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A Modern Objective-C Runtime

David Chisnall

In light of the recent modifications to the de facto standard implementation Objective-
C language by Apple Inc., the GNU Objective-C runtime lacks a number of features
that are desirable for a modern implementation.
This paper presents a metaobject protocol flexible enough to implement Objective-C
and other languages of interest. It also presents an implementation of this model in
the form of a new Objective-C runtime library which supports all of the new features of
Objective-C 2.0 as well as safe inline caching, mixins, prototype-based object orienta-
tion, transparent support for other languages—including those with a prototype-based
object model—and a small, maintainable code base.

1 RATIONALE

Objective-C is a programming language adding an OOP layer on top of C, using
Smalltalk semantics. The Objective-C language began life as the Object Oriented
Pre-Compiler [9] (OOPC). This was a simple preprocessor that took Smalltalk-like
constructs and translated them into pure C code. Since C has no native support
for dynamic dispatch, the pre-compiler used a separate library to handle dynamic
lookup of methods. This evolved into the Objective-C runtime library.

The runtime library is responsible for implementing the aspects of Objective-C
that do not map trivially on to C constructs. Methods in Objective-C are translated
to C functions, but the static lookup mechanism used for calling C functions is not
applicable to the Smalltalk object model and so a dynamic lookup mechanism is
implemented in the runtime. The runtime also defines structures to be used for
implementing classes which store the metadata needed for introspection on method
and instance variable names and types.

There are currently two Objective-C runtime libraries in widespread use. Why
do we need a third? The Apple runtime is relatively full-featured, and is open source
under the Apple Public Source Library (APSL), version 2. There are two problems
with it. The first is that the ASPL is incompatible with the GNU General Public
License (GPL) and so no GPL code can call runtime-specific features in it. The
second is that, to my knowledge, no one has ported it to any operating system other
than Darwin.

The other runtime, currently used by GNUstep, is the GNU runtime. GNUstep
is an open source implementation of the OpenStep specification, published by NeXT
(now Apple) and Sun and generally regarded as the standard library for Objective-C.
The author of the runtime presented in this paper previously worked on modifying
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the GNU runtime to support prototype-based object orientation. There are a few
problems with this runtime that make it less than ideal for further support, specifi-
cally a lack of code reuse, a design which is hard to maintain and an object model
which is insufficiently expressive for using with many languages.

This failing is, in part, by design, since existing Objective-C runtime libraries
were intended for use purely with Objective-C and were not intended to be used as
a common language runtime system. More recent languages, such at Java and C#,
have runtime environments (or entire virtual machines) which are intended to be
able to support multiple languages and this is seen as a worthy goal, although not
one well met by systems that impose a static object model on all languages requiring
additional models to be built atop the VM [14].

The GNU runtime is designed to support the Objective-C object model. Un-
fortunately, the Objective-C object model has evolved somewhat in the intervening
years. The inflexible design of the object model means that it is very difficult to
support other languages on the runtime.

It predates the POSIX thread standard and so provides its own threading sup-
port. Fully one third of the code1 is dedicated to supporting proprietary threading
implementations. These days, it is possible to use POSIX threads and rely on an
existing POSIX-compatibility library on the few platforms that do not natively sup-
port them.

It is impossible for a compiler targeting the GNU runtime to safely support inline
caching. Section 5 describes this problem in detail.

The code is complex and poorly documented, making it hard for new contributors
to explore. Bringing it up to feature parity with the Apple runtime would be a major
undertaking.

After working on the GNU runtime it became clear that replacing it would be
a less daunting task than updating it. With this in mind, the following goals were
put forward for a new runtime:

• It should be as simple as possible, but no simpler. The difficulty in main-
taining the existing runtime comes largely from the fact that the code base is
considerably more complex than it needs to be for the features it implements.

• The runtime should support inline caching safely. Method lookup has been
identified as a major bottleneck for dynamic languages and inline caching can
reduce this to a large degree.

• Support for foreign object models (e.g. Self and Io) without bridging is an-
other useful goal [17]. The Apple Newton showed that using a class-based
language for models and a prototype-based language for views in the clas-
sic model-view-controller pattern is beneficial [20]. Objective-C only provides

14040 out of 11688 lines.
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class-based object orientation and so being able to combine it with another lan-
guage without significant overhead would be an advantage, as would cheaper
delegation.

