
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009

Vol. 8, No. 1, January-February 2009

Richard Wiener: “A Model-View Implementation of Linked Custom Grids in C#”, vol. 8, no. 1,
January - February 2009, pp 73-92 http://www.jot.fm/issues/issue_2009_01/columnx/

EDUCATOR’S CORNER

A Model-View Implementation of Linked
Custom Grids in C#

Richard Wiener, Editor-in-Chief, JOT, Chair, Department of Computer Science,
University of Colorado at Colorado Springs

1 INTRODUCTION

In our department’s “Advanced Object Technology Using C#/.NET” course, a 300-level
course, I spend some time discussing model-view design using delegate and event types.
As is typical in such courses, time constraints as well as the student’s backgrounds limit
the size and scope of the examples that are presented in class and discussed.

To bring the concepts of model-view implementation to life, I have designed a major
project that requires our students to delve much deeper into this design paradigm. A non-
trivial grade book application that features multiple custom grids that may be linked
provides a compelling opportunity for the students to exercise the model-view design
principles studied in class.

In order to jump-start their work I provide the students with a stripped down simple
one-grid implementation that establishes a simple framework of model-view design that
they must significantly expand in order to meet the requirements of the application.

In this paper the requirements of this project are presented, a few highlights of the
framework that is provided to the students are outlined and the challenges for future
maintenance upgrades are described.

2 HIGH-LEVEL REQUIREMENTS

A grade book is to be implemented in C# using a model-view approach to design. Class
GradeBookUI is used to implement the view (GUI). Class Gradebook is used to
implement the model (stores grades and perform computations on these grades when
needed by the view and later provides the basis for linking grade book grids).

A screen shot of the GUI with three students and three grades is given below.

A MODEL-VIEW IMPLEMENTATION OF LINKED CUSTOM GRIDS IN C#

74 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 1

The user can click any cell (other than ones colored gray) and then navigate around the
grid using the up, down, left and right arrow keys. The Return key behaves like a right
arrow key except if the “Navigate Vertically” box is checked. Then it acts like a down
arrow key. It is illegal for any grayed cell to be selected or reached through navigation.

String data is entered by typing text into the cell selected by the mouse and either
clicking another cell or moving away from the current cell with the Return key or one of
the navigation keys.

In the left-most column (the column that holds names), any characters may be typed.
In any of the columns that expect numerical input, the string is erased if it does not
conform to the format of a numeric value.

An implementation of a stripped down and limited grade book with only one grid is
provided containing classes GradeBookUI, Gradebook, and Global. Two additional
classes complete this simple implementation (GradeBookUI.Designer and Program).
Graphics (.gif) files are provided for the buttons that are used. Tooltips are implemented
only for the buttons that are activated in this simple one-grid implementation.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 75

3 DESIGN

The challenge in implementing the GUI is determining how to allow user input and
navigation around the grid. One’s first temptation might be to create a matrix of TextBox
controls. This would allow user input from any cell in the grid. The problem with such an
approach is its cost. Active controls such as a TextBox consume significant resources and
perform inefficiently. In a large grid there could be hundreds of controls.

The approach used here is to have only one active TextBox control (field textbox in
class GradeBookUI). The rest of the grid is provided as panel graphics. This includes the
horizontal and vertical lines, and all the String data that is displayed. These graphics are
written to a Panel component with white background color. When the user clicks the
mouse in a cell or navigates from one cell to another with arrow keys, the TextBox control
is moved to the location in the panel that corresponds to the cell that has been selected.
User input can be obtained through this roving TextBox control. When the input is
completed by navigating to another adjoining cell or clicking the mouse in another cell
location, the String data, if legal, is provided to the Gradebook object stored as a field of
class GradeBookUI. Through this mechanism, the model is updated. An indexer with two
parameters is provided in the Gradebook class to accomplish this.

A file Delegates.cs is defined that initially houses four delegate types. These provide
the basis for the event types that provide the conduit of communication between each of
the Gradebook models and their respective GradeBookUI views.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Gradebook {

 public delegate void DisplayData(String [,] data);
 public delegate void DisplayCellData(String content,
 int row, int col);
 public delegate void DrawGrid(int numberStudents,
 int numberGrades);
 public delegate void PlaceTextBox(int row, int col, String
text);
}

The students will need to provide additional delegate classes later as they complete this
project.

