
Vol. 7, No. 9, Special Issue: SPLAT, December 2008

Developing Law-Governed Systems Using As-
pects

Constantin Serban, Applied Research, Telcordia Technologies
Shmuel Tyszberowicz, The Academic College of Tel-Aviv Yaffo
Yishai A. Feldman, IBM Haifa Research Lab
Naftaly Minsky, Rutgers University

There is a consensus that the construction and maintenance of large software systems
would greatly benefit from the existence of explicitly stated architectural principles.
Such principles should specify the global rules that are to govern the structure and
dynamic behavior of a system, providing a framework in which the system can be
reasoned about and maintained.
However, such a framework is of little use unless the architectural principles are auto-
matically enforced during system development, guaranteeing compliance at all stages
of the development. A Law-Governed System is a system that is developed and oper-
ates under an enforced set of architectural principles, called the law of the system.
This paper describes an implementation of Law-Governed Systems that is able to cope
with the highly dynamic features encountered in modern programming languages,
such as reflection and dynamic loading. We employ Aspect-Oriented Programming
techniques as our main tool for this implementation.

1 INTRODUCTION

There is a consensus that the construction and maintenance of large and complex
software systems would greatly benefit from the existence of explicitly stated archi-
tectural principles that specify the global rules that are to govern the structure and
dynamic behavior of the system. Examples of such architectural principles include:

• In a layered system no upward calls are to be made between layers.

• In a financial system all monetary transactions ought to be monitored.

• In a three-tier system every interaction between the tiers is to be mediated by
the middle tier.

Broad principles of this kind can provide a framework within which the system can
be reasoned about and maintained. But the great promise of architectural principles
has not been fulfilled so far. The main reason for this has been aptly described by
Murphy et al. [19]: “Although these models are commonly used, reasoning about
the system in terms of such models can be dangerous because the models are almost
always inaccurate with respect to the system’s source.” In other words, there is a

Cite this article as follows: Constantin Serban, Shmuel Tyszberowicz, Yishai A. Feldman,
Naftaly Minsky: Developing Law-Governed Systems Using Aspects, in Journal of Object Tech-
nology, vol. 7, no. 9, Special Issue: SPLAT, December 2008, pages 25–46,
http://www.jot.fm/issues/issues 2008 12/article2

http://www.jot.fm/issues/issues_2008_12/article2

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

gap between the principles and the system they purport to describe, which makes
the principles an unreliable basis for reasoning about the system.

The prevailing approach for bridging this gap has been described by Sefica et
al. [22]: “The use of codified design principles must be supplemented by checks to
ensure that the actual implementation adheres to its design constraints and guide-
lines.” This approach led to the development of various tools whose purpose is to
verify that a given system satisfies a given architectural principles [4, 19, 22, 6]. But
the mere existence of verification tools is not sufficient for ensuring the compliance
with a principle, particularly not for rapidly evolving systems. This is due to the lack
of assurance that the appropriate tools would actually be employed after every up-
date of the system, and that any discrepancies thus detected would be immediately
corrected.

We claim that the gap between the architectural principles and the implemented
system can be bridged effectively if the principles are not just stated, but is also en-
forced. We maintain that the resulting enforced architectural principles—called the
law of the system—would have profound beneficial effects on software engineering.
Besides providing a truly reliable basis for reasoning about an existing system, such
a law could provide an assurance that certain system properties would be invariant
of the evolution of the system—as long as the law itself is not changed. As we shall
see, this would require a degree of control not only over the structure and dynamic
behavior of a system, but over the process of its development and maintenance as
well. (Note that the concept of architectural style [25]—seemingly related to our
concept of architectural principles—does not provide these advantages, because ar-
chitectural styles cannot be, and are not meant to be, enforced over the system
itself.)