• Layered design separating general and specific functions. Objects and mes-
sage passing are the two features found in all object oriented languages (by
definition). Everything else, such as classes, type systems, and so on, should
be separated out from this core allowing maximum reuse.

2 RELATED WORK

Objective-C [8] was created in the early 1980s as a set of minimal extensions to C
to support object orientation in the style of Smalltalk-80 [12]. The simplicity and
flexibility of the language and the OpenStep frameworks built on top of it were cred-
ited with the development of WorldWideWeb [5], the first web browser. A number
of other things had their commercial debut on this platform. The NeXT Interface
Builder allowed serialised object graphs to be created visually and introduced the
idea of rapid application development. Portable Distributed Objects, which evolved
from NeXT’s Distributed Objects and added support for foreign COM objects on
Windows, implemented a cross-platform distributed object model. The Enterprise
Object Framework was one of the first object-relational mappers, allowing an object-
oriented view of data stored in a relational database. All of these features were made
possible by the dynamic and introspective nature of the Objective-C language. The
latest developer tools from Apple support bridges for the Ruby and Python lan-
guages.

The language languished somewhat during the ’90s. Two implementations were
widely available; a commercial implementation provided by NeXT Computers, cost-
ing several hundred dollars, and a Free Software implementation from the GNU
project. A third implementation, the Portable Object Compiler translated Objective-
C code into pure C, but has not seen much use due to the fact that its implementation
of the language is incompatible with the NeXT and GNU implementations and ex-
isting libraries. The GNU implementation was largely only of interest to those with
experience on the NeXT system.

This began to change in 2000, when Apple bought NeXT and made Objective-C
the standard language for development on their platform. Apple had been looking to
replace their aging operating system with something newer. They considered BeOS
from Be Inc. and OPENSTEP from NeXT as possible contenders, and eventually
went with OPENSTEP. Mac OS after version 9 has been a series of evolutionary
improvements on NeXT’s operating system with a compatibility layer for older Mac
applications. The recommended toolkit for developing applications on the Mac is
now Cocoa which is a superset of the OpenStep specification and designed around
Objective-C.

Benchmarks [1] show that Objective-C is approximately 60% of the speed of pure
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C2 while Smalltalk implementations hover at betwen 10-20% of this speed. This
makes Objective-C an attractive language for a wide variety of applications, includ-
ing operating systems: device drivers for NeXTSTEP were written in Objective-C.

Objective-C uses a type system which is close to that of StrongTalk[7] and some
inspiration for the work presented here comes from this language.

Since the development of Smalltalk in the ’70s, prototype-base object orienta-
tion [16], as embodied by Self [22, 21] has become increasingly popular. In particular,
JavaScript [11] has grown to increasing prominence due to its inclusion in most web
browsers. More recently, Io [10] has attracted interest in various communities. The
existence of an Objective-C bridge from Io has made it attractive as a language for
rapid prototyping by Objective-C developers. The runtime described in this paper
takes some concepts from several of these, in particular the idea of mixins as a
fundamental unit from StrongTalk [4].

3 A FLEXIBLE METAMODEL

In general, the more of a language which is exposed to modification by the pro-
grammer, the more flexible the language. The canonical example of this flexibility
taken to extremes is Lisp, where the structure of the program is exposed to the
same manipulations as any other data. Lisp also provides the canonical example of
a Metaobject Protocol [15] used in the context of the Common Lisp Object System
(CLOS).

CLOS is a dynamic, multiple-dispatch metamodel with multiple inheritance over
an ordered list of classes. The metaobject protocol provides an implementation
of CLOS in terms of CLOS, thus allowing any aspect of the object system to be
modified.

There are two reasons why such flexibility is beneficial. The first is that it is
often useful to be able to combine code written in two or more languages. Most
object oriented languages make certain assumptions about the underlying object
model, and having a flexible metaobject protocol capable of representing different
sets of assumptions makes it possible to treat both in the same way, reducing the
complexity and overhead of bridging.