A MODEL-VIEW IMPLEMENTATION OF LINKED CUSTOM GRIDS IN C#

76 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 1

To illustrate the use of this communication consider the implementation of the button
handlers for adding a new student (i.e. a new row to the grid) and adding a new column to
the grid in the implementation of the simple grid and model provided to the students.

The class Global contains a few public static objects that are accessible throughout
the application. This includes NumberStudents (the same on every grid).

private void AddRowClick(Object sender, EventArgs e) {
 Global.NumberStudents++;
 gradebook.FireDrawGrid();
}

private void AddColClick(Object sender, EventArgs e) {
 gradebook.NumberGrades++;
 gradebook.FireDrawGrid();
}

The command to FireDrawGrid, sent to the gradebook model, causes the drawGrid event
to be activated in the gradebook object. This event is listened to in the GradeBookUI
class in method DrawGrid.

A key event handler in GradeBookUI, the handler for mouse events, is given as:

private void MouseClickHandler(Object sender, MouseEventArgs
e) {
 int origX = gradebook.ColClick; // The last column clicked
 int origY = gradebook.RowClick; // The last row clicked
 String content = textbox.Text;

 int x = e.X;
 int y = e.Y;
 int row, col;
 if (x > NAME_WIDTH + CELL_WIDTH * (1 +
gradebook.NumberGrades) ||
 y > CELL_HEIGHT * (4 + Global.NumberStudents))
{
 row = -1;
 col = -1;
 return;
 } else {
 row = y / CELL_HEIGHT;
 if (x <= NAME_WIDTH) {
 col = 0;
 } else {
 col = 1 + (x - NAME_WIDTH) / CELL_WIDTH;
 }
 }

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 77

 if (row == 1 || row == 2 || col == 1 || (col == 0 && row
<= 3)) {
 return;
 }
 if (e.Button == MouseButtons.Right) {
 textbox.Visible = false;
 gradebook.Sort(col);
 gradebook.FireDisplayData();
 } else {
 gradebook.ColClick = col;
 gradebook.RowClick = row;
 gradebook.FirePlaceTextBox();
 if (origY == 3 && origX >= 1) {
 DrawRectangle(Color.Yellow, origY, origX);
 }
 gradebook[origY, origX] = content;
 gradebook.FireDisplayCellData(origX, origY);
 }
}

If the right mouse button is clicked, the columns are sorted. If the name column (leftmost
column) is right-mouse clicked, the grid is sorted based on alphabetizing the names. If
any other column is right-mouse clicked the grid is sorted from largest to smallest
(descending order) according to the selected column. The implementation of the Sort
method in class Gradebook is given below. It uses LINQ and is quite elegant (C# 3.0
under Visual Studio 2008 is required for LINQ to be supported). The challenge is that the
model contains a two-dimensional array of base-type String with column zero containing
names and all other columns containing string representations of numeric values. An
additional complication is that some cells in this two-dimensional array are blank.

public void Sort(int sortOnCol) {
 // Load up rollbook
 String [][] rollbook = new String[Global.NumberStudents][];
 for (int row = 0; row < Global.NumberStudents; row++) {
 rollbook[row] = new String[NumberGrades + 2];
 for (int col = 0; col < NumberGrades + 2; col++) {
 if (sortOnCol == 0 || data[row + 4, col] != null &&
 data[row + 4,
col].Trim().Length > 0) {
 rollbook[row][col] = data[row + 4, col];
 } else {
 rollbook[row][col] = "-1000.0";
 }
 }
 }
 if (sortOnCol == 0) { // Ascending order

A MODEL-VIEW IMPLEMENTATION OF LINKED CUSTOM GRIDS IN C#

78 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 1

 var sortedMatrix =
 from value1 in rollbook
 orderby value1[sortOnCol]
 select value1;
 // Copy results back to data
 int r = 0, c = 0;
 foreach (String[] row in sortedMatrix) {
 c = 0;
 foreach (String value in row) {
 data[r + 4, c] = value;
 c++;
 }
 r++;
 }
 } else { // descending order
 var sortedMatrix =
 from value1 in rollbook
 orderby Convert.ToDouble(value1[sortOnCol])
descending
 select value1;
 // Copy results back to data
 int r = 0, c = 0;
 foreach (String[] row in sortedMatrix) {
 c = 0;
 foreach (String value in row) {
 if (!value.Equals("-1000.0")) {
 data[r + 4, c] = value;
 } else {
 data[r + 4, c] = "";
 }
 c++;
 }
 r++;
 }
 }
}

