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Abstract 
This paper presents a systematic approach supporting the translation of UML use case 
diagrams, describing the functional requirements of a system, into a Maude formal 
specification. The proposed approach also considers the static and dynamic features of 
object-oriented systems. The formal and object-oriented language Maude, based on 
rewriting logic, supports formal specification and programming of concurrent systems. 
The major motivations of this work are: (1) translating the functional requirements of an 
object-oriented system, specified using UML use case diagrams, into a Maude 
specification, (2) translating its static and dynamic aspects, described using UML class, 
communication and state-transitions diagrams respectively, into a Maude specification, 
and (3) integrating the formal verification of the consistency of the models, since the 
analysis phase. A case study is presented to illustrate our approach. 

1 INTRODUCTION 

UML (Unified Modeling Language) is a language for specifying, visualizing and 
constructing the artifacts of software systems [OMG05]. UML has become a standard for 
object-oriented modeling. Its graphical notation makes it easy to understand, in particular 
during the first phases of the development process. However, the fact that UML lacks 
formal semantics can lead to serious problems [Led01]. This weakness can lead, in 
particular, to inconsistencies within the developed models. Requirements analysis is a 
primordial step of the development process. The quality of the models produced at this 
phase is extremely important for the remaining phases of the development process. Their 
formal validation allows avoiding many problems that may affect the quality of the 
development as well as its cost [Dan07]. 

In this context, the use case diagrams and their related UML models play an 
important role. The use case diagram allows describing the functional requirements of an 
object-oriented system and represents an interesting communication tool between 
developers and users. However, like the other UML diagrams, it offers only a graphical 
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and semi-formal description of requirements. A more formal approach, in the description 
of the use cases, will reduce confusion and misunderstanding risks between developers 
and users [She03]. As mentioned in [Sno01, Bru98], an appropriate combination of 
object-oriented techniques and formal methods may make practically the software 
development more rigorous. To achieve this purpose, one of the possible approaches 
consists in deriving formal specifications (Maude in our case) from UML models and 
analyzing them formally. An object based development process begins [Jac93, Rum94, 
Gli00], by building the use case diagram and the class diagram of the application domain. 
Communication and state-transitions diagrams are also added to these models in the 
following steps of the analysis process to describe, respectively, the collective and 
individual behaviour of objects. Each use case is described by at least one communication 
diagram where exchanged messages between objects appear as methods in the class 
diagram. The behaviour of objects of the same class is described by one state-transitions 
diagram. The collaborative behaviour of objects, described by UML communication 
diagrams, shows how objects (a group of objects) interact to realize the use cases 
(operations of use cases). These different models allow describing, in a complementary 
manner, several facets of the use cases. They represent the first models of an object-
oriented iterative development. It is important to ensure, at this level, their consistency.  

This paper presents a systematic approach supporting the translation of UML use 
case diagrams into a Maude formal specification. The proposed approach also considers, 
the static (UML class diagram) and dynamic (UML communication and state-transitions 
diagrams) features of the system. The formal and object-oriented language Maude, based 
on rewriting logic, offers formal and sound basis for the specification and programming 
of concurrent systems. Furthermore, a Maude specification constitutes a coherent and 
executable representation of the specifications described using UML artefacts. The 
principal motivations of this work are: (1) translating the functional requirements of an 
object-oriented system, specified using UML use case diagrams, into a Maude 
specification, (2) translating its static and dynamic aspects, described by UML class, 
communication and state-transitions diagrams respectively, into a Maude specification, 
and (3) integrating the formal verification of the consistency of the models, since the 
analysis phase. A case study is presented to illustrate our approach. 

The remainder of the paper is organized as follows. In section 2, we give a brief 
overview of related works. Section 3 briefly presents the UML diagrams we use. In 
section 4 we give an overview of rewriting logic and Maude. The proposed translation 
process is presented in section 5. Section 6 illustrates the translation process using a 
concrete case study. Finally, we give a conclusion and future work directions in section 7. 