The second reason is that object models continue to evolve. After Smalltalk,
Self modified the object model to remove the need for classes as a special type.
Other languages have incorporated various forms of multiple inheritance. Mixins
and Traits have been proposed in various forms to either replace or augment class-
based inheritance and even the information used when performing the lookup of
the methods is not fixed, with some systems (such as CLOS or C++) using type
information and others (like Io) making it possible to alter the method based on

2Since Objective-C is a pure superset of C, it is 100% of the speed of C when writing procedural
code. This benchmark used code written in an object-oriented style.
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the context from which the message is sent. As each of these developments occurs,
users of languages which expose a flexible metaobject protocol can choose to adopt
them into their own programs without having to learn a completely new language
or rewrite large bodies of legacy code.

By designing and exposing a metaobject protocol which goes beyond the needs
of Objective-C and of other existing languages, we hope to make it easy for compiler
writers to use a common object representation and for language designers (and users)
to easily modify their object models to adapt to new programming paradigms.

A project with similar goals to the runtime presented in this work is the COLA
runtime and PEPSI Smalltalk [18]. As with the Étoilé runtime, this system aims
to provide a flexible object model which can be specialised by different language
implementations. It is less focused on performance that the Étoilé runtime and has
a number of limitations. The COLA runtime has a metaobject model where objects
are some arbitrary state associated with a lookup function of the following form:

lookup(R, S)→M

R is the receiver and S is a selector. These map to a method, M . The Étoilé
runtime generalises this to represent objects as some arbitrary state and a lookup
function of this form:

lookup(R, T, S, E)→ {R′, T ′, M,C}

Here, T is a type signature and C is a context (a pointer to some arbitrary
state) and E is the sender (self in the calling context). Both the receiver and the
expected types can be modified. Section 5 describes one situation in which modifying
the receiver is useful. Others include certain dispatch mechanisms employed by the
Io language. The ability to modify the type is also useful, for example to provide
type information to a caller which did not specify any type information, allowing
a compiler for an untyped language to generate correct unboxing code for foreign
method calls. After performing the lookup, the caller is aware of the types that the
receiver expects and can perform the appropriate casts. It also allows parametric
polymorphism, which is very difficult to achieve in the COLA runtime.

The context is also useful in a number of cases, since it provides a mechanism
for associating arbitrary information with a method that is not tied to the object’s
state.

Because any mapping designed for the COLA runtime can be trivially translated
into one for the Étoilé runtime by the following translation, any object model which
can be represented by the COLA system can be represented by the Étoilé runtime.

lookup(R, T, S)→ {R, T, lookup′(R, S,Nil), Nil}
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4 THE OBJECTIVE-C OBJECT MODEL

The Étoilé runtime is intended to support a wide variety of object oriented languages,
however its principal target is Objective-C and so much of the design reflects this to
some degree. Objective-C is a set of minimal extensions to C to support Smalltalk-
style object orientation. As such, the object model for Objective-C is very similar
to that of Smalltalk.

The biggest difference is that Objective-C allows unboxed primitives. All of the
intrinsic types present in C are available in Objective-C and are not encapsulated
in objects.

Objects in Objective-C are C structures with the first field containing a pointer to
their class. Methods are compiled to C functions with two hidden arguments, self
and _cmd which represent the receiver and the message selector respectively. Beyond
this, there are few constraints placed on the implementation by the language.

Listing 1: Objective-C method prototypes

//Traditional Objective -C Method

id method(id self , SEL cmd , ...);

//New prototype

typedef struct objc_call

{

SLOT slot;

SEL selector;

id sender;

} * CALL;

#define _cmd (_call ->selector)

id method2(id self , CALL _call , ...);

Listing 1 shows the traditional Objective-C method prototype and the new pro-
totype defined by the Étoilé runtime. The second argument is now a pointer to a
structure containing the message sender, the selector and the slot. This, combined
with the preprocessor macro shown allows source compatibility to be retained with
existing code while using the new runtime.

One unusual feature of Objective-C is that the metaobject protocol for the un-
derlying language is always exposed via C functions, but those APIs are not part
of the language specification and are not standardised between runtimes. All exist-
ing implementations of the language involve two components. The runtime library,
which implements the object model as a set of C structures, and functions and the
compiler, which translates the Objective-C code into a representation compatible
with the runtime.

Since the runtime library is written in C and Objective-C is a superset of C, all
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of the features of the runtime library are available directly to Objective-C programs.
The interface, however, is not defined by the language specification and thus varies
a lot between implementations.