These considerations led to the formulation of the concept of Law-Governed
Systems (LGS) [14]. This concept has been implemented via the Darwin-E environ-
ment [17] for programs written in Eiffel [11], and it had been applied experimentally
to a wide range of domains, including: on-line monitoring of financial systems [13],
enforcing the law of Demeter (referenced in [15]), providing multiple views for ob-
jects [16], and supporting design patterns [20].

However, Darwin-E was built at a time when modern programming concepts
such as reflection and dynamic loading were not mainstream practices, and thus
it did not address them. Such concepts, which are often used in modern systems
built in languages such as Java and C#, pose a serious challenge when enforcing
architectural principles, mainly because of the dynamic character of the interaction
within such systems. Moreover, the ability to analyze and instrument the code of a
system requires powerful tools that are able to handle bytecode distributions.

This paper revisits the Law-Governed Systems concept, taking into account the
highly dynamic features encountered in modern programming languages. We employ
Aspect Oriented Programming (AOP) techniques as our main tool for analyzing and
instrumenting the code of a system in order to impose global constraints over it. Our

26 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

2 EXAMPLE: A SAFETY-CRITICAL SYSTEM

use of AOP for this purpose has been inspired by the work of Shomrat and Yehudai
[26], who succeeded in implementing some of the capabilities of LGS via AOP, and
by the work of Lieberherr et al. [10] and Gybels and Brichau [8], who addressed the
ability of AOP to support certain LGS-like constraints.

In the sequel we present an implementation of LGS for systems written in Java.
We use AspectJ since it is a powerful, mature, and popular realization of AOP.
An important assumption we make in this paper is that the code of the system
itself does not employ aspects, i.e., aspects are only used for enforcing architectural
properties, and not as a programming device for the application system. The pres-
ence of multiple aspects can lead to aspect interference, potentially violating the
architectural constraints, and complicating the enforcement mechanism [23]. We
believe that this restriction can be removed by tools such as AspectJTamer [24],
which manages the interference between aspects and pure Java code and which can
help enforcing architectural constraints over programs that use AspectJ. However,
formalizing the way this tool should be used to enforce constraints is beyond the
scope of this paper.

2 EXAMPLE: A SAFETY-CRITICAL SYSTEM

Consider a software system, called ICU, that drives an intensive care unit [17, 26].
Suppose that this system has been designed to be partitioned into the following two
disjoint divisions (see Figure 1), each of which may contain any number of classes
and packages, and with no code outside those divisions:

• the therapy division Dt interacts directly with the patient through the sensors
and actuators of the ICU, thus providing the patient with the needed therapy;

• the observation division Do provides observers with the means to view the
state of the patient, to collect results, and to perform various housekeeping
tasks, without affecting the patient in any way.

The main purpose of this organization is to confine the most critical part of this
system—the part that deals with the patient—to Dt. But for this confinement to
have the intended effect of enhancing the overall safety of the ICU system, it is
necessary to constrain the structure and the behavior of these two divisions, and to
impose some discipline on their process of development and maintenance.

Constraints on the Structure and Behavior of the ICU System

The two divisions of the ICU system are to satisfy the following set of global rules:

1. Dt has exclusive access to the actuators that control the flow of various fluids
and gases into the veins of the patient, and to the sensors that monitor the
patient’s status.

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 27

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

Tested Code Untested Code

X

SEFX

Observation

Therapy

Legend of Method Calls

allowed

Xblocked

X

Sensors and Actuators

Figure 1: The architecture of an Intensive Care Unit software.

2. Dt is not allowed to make any calls to Do, so that the critical Dt division would
be independent of the rest of the system. In order to maintain this separation,
classes in Dt are not allowed to be ancestors of, or inherit from, classes in Do.

3. Do is not allowed to affect the state or behavior of Dt, or of the patient. This
means that code in Do can make only side-effect-free (SEF) calls to methods
defined in Dt. In other words, Do can make calls to methods in Dt only if these
methods are guaranteed not to have—directly or indirectly—any side-effects
on the rest of the system, or on the actuators connected to the patient.