2 RELATED WORK 

In [Mor99], the authors have proposed a translation process of the use case model into 
Object-Z. They have formalized use cases using temporal logic to define invariants in the 
Object-Z classes schemes. However, in their work, they only consider use case and 
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sequence diagrams. The structural aspects of the system have not been covered. 
Furthermore, the adopted approach does not allow the formal validation of the considered 
models. The developed framework also does not take into account concurrency aspects 
such as an object that receives a same message from several senders simultaneously. 

With the objective of using jointly UML and B in a rigorous, unified and practically 
development process, Ledang et al. [Led01] have proposed an approach for translating 
the class, communication and use case diagrams into a B specification. In this approach, 
the UML descriptions are analyzed through the generated B specification. However, this 
approach does not consider explicitely the concurrential aspects of the described system. 
Furthermore, the B notation is not object-oriented and consequently the abstract 
specification generated form an object modeling may be different from which we would 
write directly [Tat01]. 

In [Fer07], the authors have proposed an approach for translating the UML 2.0 use 
case and sequence diagrams into a CPN formal description. The objective of this work is 
to develop a tool allowing software engineers to use jointly UML and CPNs. Although 
the CPN description is formal, it remains graphical and needs to be supported by a tool 
for a formal verification. The structural aspects are not covered in this approach. 

We present in this paper, a generic approach supporting the generation of a Maude 
specification describing the functional requirements of an object-oriented system. The 
approach takes into account jointly the UML models mentioned in section 1, and also 
considers the concurrential aspects of the system. Furthermore, the use of UML and 
Maude is motived by the desire to use them jointly in a practically, unified and rigorous 
development approach. Our choice of Maude is mainly motivated by its powerful 
description of object-oriented concurrent systems. It offers, indeed, a powerful formal 
framework for the description of intra and inter objects concurrency. Furthermore, Maude 
is supported by a tool, which allows validating the UML diagrams through their Maude 
description. This tool also incorporates a model-checker which allows analysing and 
verifying formally the system’s properties. 

3 UML DIAGRAMS 

Class diagram 

UML class diagrams express the static structure of a system, in terms of classes and 
relationships between classes. Classes are essentially organized through aggregation, 
inheritance or association relationships [Mul00, OMG05]. 

State diagram  

UML state diagrams [Mul00] describe, using finite state machines, the life cycle of 
objects. Different types of events are defined by UML. We will focus only on the events 
of the “Call” type.  
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Communication diagram 

UML communication diagrams [Boo98, Mul00] describe how a set of objects collaborate 
to accomplish a specific task (for example an operation of a use case). They emphasize 
the dynamic interactions between those objects (message exchanges) as well as their 
synchronization. The concept of synchronization between messages is accomplished 
using the "/" symbol. A synchronization point is used to note the necessity of the 
completion of a particular message before the execution of another can begin, for 
example. 

Use case diagram  

UML use case diagrams describe, in the form of action and reaction, the system’s 
behaviour from the user’s point of view. They allow defining the system’s limits and the 
relationships between the system and the environment [Mul00]. The use case diagrams 
represent use cases, actors and the relationships between the use cases and the actors.  

4 REWRITING LOGIC AND MAUDE 

Rewriting Logic  

Rewriting logic, having a sound and complete semantic, was introduced by Meseguer 
[Mes92]. It allows describing concurrent systems [Mes03, McC03, Eke02, Cla05]. This 
logic unifies all the formal models that express concurrency [Mes92]. The rewriting rules 
are based on the general form of R: [t] → [t’] if C, which indicates that, according to rule 
R, term t becomes or is transformed into t’ if a certain condition C is verified. This rule is 
of the conditional form. There also exist unconditional rules where the conditional term C 
is not present. 
 

1.  sort Configuration . 
2.  sort Object . 
3.  sort Msg . 
4.  subsort Object < Configuration . 
5.  subsort Msg < Configuration . 
6.  op null : -> Configuration . 
7. op_ _ : Configuration Configuration -> Configuration [assoc  
comm id : null] . 

Figure 1. Example of a portion of a Maude program. 