The fact that the runtime library interfaces are exposed allows other languages
to be supported using the same object model. Work done as part of the GNUstep
project has created a Smalltalk implementation (StepTalk [3]) which uses the GNU
runtime and F-Script [2] on OS X provides even closer integration with a Smalltalk
dialect and the Apple runtime and additional work has resulted in a bridge between
Io and the GNU runtime.

Bridging Io with the GNU Objective-C runtime demonstrated some of the lim-
itations in the flexibility of object model. Io is a pure prototype-based language.
In Objective-C, methods and state are defined in classes and objects have a static
layout defined by the class. In Io, methods can be assigned to objects directly.
This requires a modification to the dispatch mechanism in Objective-C. The GNU
runtime did not provide a mechanism for doing this, so Io objects needed to be
created as instances of a custom class, which adds a lot of complexity to the im-
plementation. A modified GNU runtime allows objects to install their own lookup
mechanism, simplifying development considerably.

5 DESIGN OVERVIEW

The core object model in the Étoilé runtime is modelled on Self, rather than
Smalltalk. Each object maintains its own mapping from selectors to slots and op-
tionally inherits from another object.

Unlike existing runtimes, which define a method lookup function which is called
directly, the Étoilé runtime allows each object to define its own lookup function. For
Objective-C objects, this will simply inspect the dispatch table in the class of which
the object is an instance. If the object is extended in a language which supports
prototypes then it will have methods added to its own dispatch table, which will be
consulted before the object from which it inherits.

The core object model for the new runtime does not implement classes and it
imposes few constraints on the dispatch mechanism used. The lookup function takes
four arguments. The first is a pointer to the pointer to the object which will be the
receiver. The second is the object on which the lookup is being performed and the
third is the selector. The final argument is a pointer to the sender, which is self in
the calling context. If an object inherits from another object which uses a different
dispatch mechanism then both lookup functions may be called. The first argument
will be the same for both calls, but the second argument will be different. This allows
different lookup behaviour depending on whether the method is being called on the
object which implements it directly or via inheritance. This is useful for certain
language features in Io and JavaScript, and also simplifies the implementation of
classes.

VOL 8, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 227



A MODERN OBJECTIVE-C RUNTIME

The availability of the sender in the lookup function enables to alter the dis-
patch strategy depending on the sender. This contributes to enhance the runtime
ability for context-oriented programming. The notion of Context-oriented Program-
ming (COP) directly supports variability depending on a large range of dynamic
attributes. In effect, it should be possible to dispatch runtime behavior on any
properties of the execution context. First prototypes have illustrated how multi-
dimensional dispatch can indeed be supported effectively to achieve expressive run-
time variation in behavior.

Classes are Objects Too

The designers of StrongTalk also removed the idea of classes from their runtime.
Instead, they treated mixins as a fundamental type. With a simple composition
algebra, mixins can implement both classes and categories (a category is simply a
mixin that is applied to a single class and type checked at compile time).

The Étoilé runtime adopts a similar concept at the top level. Objective-C re-
quires support for classes, categories, and protocols. Protocols are equivalent to type
signatures in StrongTalk; they are collections of selectors to which a class declares
that it responds.

All of these requirements are implemented by the same core model. A “class” in
the Étoilé runtime is closer a StrongTalk-style mixin, although it can be composed
in a manner closer to that of traits [19]. Unlike traits, classes are allowed to contain
internal state, however they can only be composed if the state defined by one class is
a subset of that defined by the other. Listing 2 shows the structure that represents
the instance variable layout of a class. As with all objects in the runtime, the first
instance variable is the isa pointer to the object from which this inherits, in this
case the superclass.

Listing 2: An Objective-C class structure.

struct objc_class

{

Class super_class;

dtable class_methods;

char * name;

struct ivar_list * ivars;

struct protocol_list * protocols;

int instance_size;

};

It is worth noting that this structure does not contain a metaclass. In Smalltalk
and traditional Objective-C implementations, an object is an instance of a class, and
a class is an instance of a metaclass. This is somewhat inelegant since it requires an
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infinite hierarchy of generalisation in order to be consistent. Since this is impossible
in a finite system, a loop is introduced so metaclasses are instances of metaclasses.