4. Classes designated as “tested” should not be allowed to call methods of, or
inherit from, classes not so designated.

The rationale for these rules is as follows: The first three rules are meant to localize
the treatment of the patient in division Dt. Specifically, Rule 1 provides the therapy
division with the exclusive access to the patient, through the sensors and actuators;
Rule 2 ensures the independence of the code of Dt from the code of the rest of the
system; and Rule 3 denies the observation division the ability to have any effect
on the therapy division, and thus, on the patient, by allowing it only SEF calls to
methods in Dt. This significantly reduces the harm that can be caused by careless
programming of Do, making this division much less safety-critical than the rest of

28 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

2 EXAMPLE: A SAFETY-CRITICAL SYSTEM

the system.1 As a consequence, updates of Do do not have to be subjected to the
same rigorous process of verification and testing required for Dt.

Rule 4 is a reasonable safety measure regarding the interaction of tested and
untested modules. Employing such a measure is important for a system that may
have to be maintained and modified during its useful lifetime.

Constraints on the Evolution of the ICU System

Even if the above mentioned constraints are enforced throughout the lifetime of
the system—making them invariants of its evolution—their effectiveness would be
limited without careful control over the development process itself. Indeed, the
confinement of the ability to affect the patient to the therapy division is meaningful
only if special care is taken about the quality of the code included in this division—
say by allowing only very experienced programmers to write this code or having
thorough code reviews.

Similarly, Rule 4 is meaningful if the ability to designate classes as “tested” is
limited to qualified developers. These considerations lead to the following provision.
Suppose that the system is developed by two different teams, corresponding to each
of the two divisions, and that the system is tested by quality assurance personnel,
called the “testers.” The process of development and maintenance is required to
obey the following rules:

5. Only developers certified for a certain division are allowed to provide the code
of that division.

6. Only qualified testers are allowed to designate a system module as “tested.”

Relating the Law and the Program

The law is an explicit collection of rules about the structure of the system, about
its process of evolution, and about the evolution of the law itself (who is permitted
to change a law, when, how, etc.). The structure of this system, and the constraints
over its evolution, are based partially on the extra-linguistic concepts of divisions,
and the tested status of code. These concepts serve to characterize and organize
the various system modules in a manner that transcends the traditional hierarchi-
cal organization of code into packages. Such characterization of software can be
supported by associating arbitrary attributes—such as the attribute “therapy” or
“tested”—with the various system modules.

1It should be pointed out that limiting the observation division to performing only side-effect-
free calls does not render it completely harmless, because it might, for example, hog some resources
(such as CPU time), eventually crashing the system; and it might cause harm by presenting a wrong
view of the state of the patient. Still, these rules would make changes in the observation division
far less risky.

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 29

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

tested

observer.ObserverQA Group
Tester updateAttribute

addComponent

therapy.Therapy
Therapy Group

Developer Class

Attribute

Attribute

Class

Attribute

Attribute

Figure 2: The development platform.

An association of extra-linguistic attributes with the code has been used effec-
tively in past realizations of LGS [13, 16], and its importance has been recognized
by Eichbert et al. [5]. Moreover, attributes are beginning to be incorporated into
programming languages such as C# and Java (where they are called “annotations”).
The implementation of LGS presented in this paper uses Java annotations for asso-
ciating such attributes with the code.

However, as we have seen in Section 2, the ability to associate attributes (or
annotations) with code is not sufficient for our purposes. It is also necessary to
regulate such associations. The way this is done under LGS is discussed in the
following section.

3 THE DEVELOPMENT LAW

A Law-Governed System can be defined as a triple 〈C,L, E〉, where

• C is the codebase of the system, which is a set of source and compiled files.

• L is the law that governs this system. It consists of two distinct parts: the
development law Ld, which regulates the code development and the association
of attributes with classes by the various developers, and the system law Ls,
which regulates the structure and behavior of the system itself.