The example shown in Figure 1 gives the definition of three types: Configuration, Object 
and Msg (those two last being subtypes of Configuration). In the case where there is no 
floating messages or live objects, the global configuration of the system is empty. The 
construction of a new configuration, in terms of other configurations, is done with the 
operation given on line 7. This operation satisfies the structural laws of associability and 
commutability and possesses a neutral element called null.  
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Maude 

Maude is a specification and programming language based on rewriting logic [Mes92, 
Cla01, Cla05, McC03]. Three types of modules are defined in Maude. Functional 
modules allow defining data types and their functions. System modules allow defining 
the dynamic behaviour of a system. This type of module augments the functional 
modules by introducing rewriting rules. Finally, object-oriented modules, which can be 
reduced to system modules, offer a more appropriate syntax to describe the basic entities 
of the object paradigm. Maude environment has an incorporated model checker. 
However, model checking is out of the scope of this paper, but will be addressed in a 
future work. 

5 TRANSLATION PROCESS 

Figure 2 illustrates the translation process supported by our approach. The methodology 
of our approach needs, in a first time, defining the system’s functional requirements using 
a use case diagram. For realizing use cases, we associate to each use case one or several 
communication diagrams, representing different possible scenarios. The messages 
exchanged between objects carry on methods defined in the class diagram. 
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The individual behaviours of objects involved in the collaboration, to realize an operation 
of a use case, are described by state-transitions diagrams. The considered diagrams go 
through a first step of an inter-models validation in order to verify the system 
consistency. For example, each message sent to a destination object in the 
communication diagram must exist in the state diagram of the object and it is accessible. 
In the same way, each use case in the use case diagram must be realized by at least one 
communication diagram. 

The proposed translation process consists of generating a Maude formal description 
from use case, class communication and state diagrams analysis (Figure 2). During this 
process, several modules are generated. Figure 3 illustrates those modules. Please note 
that the modules in bold are object-oriented modules, while all others are functional 
modules. 
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Figure 2: Methodology of the approach.
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Figure 3: Generated Modules. 

The functional module METHOD (Figure 4) contains all the types used to describe a 
method. Types Parameter and ParameterList are generic. They describe the type of 
parameters a method uses. Furthermore, ResultType and Void describe the type of the 
result returned by the method. ResultType is generic, and Void is a particular case of 
ResultType. The operation (_,_) is a constructor for the parameter list of a function.  
 

fmod METHOD is 
   sorts  ParameterList ResultType Parameter Void . 
   subsort Parmeter < ParamaeerList . 
   subsort Void < ResultType . 
   op EmptyParameterList : -> ParameterList . 
   op _,_  : Parameter ParameterList -> ParameterList . 
endfm 

Figure 4. The functional module METHOD. 

A functional module is associated to each state diagram for which the name is the 
concatenation of the class’ name and the string ‘STATEVALUES’. This module describes 
the state values a class can take according to its state diagram. The functional module 
IDENTIFICATION is generated to describe the identification mechanism of the objects of 
the communication diagram. For each class of the class diagram, we associate an object-
oriented module bearing the same name as the class, while adopting a generic form for 
the classes (Figure 5). 

In the case where one of such a class is in relation to other classes in the class 
diagram, the module associated to it must import all the other modules associated to those 
classes. The class is declared in a module with a state attribute called State and for which 
its type is declared in the corresponding functional module. In the case of an aggregation 
class, an identification list of all the aggregated classes must also be present. 
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class ClassName |  State : ClassNameStateValues  [, 
ComponentList]  . 

Figure 5. Generic form adopted for the classes. 

The methods of a class are also defined in the corresponding module using the following 
form (Figure 6): 

 
op FunctionName : ParameterList -> ResultType  . 

Figure 6. Form adopted for the methods. 

We define an object-oriented module MESSAGE in which are defined the forms of the 
messages exchanged between objects as well as the form of the synchronization message 
(see Figure 7). 

 
mod MESSAGE is 
  protecting IDENTIFICATION METHOD . 
  op ComingMsg : ResultType Receiver -> Msg . 
  op IsAccomplished : ResultType Receiver -> Msg . 
endm 

Figure 7. Form adopted for the messages. 