This abstraction is not required in the new runtime. The primary purpose of a
metaclass is to contain class methods, while the class contains instance methods. In
the new runtime, class methods are implemented in a separate dispatch table in an
instance variable of the class object. The new runtime allows lookup functions to
be assigned on a per-object basis, and this mechanism is used to implement class
methods. When a class method is looked up as a result of a direct message send,
this is consulted. When it is looked up as a result of an instance lookup then the
standard dispatch table is used. This is possible due to the way in which the lookup
function is called. The type definition of a lookup function is shown in Listing 3.

Listing 3: Lookup function type definition

typedef struct objc_slot* (* lookup_function )(id*, id , SEL , id);

When code such as [object message] is called, the first argument will be
&object and the second will be object in the initial call. In recursive calls fur-
ther up the inheritance chain, the first argument will not be modified, however the
second one will, first to point to the class, then the superclass, and so on. The
class lookup function tests whether the first and second arguments are equal before
proceeding with the lookup. If they are, then it has determined that the lookup
corresponds to a class method and performs a lookup on its class method table and
then on those of any superclasses. A similar mechanism can also be used for some
of the more arcane lookup requirements of languages such as Io.

Slots

Like Io, the basic type for message lookup is the slot. The inspiration for this
decision came from the addition of properties in Objective-C 2.0. Properties wrap
either set/get methods or instance variables and require the same sort of lookup as
methods. A unary method is semantically equivalent to a property get operation.
For this reason the slot abstraction was chosen, since it can be used to implement
both methods and properties.

Slots in the runtime are identified by the structure in Listing 4. An IMP is an
Instance Method Pointer, a pointer to a function which implements the method.

The slot construct was further modified by the requirements of JavaScript. A
JavaScript object requires the ability to add extra instance variables at runtime.
This is not possible within the constraints of the Objective-C object model, since
objects have a static layout corresponding to a C structure. An additional field
was added to the slot containing a context. The prototype of functions used to
implement methods was modified such that the slot, rather than the selector, is
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Listing 4: Structure used to represent a slot.

struct objc_slot

{

int offset;

IMP method;

char * types;

void * context;

uint32_t version;

};

passed as a hidden second argument. Slots which contain a stored value directly
should have a function of the form shown in Listing 5 set as their method.

Listing 5: Slot value retrieval function

id getSlotValue(id self , CALL _call)

{

return (id)(_call ->slot)->context;

}

This allows such properties to be accessed from languages which are unaware of
this abstraction. Another use for this has been in the invocation of JavaScript func-
tions. In JavaScript, functions are objects. The self pointer (this in JavaScript
terminology), however, should point to the object to which the function is attached
rather than the function object. An object encapsulating the function is set as the
context for the slot, allowing both the object and function-object to be accessed
within the function.

Typed Selectors and Pluggable Type Systems

Objective-C does not support parametric polymorphism. The types of arguments
are encoded in the method signature, but are not used for dispatch. The new runtime
maps (name, type) pairs to integers. These integers are then used for method lookup.
A type of NULL is taken to mean ’unknown type.’ An Objective-C method should
install itself in two slots; one for the typed and one for the untyped version.

Slots are indexed by (integer) selectors, which have a corresponding type sig-
nature. This allows languages which support parametric ploymorphism to use the
runtime. It also allows this support to be added to Objective-C at the library level.
Since the type of the selector used to invoke the method is passed in the (hidden)
second argument to the function implementing the method. It is now possible to
inspect this selector for the type signature that the caller was using and use this to
determine the types of the arguments.

This can be used, for example, to implement auto-boxing transparently on collec-
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tion objects. A Smalltalk object might install two versions of a selector, one where
all arguments are objects and one where some are intrinsics. The version called with
intrinsics as arguments could box the arguments and then call the real version and
(optionally) unbox the return value. It is anticipated that compilers for languages
with these requirements will perform this step automatically.

Typed selectors exist in the GNU runtime and are used to efficiently implement
Distributed Objects, however the type signature is not used for dispatch.

Note that, at the runtime level, the type signature is simply an array of char-
acters. No semantics are associated with specific type strings by the runtime. This
allows pluggable type systems [6] to be implemented relatively easily by delegating
type checking to an external module.

A full implementation of a pluggable type system requires a compiler which does
static type checking and a runtime which does dynamic type checking on arbitrary
requirements. Compiler support is beyond the scope of this paper, however it is
believed that the runtime provides sufficient support for implementing new type
systems.