The static query, Convert.ToDouble(value1[sortOnCol), is used in the LINQ script for
descending in order to ensure that values are compared by numeric value rather than
string value (e.g. the String “4” is larger than the String “20”). In order to ensure that the
value is in the correct format (of a “double” string), the string “-1000.0” is inserted
temporarily in the rollbook matrix wherever a null or blank cell is found. Then these
values are filtered out when the results are copied back to the data matrix.

There are four event fields defined in the Gradebook class. Each of these fields has a
“Register” method that allows a listener in the GradeBookUI class to connect itself to the
appropriate event.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 79

4 MORE COMPLETE GRADE BOOK SPECIFICATIONS

The specifications for the more complete grade book that the students are to implement
are given in this section.

The functionality that must be implemented is triggered by the following buttons
(each with a live tool tip):

 Open file …

When the “Open file …” button is clicked, a modal dialog appears as follows:

This allows navigation to any sub-directory. Only files with the suffix, “gradebook” (e.g.
Test2.gradebook) are displayed. A choice is made by double-clicking a file name.

One may create a new grade book by clicking anywhere in the gray zone outside of
the white grid. Rows may be added using the button,

 for adding a single row or the button

 for adding multiple rows (number given the small text box below the button)
Rows may be later deleted using the button

A MODEL-VIEW IMPLEMENTATION OF LINKED CUSTOM GRIDS IN C#

80 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 1

 for deleting a single row.
Columns may be added (one at a time) using the button

and later deleted using the button

A new worksheet, such as one designed to keep track of homework scores, may be
created by first entering the worksheet name in the textbox provided. As an example,

Next the button

is clicked to create a new worksheet with the new grade sheet name (“Hmk” in the
example shown). When a new grid is created a tab with its name appears at the bottom of
the grid.

All of the names which are editable in the main worksheet are grayed out in the new
worksheet. Changes to this list of names may be made only in the main worksheet. They
are propagated to all supporting worksheets such as Hmk.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 81

Hmk grid

Main grid

The “Average” column in the Hmk grid is linked to the fourth column in the Main grid.
Any changes that might be made to the data in the Hmk grid will be immediately
propagated to the fourth column in the Main grid. This linking must be achieved using
the Gradebook models for the two grids (Hmk and Main). The effect of linking is then
visible in the two views (Main GradeBookUI and Hmk GradeBookUI).

The process of linking is demonstrated by walking through an example.
A third grid, “Exams” is created. It looks as follows:

A MODEL-VIEW IMPLEMENTATION OF LINKED CUSTOM GRIDS IN C#

82 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 1

Exam 1 scores are entered by creating a fourth grid.

Suppose there were four problems on this exam with best 40, 30, 20, 10 weights (the best
of the four scores is weighted 40 percent, the second best score is weighted 30 percent,
the third best scores is weighted 20 percent and the lowest score is weighted 10 percent).
This grid might look as follows after the grades have been entered:

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 83

The mean and median values for each problem and the weighted averages for each
student are displayed. The only cells that can be edited have white background.

To link this Exam 1 grid to the third column in the Exams grid, select any cell in
column 3 in the Exams grid. Then click the link button,

A dialog box that shows all the grids that one can link to will open. After selecting Exam
1, the Exams grid will become:

A MODEL-VIEW IMPLEMENTATION OF LINKED CUSTOM GRIDS IN C#

84 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 1

One could unlink this third column by selecting column 3 (now there is only one editable
cell, colored yellow, that you may click to accomplish this) and then clicking the unlink
button

After Exam 2 grades are obtained (at the end of the semester), another grid, Exam 2, is
built. It is linked to column 4 in Exams. Now the Exams grid has two linked columns.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 85

