oriented module MESSAGE in which are defined the forms of the
messages exchanged between objects as well as the form of the synchronization message
(see Figure 7).

mod MESSAGE is
 protecting IDENTIFICATION METHOD .
 op ComingMsg : ResultType Receiver -> Msg .
 op IsAccomplished : ResultType Receiver -> Msg .
endm

Figure 7. Form adopted for the messages.

Each message exchanged between two objects of the communication diagram is
translated in the form of a ComingMsg shown in Figure 7. With this message, we specify
two things. On the first hand, we identify the destination object (Receiver) and, on the
other hand, the result type of the operation to be executed. In fact, each sending of a
message in the communication diagram corresponds to a Call Event, launching a
transition in the state diagram of the destination object.

To implement the concept of Synchronization Point of the messages sent within a
communication diagram, a new message called IsAccomplished is introduced (see Figure
7). The rewriting rule that implements transition corresponding to the sending of a
message on which depend other messages must generate a number of IsAccomplished
messages equal to the number of messages to be sent. This message is also used in the
case where the sending of an asynchronous message depends on the sending of another
message. Furthermore, to each use case is associated an object-oriented module Use-
Casei bearing the same name as the corresponding use case. In each module Use-Casei
are defined the rewriting rules describing the different interaction scenarios between the
objects defined in the different communication diagrams, instances of the use case. A
module describing a use case can import (optional importation) another describing a use
case which is linked to it. Once generated, the modules Use-Casei are imported in the
object-oriented module SYSTEM REQUIEREMENTS representing the principal module
(see Figure 8). This module describes, in fact, the system’s dynamic behaviour from the
user’s point of view.

VOL. 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 127

omod SYSTEM-REQUIERMENTS is
 protecting Use-Case1 .
 protecting Use-Case2 .
 …
 protecting Use-Casem .
endom

Figure 8. The principal module SYSTEM-REQUIERMENTS.

6 CASE STUDY: THE ELEVATOR

This section illustrates the application of the proposed approach on a concrete example
taken from [Mul00]. This example was simplified for the present study. It carries on the
elevator working. Figure 9 shows the class diagram of that system. The functional
requirements are described by the use case diagram of figure 10. The use case
TransportByElevator is realized by the communication diagram of figure 11. It consists
of the procedure done by a user at a given moment to use the elevator after it was started
properly. Figure 12 shows respectively the state diagrams for classes Door, SignalLight,
Cabin, and Elevator.

 Figure 10. Use case diagram of the elevator.

CallElevato
r

TransportBy
Elevator

User

Maintenance
Technician

PrepareElevato
r

<<include>>

<<include>>

Figure 9. Class diagram.

GENERATING MAUDE SPECIFICATIONS FROM UML USE CASE DIAGRAMS

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2

Figure 11. Communication diagram.

Application of the translation process

By applying the translation process, we obtain the modules described in what follows.
We have four functional modules: ELEVATOR-STATEVALUES, CABIN-
STATEVALUES, SIGNALLIGHT-STATEVALUES and DOOR-STATEVALUES.
These modules contain respectively the states of the different classes: Elevator, Cabin,
SignalLight and Door. For reasons of space limitation, only the code for one of them is
given, namely ELEVATOR-STATEVALUES (see Figure 13).

Figure 12. State diagrams for classes Door (a), SignalLight (b), Cabin (c) and Elevator (d).

Close()

Open()

Opened

(a).

Closed

TurnOff()

TurnOn()

On

(b)

Off

GoUp()

Stop()

Move(target)

Moving

(c).

Waiting

ExternalCall(dest)

SelectFuturFloor()

Start()

Initialize()
Initialized Inactive

Started

(d).

VOL. 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 129

fmod ELEVATOR-STATEVALUES is
 sort ElevatorStateValues .
 ops Inactive Initialized Started :-> ElevatorStateValues .
endfm

Figure 13. Module ELEVATOR-STATEVALUES.