The first feature, as described earlier, is that objects define their own lookup
function. This makes it possible to provide different implementations of methods
based on the selector requested by the caller at any required granularity. Features
such as design-by-contract can be implemented in this way by returning wrapper
methods that test pre- and post-conditions.

Additionally, the runtime functions used for registering and looking up selectors
can be replaced (and stacked) at runtime. This allows type refinement to be im-
plemented; if two type signatures are equivalent in a specific type system then they
may be implemented pointing to the same selector.

This same method can be used to support selector aliasing, where two strings
map to the same selector. This is particularly useful in building bridges between
languages, where the Objective-C selector objectAtIndex: might be equivalent to
the Io or JavaScript at selector.

Polymorphic Inline Caching

Calling a method in a dynamic language is typically a two-step process:

1. Look up the implementation of the method.

2. Call this implementation.

In a static language, the first step is simply a pointer lookup, which can be very
fast. In a dynamic language it typically involves consulting a hash table or similar
structure which is very slow. For a language like Smalltalk, which encourages writing
small methods, the time spent performing these lookups can be significant [13]. This
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is true to an even greater degree with Io where even instance variable lookups must
use the same dynamic mechanism—a method in Io is simply a slot containing a
closure, while an instance variable is a slot containing some other value. This is even
used in Io methods themselves, where all local variable access is done via dynamic
resolution on the “locals” object and so can potentially benefit significantly from
caching.

One way of ameliorating this cost is to cache the result at the call site. There
are three general cases for caching. In the first case, a code section receives different
types of objects in every call. In this case the result of the lookup is likely to be
different each time and so caching it is of no use.

In the second case the code segment sends a message to objects of the same type
(or even the same object) repeatedly. In this case an inline cache can eliminate the
lookup cost every time other than the first.

The final case involves a code section which receives objects of a small number of
types. In this case a polymorphic inline cache [13] is ideal. This involves caching a
small number of pairs of object types and IMPs. Rather than performing a complete
lookup, the caller can iterate over the cache. This has been shown to provide a
significant speed improvement in Self.

Inline caching is hampered by the fact that the selector to IMP mappings are not
always static for the duration of a program run. In Objective-C, loading a category
can replace methods in a class. In a more dynamic language, like Io or JavaScript,
this kind of operation is even more common.

Apple’s solution to the problem of out-of-date caches is to pretend that the
problem does not exist. Their implementation of the NSNotificationCenter class,
for example, stores the IMP of the methods which will receive notifications and
calls them via the pointer directly. This class is responsible for sending broadcast
notifications to any object that has asked to be notified of them and works faster
by caching the method pointers for each receiver, rather than performing a dynamic
lookup each time a notification is sent. If the class of which the listening object is
an instance has been modified then the wrong implementation will be called.

This degree of fragility means that a compiler can not automatically insert inline
caching. Providing a fragile mechanism to developers is acceptable, since they can
choose when it is acceptable to sacrifice flexibility for speed. Making this decision
in the compiler would not be since it would cause code which relies on dynamic
behaviour to break in unexpected ways. A fast mechanism for determining whether
an inline cache is out of date is required for the compiler to be able to automatically
perform inline caching.

The proposed solution involves adding a version to the slot structure returned
by the lookup function. The call site maintains a tuple of three items in its cache;
the type of the object, a pointer to the slot and a copy of the version. Before reusing
the cache line it tests that the version matches that in the slot. If they do not, then
it invalidates the cache line.
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Runtime Caching CPU time Normalised CPU time

GNU N/A 4.16s 1

Étoilé No 5.73s 1.38

Étoilé Yes 1.94s 0.47
C++ (nonvirtual) N/A 2.00s 0.48

C++ (virtual) N/A 2.20s 0.53
C (direct call) N/A 1.00s 0.24

Étoilé (accessor) No 4.59s 1.10

Étoilé (accessor) Yes 1.25s 0.30

Table 1: Message sending overheads with and without caching

When adding a new method which replaces or overrides an existing implemen-
tation, the runtime increments the version on the replaced method. Consider the
case of two classes, A and B, where B inherits from A. Let a be an instance of A
and b be an instance of B. Initially, A implements a method for selector s and B
inherits this implementation.