Each message exchanged between two objects of the communication diagram is 
translated in the form of a ComingMsg shown in Figure 7. With this message, we specify 
two things. On the first hand, we identify the destination object (Receiver) and, on the 
other hand, the result type of the operation to be executed. In fact, each sending of a 
message in the communication diagram corresponds to a Call Event, launching a 
transition in the state diagram of the destination object. 

To implement the concept of Synchronization Point of the messages sent within a 
communication diagram, a new message called IsAccomplished is introduced (see Figure 
7). The rewriting rule that implements transition corresponding to the sending of a 
message on which depend other messages must generate a number of IsAccomplished 
messages equal to the number of messages to be sent. This message is also used in the 
case where the sending of an asynchronous message depends on the sending of another 
message. Furthermore, to each use case is associated an object-oriented module Use-
Casei bearing the same name as the corresponding use case. In each module Use-Casei 
are defined the rewriting rules describing the different interaction scenarios between the 
objects defined in the different communication diagrams, instances of the use case. A 
module describing a use case can import (optional importation) another describing a use 
case which is linked to it. Once generated, the modules Use-Casei are imported in the 
object-oriented module SYSTEM REQUIEREMENTS representing the principal module 
(see Figure 8). This module describes, in fact, the system’s dynamic behaviour from the 
user’s point of view. 
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omod SYSTEM-REQUIERMENTS is 
   protecting Use-Case1 . 
   protecting Use-Case2 . 
                 … 
   protecting Use-Casem . 
endom 

Figure 8. The principal module SYSTEM-REQUIERMENTS. 

6 CASE STUDY: THE ELEVATOR 

This section illustrates the application of the proposed approach on a concrete example 
taken from [Mul00]. This example was simplified for the present study. It carries on the 
elevator working. Figure 9 shows the class diagram of that system. The functional 
requirements are described by the use case diagram of figure 10. The use case 
TransportByElevator is realized by the communication diagram of figure 11. It consists 
of the procedure done by a user at a given moment to use the elevator after it was started 
properly. Figure 12 shows respectively the state diagrams for classes Door, SignalLight, 
Cabin, and Elevator. 
 

 
 
 
 
 Figure 10. Use case diagram of the elevator.
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Figure 9. Class diagram. 
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Figure 11. Communication diagram. 

 
 
 
                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Application of the translation process 

By applying the translation process, we obtain the modules described in what follows. 
We have four functional modules: ELEVATOR-STATEVALUES, CABIN-
STATEVALUES, SIGNALLIGHT-STATEVALUES and DOOR-STATEVALUES. 
These modules contain respectively the states of the different classes: Elevator, Cabin, 
SignalLight and Door. For reasons of space limitation, only the code for one of them is 
given, namely ELEVATOR-STATEVALUES (see Figure 13). 

Figure 12. State diagrams for classes Door (a), SignalLight (b), Cabin (c) and Elevator (d). 
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fmod ELEVATOR-STATEVALUES  is 
   sort ElevatorStateValues . 
   ops Inactive Initialized Started :-> ElevatorStateValues . 
endfm 

Figure 13. Module ELEVATOR-STATEVALUES. 

A module IDENTIFICATION (see Figure 14) imports the predefined CONFIGURATION 
module. This module contains the definition of types Eoid, Coid, Doid, Soid which 
describe the identification mechanism of the objects E, C, P and S, instance of classes 
Elevator, Cabin, Door and SignalLight respectively. 

 
fmod  IDENTIFICATION  is 
   including CONFIGURATION . 
   sort Eoid  Coid Doid Soid  Receiver .   
   subsort Eoid  Coid Doid Soid < Oid . 
   subsort Receiver  < Eoid Coid Doid Soid .   
endfm 

Figure 14. Module IDENTIFICATION. 

 
omod CABIN is 
   protecting DOOR . 
   protecting SIGNALLIGHT . 
   protecting CABIN-STATEVALUES . 
   sort Cabin Target . 
   subsort Cabin < Cid . 
   subsort Target < Parameter . 
   ops UP DOWN : -> Target . 
   class Cabin | State : CabinStateValues, IdDoor : Oid, IdSL 

: Oid . 
   ops UP DOWN : -> Target . 
   op GoUp :  ParameterList -> Void . 
   op Stop :  ParameterList -> Void . 
   op Move : Target  -> Void . 
endom 
 

Figure 15. Module CABIN. 