A module IDENTIFICATION (see Figure 14) imports the predefined CONFIGURATION
module. This module contains the definition of types Eoid, Coid, Doid, Soid which
describe the identification mechanism of the objects E, C, P and S, instance of classes
Elevator, Cabin, Door and SignalLight respectively.

fmod IDENTIFICATION is
 including CONFIGURATION .
 sort Eoid Coid Doid Soid Receiver .
 subsort Eoid Coid Doid Soid < Oid .
 subsort Receiver < Eoid Coid Doid Soid .
endfm

Figure 14. Module IDENTIFICATION.

omod CABIN is
 protecting DOOR .
 protecting SIGNALLIGHT .
 protecting CABIN-STATEVALUES .
 sort Cabin Target .
 subsort Cabin < Cid .
 subsort Target < Parameter .
 ops UP DOWN : -> Target .
 class Cabin | State : CabinStateValues, IdDoor : Oid, IdSL

: Oid .
 ops UP DOWN : -> Target .
 op GoUp : ParameterList -> Void .
 op Stop : ParameterList -> Void .
 op Move : Target -> Void .
endom

Figure 15. Module CABIN.

We have four object-oriented modules: ELEVATOR, CABIN, SIGNALLIGHT and DOOR.
In each module, a class is defined with a State attribute describing the current state of the
object, and a list of composing objects in case of aggregate classes, as well as the
different methods of the class. The code for only one of those modules is presented here,
namely CABIN (see Figure 15).

Three object-oriented modules implementing the use cases are generated by our
approach; CALL-ELEVATOR, TRANSPORTBYElEVATOR and PREPARE-ELEVATOR.
We give in what follows the code of the module TRANSPORTBYELEVATOR (sww
Figure 16).

GENERATING MAUDE SPECIFICATIONS FROM UML USE CASE DIAGRAMS

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2

omod TRANSPORTBYELEVATOR is
 include CALL-ELEVATOR PREPARE-ELEVATOR
 protecting IDENTIFICATION MESSAGE.
 extending ELEVATOR CABIN DOOR SIGNALLIGHT .

*** Utility Variables **
 var E : Eoid . var C : Coid . var D : Doid . var S : SLoid .

*** Elevator’s Behavior **
 rl [E1]: ComingMsg(Initialize(EmptyParameterList), E)
 < E : Elevator | State : Inactive, IdCabin : C >
 =>
 < E : Elevator | State : Initialized, IdCabin : C >
 IsAccomplished(Initialize (EmptyParameterList), E) .

 rl [E2]: IsAccomplished(Initialize (EmptyParameterList), E)
 ComingMsg(Start(EmptyParameterList), E)
 < E : Elevator | State : Initialised, IdCabin : C >
 =>
 < E : Elevator | State : Started, IdCabin : C >
 IsAccomplished(Start(EmptyParameterList), E)
 IsAccomplished(Start(EmptyParameterList), E) .
…
endom

Figure 16. Module TRANSPORTBYELEVATOR.

This module imports, on the first hand, the modules CALL-ELEVATOR and PREPARE-
ELEVATOR, and on the other hand the modules IDENTIFICATION and MESSAGE.
Furthermore, it extends modules ELEVATOR, CABIN, DOOR and SIGNALLIGHT.
Figure 16 presents two rewriting rules. The rewriting rule ‘E1’ describes the reception of
message Initialize by object E. After its execution, the rule generates a message
IsAccomplished that will be used to allow asynchronous message Start to be sent. The
execution of the second rule, namely ‘E2’, needs, aside from the IsAccomplished message
generated by the first rule, the arrival of message Start. Such a rule generates two
IsAccomplished messages, to allow two other messages, namely SelectFutureFloor and
ExternalCall, to be sent (see Figure 11).

The object-oriented module SYSTEM-REQUIEREMENTS (Figure 17) constitutes the
principal module generated by our approach. It imports modules
TRANSPORTBYElEVATOR, CALL-ELEVATOR and PREPARE-ELEVATOR.

omod SYSTEM-REQUIEREMENTS is
 protecting CALL-ELEVATOR .
 protecting PREPARE-ELEVATOR .
 protecting TRANSPORTBYElEVATOR .
endom

Figure 17: Module SYSTEM-REQUIEREMENTS.

VOL. 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 131

Validation of the generated description

To illustrate the validation of the generated description, two essential cases are presented:
the case where the elevator receives an external call, after it was initialized and started by
the maintenance technician, and the case where the elevator receives a message for
selecting the next floor. For the first case, the initial configuration is given by figure 18:

 < E : Elevator | StateE : Started, IdCabin : C >
 < C : Cabin | StateC : Waiting, IdDoor : D, IdSignalLight : S >
 < D : Door | StateD : Closed > < S : SignalLight |StateS : Off >
 ComingMsg(ExternalCall(4), E) .

Figure 18. First initial configuration.