At a location where selector s is used, the tuple (B, As, 0) is stored, where As is
the slot containing A’s implementation of this method, with a version of 0. Later,
a bundle is loaded which contains a category on B implementing a method for the
s selector. When the runtime installs this method, it navigates up the delegation
hierarchy and finds As. The version of As is then set to 1. The next time the cache
is used, there is a mismatch between the stored version (0) and the current version
of the slot (1), so the cache line is invalidated. If the code containing the cache is
never reached after the bundle is loaded then the cache line is never invalidated.
There is no need to keep track of which parts of code contain caches.

Inline caching provides a significant speed benefit. A simple microbenchmark of
the message sending routine was created which performed a tight loop 10,000,000
times and sent the same message to an object. The method implementation per-
formed a single addition and so was of negligible cost in comparison to the lookup.

Table 1 and Figure 1 show the results of this microbenchmark performed with
the GNU runtime, which does not support safe caching, and the Étoilé runtime with
and without safe caching. These results were conducted on a 1.2GHz Intel Celeron M
running FreeBSD 73. The results are normalised against the GNU runtime timings
for ease of comparison. The C language does not have a message sending operation;
this figure is from a C function call.

Without caching, the Étoilé runtime is slightly slower that the GNU runtime it
intends to replace. With caching, it is twice as fast. Since the runtime now sup-
ports safe inline caching, a compiler can automatically insert caches as a result of

3No system calls were issued in this benchmark so the operating system should have no impact
on the performance numbers.
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Figure 1: Message sending overheads with and without caching.

profiling, either offline or via dynamic recompilation. There are macros provided in
the runtime’s C API which perform monomorphic and polymorphic inline caching.
A compiler might also perform speculative inlining of common method implementa-
tions and use the same test to check that they were still valid at runtime, eliminating
the function call overhead as well as much of the lookup overhead.

The table also contains results with the same benchmark conducted with C++
and pure C implementations. With inline caching, the new runtime is slightly faster
than C++, even when the method is declared as non-virtual and about half of the
speed of calling the method directly from C. Note that calling the function which
implements the method directly is still valid in Objective-C and so can be used
in highly performance-critical code sections, although at the cost of many of the
benefits of object orientation.

Fast Properties and Memoization

One of the new features of Objective-C 2.0 was the introduction of properties, an
abstract way of defining data associated with an object. They are primarily syntactic
sugar for creating accessor methods. The fact that this addition is considered useful
highlights how much Objective-C code is written to simply return instance variables.

Accessing instance variables directly is possible from outside the object in Objective-
C, but this is strongly discouraged since it enforces constraints on a class’s layout and
prevents it from being modified at a later date as well as destroying encapsulation.
Since accessor methods are late-bound, they are not subject to this fragility.
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The Étoilé runtime allows a slot to contain an offset, in addition to the method
containing the object. If this is non-zero then the caller may assume it points to an
offset from the object pointer where an instance variable is stored. This instance
variable can then be accessed directly, without needing a function call. When this
is combined with caching, neither a message lookup nor a function call is required.

This mechanism can also be used in Objective-C to implement Key-Value Ob-
serving (KVO) quickly. OpenStep makes heavy use of Key-Value Coding (KVC),
which is a protocol designed to allow abstract access to object state without speci-
fying how the access is performed in the interface. KVO builds on this by allowing
observers to be notified when the value associated with a particular key is modified.

The implementation of KVO in both GNUstep and Apple’s Cocoa depends on
a trick known as “isa-swizzling” where the class pointer of an object is modified
at runtime to point to a custom subclass which calls notification methods before
performing calling the superclass implementation of the method. This is consider-
ably simpler and safer in the new runtime; the version of the method which handles
the notification can simply be attached to the object, automatically overriding the
class version. When an instance variable is accessed in this way it can be modified
directly using the offset value in the slot when there are no observers, or via the
accessor when required. These two cases can be easily switched between at runtime
and due to the safe caching mechanism IMP caching will not break KVO when an
observer is added to a previously-cached accessor.

This mechanism can also be used by objects to implement fast memoization. If
a method performs a calculation and then stores the result in an instance variable
then the object can modify the slot to point to the instance variable. When the
dependent state is modified then the slot can again be modified so that the next
access to the slot will result in the method being called.