We have four object-oriented modules: ELEVATOR, CABIN, SIGNALLIGHT and DOOR. 
In each module, a class is defined with a State attribute describing the current state of the 
object, and a list of composing objects in case of aggregate classes, as well as the 
different methods of the class. The code for only one of those modules is presented here, 
namely CABIN (see Figure 15). 

Three object-oriented modules implementing the use cases are generated by our 
approach; CALL-ELEVATOR, TRANSPORTBYElEVATOR and PREPARE-ELEVATOR. 
We give in what follows the code of the module TRANSPORTBYELEVATOR (sww 
Figure 16).  
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omod TRANSPORTBYELEVATOR is 
 include CALL-ELEVATOR PREPARE-ELEVATOR  
 protecting IDENTIFICATION MESSAGE. 
 extending ELEVATOR CABIN DOOR SIGNALLIGHT . 

 
*** Utility Variables  ********************************************** 
   var E : Eoid . var C : Coid .  var D : Doid . var S : SLoid . 

 
*** Elevator’s Behavior ****************************************** 
   rl [E1]: ComingMsg(Initialize( EmptyParameterList ), E ) 
             < E : Elevator | State : Inactive, IdCabin : C > 
         => 
             < E : Elevator | State : Initialized, IdCabin : C > 
              IsAccomplished(Initialize ( EmptyParameterList ), E) . 

             
   rl [E2]:  IsAccomplished(Initialize ( EmptyParameterList ), E) 
                ComingMsg(Start( EmptyParameterList), E ) 
                < E : Elevator | State : Initialised, IdCabin : C > 
          => 
               < E : Elevator | State : Started, IdCabin : C > 
              IsAccomplished(Start( EmptyParameterList ), E) 
              IsAccomplished(Start( EmptyParameterList ), E) . 
… 
endom 

Figure 16. Module TRANSPORTBYELEVATOR. 

This module imports, on the first hand, the modules CALL-ELEVATOR and PREPARE-
ELEVATOR, and on the other hand the modules IDENTIFICATION and MESSAGE. 
Furthermore, it extends modules ELEVATOR, CABIN, DOOR and SIGNALLIGHT. 
Figure 16 presents two rewriting rules. The rewriting rule ‘E1’ describes the reception of 
message Initialize by object E. After its execution, the rule generates a message 
IsAccomplished that will be used to allow asynchronous message Start to be sent. The 
execution of the second rule, namely ‘E2’, needs, aside from the IsAccomplished message 
generated by the first rule, the arrival of message Start. Such a rule generates two 
IsAccomplished messages, to allow two other messages, namely SelectFutureFloor and 
ExternalCall, to be sent (see Figure 11). 

The object-oriented module SYSTEM-REQUIEREMENTS (Figure 17) constitutes the 
principal module generated by our approach. It imports modules 
TRANSPORTBYElEVATOR, CALL-ELEVATOR and PREPARE-ELEVATOR. 

omod SYSTEM-REQUIEREMENTS is 
    protecting CALL-ELEVATOR . 
    protecting PREPARE-ELEVATOR . 
    protecting TRANSPORTBYElEVATOR . 
endom 

 

Figure 17: Module SYSTEM-REQUIEREMENTS. 
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Validation of the generated description 

To illustrate the validation of the generated description, two essential cases are presented: 
the case where the elevator receives an external call, after it was initialized and started by 
the maintenance technician, and the case where the elevator receives a message for 
selecting the next floor. For the first case, the initial configuration is given by figure 18: 

 
     < E : Elevator | StateE : Started, IdCabin : C >  
     < C : Cabin | StateC : Waiting, IdDoor : D, IdSignalLight : S > 
     < D : Door | StateD : Closed > < S : SignalLight |StateS : Off > 
     ComingMsg(ExternalCall( 4 ), E )  . 
 

Figure 18. First initial configuration. 