Best 65, 35 weights are applied to the Exams grid and the Exams grid is linked to column
3 of the Main grid to produce the final results:

A MODEL-VIEW IMPLEMENTATION OF LINKED CUSTOM GRIDS IN C#

86 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 1

All that remains is to obtain the final grades. This is accomplished using the Gradebook
pull-down menu,

When “Display Grades” is clicked, the following dialog appears:

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 87

The thresholds may be changed (and they will be saved if the grade book is saved). If the
“Rank Order” button is clicked, the redisplay of grades is as follows:

Whenever a grid is partially or completely obstructed by another window, the graphics
must be restored using a Paint handler in the Panel containing the graphics.

A MODEL-VIEW IMPLEMENTATION OF LINKED CUSTOM GRIDS IN C#

88 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 1

If the “Show Notes” menu is clicked (Gradebook/Show Notes), a dialog is produced
as in the following:

These notes are saved when the grade book is saved. The notes are associated with the
.grade book file and not an individual grid.

5 DETAILED REQUIREMENTS

Navigation:
When the arrow keys are used, only white-background (editable) cells should be
reachable. A non-editable cell (column 1, rows 1 and 2 and any linked column except for
rows 0 and 3) should be skipped over.

Updating statistics:
For Equal Weights, whenever a numeric score is entered, the row average and mean and
median values should be displayed. For Fixed, Best or Integer weights, only if all weights
in row 3 (cells colored yellow) are specified should an average score be computed. The

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 89

means and medians for each column will always be updated as new values are entered. A
blank score will not affect the mean and median but will always be counted as a zero in
computing the row average for a given student. If all scores are removed from a row, the
average (in column 2) should disappear. If all scores are removed from a column, the
mean and median should disappear. The actual computation of scores should be
performed by the model class Gradebook. Using an appropriately defined event which is
fired whenever statistics are computed, the view (class GradeBookUI) must be notified.

Linking:
This is one of the more challenging features of this project. When the average column of
a source grid is linked to a column in a target grid, it is the models that are linked. When
data in the source Gradebook is changed, the appropriate cell in the target Gradebook
must be immediately changed. The result of this will not be seen until the user selects the
target grid (by clicking the target tab).

The application through its Gradebook model classes must ensure that no circular
links exist otherwise this would cause a stack overflow problem. For example, if grid 1
were linked to grid 2, then grid 2 should not be allowed to link to grid 1 otherwise an
infinite sequence of updates would occur. Your program logic must therefore control the
choices that are available for linking in the link dialog window that is displayed to the
user so as to avoid a circular linking problem.

A grid is allowed to be linked only once (to some target grid). So when a grid has
been linked, it must be removed from the list of choices for future linking. If a target has
a column unlinked, then the original source grid may again be added to the list of possible
future links.

Tab control:
All of the grids that have been created must be selectable by the tab control at the bottom
of the GUI. When a tab is clicked the existing window must be removed and replaced by
the grid that you have selected. For purposes of this project an entire grid form may be
displayed. In future maintenance only the graphics portion of a grid form is to be
displayed (to avoid flicker and jumping).

Adding rows and columns:
When a new row is added, the cells in a non-editable column must be grayed and not
reachable through navigation or mouse clicks. When a column is added, rows 2 and 3
must be non-editable and row 4 colored yellow.

Resizing:
When any grid is resized, all other grids must be displayed with the new size. This value
must be saved when the grid is saved. Next time the grids are loaded (through the Open
button), their new size must be remembered and used. The tab control must remain
properly positioned as the vertical size of a grid is changed.

A MODEL-VIEW IMPLEMENTATION OF LINKED CUSTOM GRIDS IN C#

90 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 1

Saving:
When certain actions occur, the “Need To Save” label is displayed. This occurs when the
data in a cell is changed or when the Notes are displayed or when the Final Grades dialog
is displayed. Hitting “Ctrl-S” saves all data to the .gradebook file and removes this label
from the GUI. When exiting the program, the user should be prompted to save only if the
“Need To Save” label is visible.

Display final grades:
This specialized form is to be implemented. When the form is closed, all threshold values
must be saved.

Show notes:
This specialized form is to be implemented. When the form is closed the content of the
RichTextBox control embedded in the form must be saved.