The results in Table 1 for accessor methods show the increase in speed gained by
this. In combination with inline caching, the cost of calling an accessor method in
the new runtime is as low as 30% that of the GNU runtime, and only slightly more
expensive than calling a C function. It is still more expensive than simply accessing
the instance variable directly, however it permits looser coupling of components
dramatically reducing the fragility of code.

Accelerated Proxies

A common idiom in Objective-C and other dynamic languages is the forwarding
proxy. This is an object which passes messages it receives on to another object.
As with Smalltalk, there is a second-chance mechanism for message dispatch in
Objective-C. In Smalltalk, messages for which no corresponding method exists will
cause the object’s #doesNotUnderstand method to be called. In Objective-C the
analog of this is the forward:: method, which takes a selector and a pointer to a C
stack frame as arguments. The OpenStep specification then requires the base class
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to wrap this up in an NSInvocation object and pass it to the forwardInvocation:

method.

In many cases a proxy needs to perform some pre- or post-processing on some
messages, but not all. An example of this is the CoreObject proxy used by Étoilé
which logs messages which modify the proxied object but simply pass through all
others.

When a message is passed directly to an object, the arguments are marshaled
on the stack and in registers. When passed via the forwarding mechanism, the
invocation (message and arguments) is encapsulated in an object and so a number
of direct message sends must occur along with other operations. With the GNU
runtime and the GNUstep implementation of the forwarding mechanism the cost of
an indirect message send is slightly over 300 times that of a direct send.

The CoreObject proxy eliminates this overhead by bypassing the generic forward-
ing mechanism for messages it is not interested in. This is far from ideal, however.
The Étoilé runtime provides an alternative mechanism for implementing this pat-
tern. Each object’s lookup function is capable of modifying the self pointer before
the message send occurs. This allows [proxy message] to be transparently turned
into [proxy->real_object message] when the message lookup occurs. This result
can not be cached, however results presented earlier show that an uncached lookup is
only 2-3 times more expensive than a cached one, which is a significant improvement
over three hundred.

6 CONCLUSIONS

It is believed that the new runtime meets all of its design goals. While lines of code
is not an accurate measure of code complexity, it should serve to give a ballpark
figure. The existing GNU runtime is 11,688 lines.4 The new runtime weights in at
1,659 lines, just under 15% of the size. In addition to all of the features of the GNU
runtime, the new one includes:

• Locking on objects, to support the @synchronized directive.

• Differential inheritance for prototype-based objects.

• Concrete protocols, mixins, traits and related structures.

• A flexible object model suitable for Self-like languages as well as Smalltalk-like
ones.

• Support for safe IMP caching.

• Fast accessor method support.

4All line counts obtained by running wc -l *.{c,h}
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One of the strengths of Objective-C (and similar languages) is the fact that it
is possible to add things commonly thought of as language features, such as control
structures, by modifying the libraries. This dramatically increases the number of
people able to make improvements to the language, since libraries can be distributed
independently without the need to make modifications to a complex compiler. To
date, significant changes to the object model have not been possible. The Étoilé
runtime improves this situation by providing a very flexible metaobject protocol
which enables developers to modify underlying assumptions in the language at will.
With existing runtimes, adding features such as parametric polymorphism, multiple
inheritance or prototypes with differential inheritance is either very hard or impossi-
ble. With the Étoilé runtime this flexibility is available to all users, not just language
designers.

Garbage collection is not yet supported by the new runtime (or well supported
by the GNU one), although there are hooks for adding this functionality. Doing
this correctly is a nontrivial problem. The runtime intends to support languages
which are fully garbage collected, reference counted and require manual memory
management. The easiest way of doing this would be to enforce a specific memory
management strategy on all languages, but this would alter their semantics and
could have undesirable short-term consequences as well as limiting the long-term
flexibility of the system. A method for allowing arbitrary objects to define their
own memory management strategy is a topic for future research.

Currently, there are ports of Io and JavaScript to the runtime underway. A high
priority project for future work is to add a back end to an Objective-C compiler to
allow it to target this runtime. The macros defined in the capi.h file give examples
of the equivalent C code for Objective-C structures, which should simplify the task
of adding this support.

The code is released under a 3-clause BSD license and can be obtained via
Subversion from http://svn.gna.org/svn/etoile/branches/libobjc tr.
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