This configuration represents, an object E, instance of the class Elevator in starting state
(Started), an object C of the class CABIN in waiting state (Waiting), an object D of the
class DOOR in closed state (Closed) and an object S of the class SIGNALLIGHT in
extinguished state (Off). It also shows the arrival of an external call accomplished by the
user from the floor number 4. The unlimited rewriting of this configuration returns the
result given in figure 19.

 < E : Elevator | StateE : Started, IdCabin : C >
 < C : Cabin | StateC : Waiting, IdDoor : D, IdSignalLight : S >
 < D : Door | StateD : Closed > < S : SignalLight | StateS : On >

Figure 19. Result of the unlimited rewriting of the first initial configuration.

This result shows that, the Elevator is in its Started state, the Door is closed, the
SignalLight is lit, but the Cabin is always in a waiting state because the user has not
selected yet its destination.

For the second case, we extend the configuration of figure 19. We relaunch the
rewriting process from the result of the rewriting of the first configuration while adding
to it the arrival of a message for selecting the next floor SelectFuturFloor (figure 20).

 < E : Elevator | StateE : Started, IdCabin : C >
 < C : Cabin | StateC : Waiting, IdDoor : D, IdSignalLight : S >
 < D : Door | StateD : Closed > < S : SignalLight | StateS : On >
 ComingMsg(SelectFuturFloor(EmptyParamatersList), E) .

Figure 20. Second initial configuration.

The unlimited rewriting of the second configuration returns the result given by the figure
21. This configuration is similar to the one of figure 19 except that the Cabin is in
moving.

GENERATING MAUDE SPECIFICATIONS FROM UML USE CASE DIAGRAMS

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2

 < E : Elevator | StateE : Started, IdCabin : C >
 < C : Cabin | StateC : Moving, IdDoor : D, IdSignalLight : S >
 < D : Door | StateD : Closed > < S : SignalLight | StateS : On >

Figure 21. Result of the unlimited rewriting of the second initial configuration.

Implementation

Figure 22 shows part of the code developed in the Maude language, namely the principal
module SYSTEM-REQUIERMENTS of our framework which describes the system’s
functional requirements illustrated by the use case diagram of figure 10. This module
imports the others modules (CALL-ELAVATOR, PREPAR-ELEVATOR and
TRANSPORT-BY-ELEVATOR) implementing the different scenarios of the different use
cases of figure 10.

The following figure also illustrates, the launching of the unlimited rewriting process
of the configurations of figures 18 and 20, and the limited rewriting (after two rewriting
steps) of the first initial configuration of figure 18.

Figure 22. Part of the developed code.

VOL. 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 133

Figure 23. Results of the rewriting of the different configurations.

The results of the rewriting of the different configurations are illustrated by figure 23.
This figure shows, the results of the unlimited rewriting of the two first configurations.
These results are like to those presented in figures 19 and 21. The figure shows also the
result of the limited rewriting of the first configuration. This last result represents an
intermediate configuration illustrating: the elevator in starting, the cabin in waiting, the
door is open, the signallight is extinguished and the arrival of a message indicating that
the user is ready to accede to the cabin.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a generic approach that allows translating functional
requirements described by UML use case diagrams into a Maude formal specification.
This thematic has been addressed in several papers published in the literature. However,
the structural and/or concurrential aspects of the systems have not been covered in most
of these papers.

The proposed approach takes into account the system’s structural and dynamic
(individual and collective) features. Furthermore, concurrential aspects have also been
considered. Maude is very appropriate for describing object-oriented concurrent systems.
The Maude language is supported by a tool, which allowed us to validate the generated
code by simulation.

GENERATING MAUDE SPECIFICATIONS FROM UML USE CASE DIAGRAMS

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2

Maude offers a model checker in its environment, which uses Linear Temporal
Logic (LTL) to verify properties among the developed models. As future work, we plan
on extending the formal framework we developed to analize and verify system’s
functional requirements though their Maude descriptions using the model checker
incorporated in Maude environment. This model checker uses on-the-fly techniques to
manage the state-space problem from which model checking techniques suffer. Linear
Time Logic is used to define desirable or non desirable properties that are to be checked
in the system under development.

REFERENCES

[Boo98] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling Language User
Guide. Addition-Wesley, Object Technology Series, 1998.

[Bru98] J.M. Bruel. Integrating Formal and Informal Specification Techniques. Why?
How? In the 2nd IEEE Workshop on Industrial-Strength Formal Specification
Techniques, pages 50–57, Boca Raton, Floria (USA), 1998.