Open and Save-As Dialogs:
The standard OpenFileDialog and SaveFileDialog controls are to be used in these
dialogs. In the OpenDialog control only files ending with the suffix .gradebook are to be
displayed. The application must remember the last sub-directory location in which a file
was opened so that it will return to that same location in the future. This spares the user
the need to navigate to the sub-directory containing the .gradebook files each time the
Open option is selected.

Only the Gradebook models are to be saved using object serialization. When a
.gradebook file is opened, the Gradebook models are recovered along with any other data
that was saved using object deserialization. From these recovered Gradebook models, the
tab control and all the grid views may be reconstructed. This is where a major payoff for
the model-view design occurs.

6 DELIVERABLES

The only written document that should accompany the project CD is a list of known bugs
and omissions and a self-evaluation of the work.

It is expected that in a project of this complexity there will be bugs or omissions. It is
better for the students to implement a sub-set of the requirements with quality than to
implement all features with mediocre quality (many bugs). The linking features of this
grade book application are very important and central. Omitting this feature will result in
a greater loss of credit than omitting a more minor feature such as displaying notes or
computing and displaying final grades. The highest priority features, in order of
importance, are:

1) Correct navigation controls. Cells that are not editable (column 1 and columns
that have been linked) should not be reachable.

VOL. 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 91

2) Being able to create new grids and navigate to them using the tab control. When a
new row is added to the main grid (this is the only grid that should allow new
rows to be added), this new row must immediately be added to all the existing
grade book models so that next time a grid is displayed (through the tab control),
this new row is displayed. The name column (left-most column) on all grids
except the main grid should be non-editable. This allows only the main grid to be
in charge of editing, adding or deleting name entries.

3) Updating and producing the correct statistics on each grid (row averages and
column means and medians) when new data is entered. When the grading method
is changed by the user, all row average statistics need to be recomputed and
redisplayed for the particular grid.

4) Being able to link the average column of one grid to a column in another grid (by
linking the models of each grid). Although listed as priority four, this is a very
important priority.

5) Being able to save a grade book file and later recover and display all its
information

6) All other features are of more minor importance
Items 1 through 4 on the above priority list should be considered “must-do” features of
your project.

After completing your testing, a bugs and omissions document should be carefully
prepared. It is much better for the student to identify and report a bug (or omission) than
for it to be discovered when the project is evaluated.

7 FUTURE MAINTENANCE

Some important features that one might wish to add to this application to make it more
useful in the future include:

1) When the user selects a grid using the tab control, only the graphics panel on the
form should be displayed. The rest of the form does not need to be redisplayed.

2) A vertical scroll bar should be added to the form if the number of rows created by
the user exceeds the vertical space in the panel. In the current application no
scrolling is provided so on a small screen some rows may not be visible.

3) The user should be able to change the name of an existing form or delete it.
Deletion of a form may first require some unlinking from source or target grids.

4) A partial grading mechanism should be added so that averages based on
incomplete data (e.g. only two out of three exam scores available) for each of the
grading types may be computed.

5) An entry of “Excused” should be allowed in any cell that expects a numeric value.
This could be used in cases where a legitimate student absence should result in a

A MODEL-VIEW IMPLEMENTATION OF LINKED CUSTOM GRIDS IN C#

92 JOURNAL OF OBJECT TECHNOLOGY VOL.8, NO. 1

partial grading algorithm being used instead of the regular grading algorithm for
that particular student.

6) An adjust grade column should be provided on the right side of each panel to
allow extra credit or any other constant grade adjustment to be made for a
particular student.

7) The ability to export a column of grades to the clipboard or import a column of
grades from the clipboard should be provided. This would allow the data on a grid
to be easily transported to or from a standard spreadsheet.

About the author
Richard Wiener is Chair of Computer Science at the University of
Colorado at Colorado Springs. He is also the Editor-in-Chief of JOT
and former Editor-in-Chief of the Journal of Object Oriented
Programming. In addition to University work, Dr. Wiener has authored
or co-authored 22 books and works actively as a consultant and
software contractor whenever the possibility arises. His latest book,
published by Thomson, Course Technology in April 2006, is entitled

Modern Software Development Using C#/.NET.