This configuration represents, an object E, instance of the class Elevator in starting state 
(Started), an object C of the class CABIN in waiting state (Waiting), an object D of the 
class DOOR in closed state (Closed) and an object S of the class SIGNALLIGHT in 
extinguished state (Off). It also shows the arrival of an external call accomplished by the 
user from the floor number 4. The unlimited rewriting of this configuration returns the 
result given in figure 19. 

 
     < E : Elevator | StateE : Started, IdCabin : C >  
     < C : Cabin | StateC : Waiting, IdDoor : D, IdSignalLight : S > 
     < D : Door | StateD : Closed > < S : SignalLight | StateS : On > 

 

Figure 19. Result of the unlimited rewriting of the first initial configuration. 

This result shows that, the Elevator is in its Started state, the Door is closed, the 
SignalLight is lit, but the Cabin is always in a waiting state because the user has not 
selected yet its destination. 

For the second case, we extend the configuration of figure 19. We relaunch the  
rewriting process from the result of the rewriting of the first configuration while adding 
to it the arrival of a message for selecting the next floor SelectFuturFloor ( figure 20). 

 
  < E : Elevator | StateE : Started, IdCabin : C >  
  < C : Cabin | StateC : Waiting, IdDoor : D, IdSignalLight : S > 
  < D : Door | StateD : Closed > < S : SignalLight | StateS : On > 
  ComingMsg(SelectFuturFloor( EmptyParamatersList ), E )  . 
 

Figure 20. Second initial configuration. 

The unlimited rewriting of the second configuration returns the result given by the figure 
21. This configuration is similar to the one of figure 19 except that the Cabin is in 
moving.  
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     < E : Elevator | StateE : Started, IdCabin : C >  
     < C : Cabin | StateC : Moving, IdDoor : D, IdSignalLight : S > 
     < D : Door | StateD : Closed > < S : SignalLight | StateS : On > 
 

Figure 21. Result of the unlimited rewriting of the second initial configuration. 

Implementation 

Figure 22 shows part of the code developed in the Maude language, namely the principal 
module SYSTEM-REQUIERMENTS of our framework which describes the system’s 
functional requirements illustrated by the use case diagram of figure 10. This module 
imports the others modules (CALL-ELAVATOR, PREPAR-ELEVATOR and 
TRANSPORT-BY-ELEVATOR) implementing the different scenarios of the different use 
cases of figure 10.  

The following figure also illustrates, the launching of the unlimited rewriting process 
of the configurations of figures 18 and 20, and the limited rewriting (after two rewriting 
steps) of the first initial configuration of figure 18.  

 

 
Figure 22. Part of the developed code. 
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Figure 23. Results of the rewriting of the different configurations. 

 

The results of the rewriting of the different configurations are illustrated by figure 23. 
This figure shows, the results of the unlimited rewriting of the two first configurations. 
These results are like to those presented in figures 19 and 21. The figure shows also the 
result of the limited rewriting of the first configuration. This last result represents an 
intermediate configuration illustrating: the elevator in starting, the cabin in waiting, the 
door is open, the signallight is extinguished and the arrival of a message indicating that 
the user is ready to accede to the cabin. 

7 CONCLUSION AND FUTURE WORK 

In this paper, we proposed a generic approach that allows translating functional 
requirements described by UML use case diagrams into a Maude formal specification. 
This thematic has been addressed in several papers published in the literature. However, 
the structural and/or concurrential aspects of the systems have not been covered in most 
of these papers. 

The proposed approach takes into account the system’s structural and dynamic 
(individual and collective) features. Furthermore, concurrential aspects have also been 
considered. Maude is very appropriate for describing object-oriented concurrent systems. 
The Maude language is supported by a tool, which allowed us to validate the generated 
code by simulation. 
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Maude offers a model checker in its environment, which uses Linear Temporal 
Logic (LTL) to verify properties among the developed models. As future work, we plan 
on extending the formal framework we developed to analize and verify system’s 
functional requirements though their Maude descriptions using the model checker 
incorporated in Maude environment. This model checker uses on-the-fly techniques to 
manage the state-space problem from which model checking techniques suffer. Linear 
Time Logic is used to define desirable or non desirable properties that are to be checked 
in the system under development. 
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