[Cla01] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer and J. F.
Quesada, Maude: Specification and Programming in Rewriting Logic.
Theoretic Computer Science, 2001.

[Cla05] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Mesenguer and C.
Talcott, Maude Manual (Version 2.1.1). April 2005.

[Dan07] D.H. Dang. Validation of System Behavior Utilizing an Integrated Semantics of
Use Case and Design Models. In Claudia Pons, editor, Proceedings of the
Doctoral Symposium at the ACM/IEEE 10th International Conference on
Model-Driven Engineering Languages and Systems (MoDELS 2007).
Nashville (TN), USA, October 1st, 2007. CEUR, Vol-262, 2007.

[Eke02] S. Eker, J. Meseguer and A. Sridharanarayanan, The Maude LTL Model
Checker. Elsevier Science B V, 2002.

[Fer07] J. M. Fer et al. Designing Tool Support for Translating Use Cases and UML 2.0
Sequence Diagrams into a Coloured Petri Net, SCESM, 2007.

[Gli00] M. Glinz. A Lightweight Approach to Consistency of Scenarios and Class
Models. In Proceedings of the Fourth International Conference on
Requirements Engineering, Illinois, June 10-23, 2000.

[JCJO93] I. Jacobson, M. Christerson, P. Jonson, and G. Overgaard. Le génie logiciel
orienté objet. Addison Wesley France, 1993.

[Led01] H. Ledang and J. Souquières. Formalizing UML Behavioral Diagrams with B.
Tenth OOPSLA Workshop on Behavioral Semantics: Back to Basics, Tampa
Bay, Florida, USA, 2001.

VOL. 8, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 135

[McC03] T. McCombs, Maude 2.0 Primer, Version 1.0. Internal report, SRI International,
2003.

[Mes92] J. Meseguer, A Logical Theory of Concurrent Objects and its Realization in the
Maude Language. G Agha, P Wegner and A Yonezawa, Editors, Research
Directions in Object-Based Concurrency. MIT Press, 1992, pp. 314-390.

[Mes03] J. Meseguer, Software Specification and Verification in Rewriting Logic.
Computer Science Department, University of Illinois at Urbana-Champaign,
2003.

[Mor99] A. Moreira and J. Araújo. Generating Object-Z Specifications from Use Cases.
International Conference on Entreprise Information Systems (ICEIS’99).
Setúbal, Portugal, 1999.

[Mul00] P. A. Muller and N. Gaertner, Modélisation Objet avec UML. Second Edition,
Paris, 2000.

[OMG05] Object Modeling Group. Unified Modeling Language Specification, version
2.0. July 2005.

[Rum94] J. Rumbaugh. Using use cases to capture requirements. Journal of object-
oriented programming, 7(5), September 1994.

[She03] W. Shen and S. Liu. Formalization, Testing and Execution of a Use Case
Diagram. In 5th International Conference on Formal Engineering Methods
(ICFEM’03), 2003.

[Sno01] C. Snook and R. Harrison. Practitioners Views on the Use of Formal Methods:
An Industrial Survey by Structured Interview. Information and Software
Technology March 2001, 43:275–283, 2001.

[Tat01] B. Tatibouet, A. Hammad, Une utilisation conjointe de B et UML sur l'étude de
cas du robot typé, Conférence d'Ingénierie des Systèmes (AFIS 2001),
France, Toulouse, p. 285-290, June 2001.

GENERATING MAUDE SPECIFICATIONS FROM UML USE CASE DIAGRAMS

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 8, NO. 2

About the authors
Farid Mokhati (Mokhati@yahoo.fr) is an assistant professor of
computer science at the Department of Computer Science of the
University of Oum El-Bouaghi in Algeria. He holds a Ph.D. in
computer science (Distributed Artificial Intelligence) from the
University of Annaba in Algeria. His main areas of interest include
object and agent-oriented software engineering, and formal methods.

Mourad Badri (Mourad.Badri@uqtr.ca) is professor of computer
science at the Department of Mathematics and Computer Science of the
University of Quebec at Trois-Rivières (Quebec, Canada). He holds a
Ph.D. in computer science (software engineering) from the National
Institute of Applied Sciences in Lyon (France). His main areas of
interest include object and aspect-oriented software engineering,

software quality assurance, and formal methods.