• E is the development platform that manages the codebase C. It maintains
〈class, attributes〉 associations, allowing arbitrary attributes to be associated
with individual classes. The platform controls this association according to
the development law, and helps in imposing the system law.

The Platform and the Development Law

The development platform is the focus of the governance of the whole development
lifecycle. It maintains the repository of code-related artifacts and their attributes

30 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

3 THE DEVELOPMENT LAW

R1 upon sent(S, addComponent(Comp, Attr), R)
if role(S) = developer(therapy) and Comp.inPackage(“therapy”) and

Attr = TherapyDivision
do forward

R2 upon sent(S, addComponent(Comp, Attr), R)
if role(S) = developer(observation) and Comp.inPackage(“observation”) and

Attr = ObservationDivision
do forward

R3 upon sent(S, addAttribute(Comp, Attr), R)
if role(S) = tester and (Attr = “Tested” or Attr = “Untested”)
do forward

Figure 3: An example of the development law Ld.

for all lifecycle management tools. An example of such development platform is
Jazz [9]. Figure 2 shows schematically how the repository is accessed, and how
developers submit the code and the associated attributes. The repository provides
a set of commands supporting create, read, update, and delete operations for both
the code and its attributes, as well as for building the system (create the executable).

The operations performed on the development platform, such as changing the
code maintained by it and the attachment of attributes to various classes, are subject
to the development law. The law specifies, among other things, which developer can
perform which operations under what conditions. Such specifications may be based
on the identity of the developers or on their roles, and it can use an authentication
by digital certificates or passwords. It could also provide for dynamic coordination
between developers, such as the ability to lock certain parts of the codebase. The
necessary regulation of the process of software development turns out to be too com-
plex for it to be supported by traditional access control schemes. We therefore use
the more sophisticated control mechanism called Law-Governed Interaction (LGI),
which is the counterpart of LGS for distributed systems. A full description of this
mechanism is beyond the scope of this paper, but is available elsewhere [12].

Figure 3 shows the implementation of rules 5 and 6 of the ICU development
law. In these rules, R stands for the repository and S stands for the sender. The
forward command in the conclusion of the rules allows the requested action to be
performed. If no rule forwards the request, it will be dropped. Rules R1 and R2 of
Ld correspond to Rule 5 of the ICU policy. R1 specifies that only a developer holding
the role developer(therapy) can submit a component to the repository for the therapy
division. The submitted code is constrained to the therapy package, and it has to
be marked with the attribute TherapyDivision. Rule R2 specifies a similar property
for the observation division. Because the only way an addComponent action is
forwarded is through R1 and R2, the development law ensures that every class code
submitted to the repository will be necessarily marked as either TherapyDivision or

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 31

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

ObservationDivision. Finally, R3 corresponds to Rule 6 of the ICU policy. This
rule allows only individuals authenticated as tester to specify the testing status of
any component in the system, using one of the Tested or Untested attributes.

4 THE SYSTEM LAW

We now show how the system law Ls is specified and enforced using aspects. The
enforcement takes place in two steps. First, the attributes are incorporated into the
code as annotations using automatically generated attribute aspects Aa. Second,
Ls is written by the system architect as a system aspect As, which may use the
annotations inserted by Aa to represent the constraints on the structure and the
dynamic behavior of the system.

The Incorporation of the Attributes into the Code

In order to enforce the system law, which is expressed partially in terms of attributes
that characterize classes, it is necessary to associate these attributes with the code
of the classes. To provide for this association we use Java’s annotation mechanism.
We associate our regulated attributes with the code by automatically introducing
a set of annotations into their corresponding classes using a set of attribute aspects
Aa.

These operations are initiated by the command makeAnnotationAspects, issued
automatically by the development law as a consequence of the build command. It
instructs the development platform to generate the annotation types based on the
attributes, and to create the aspects that insert the annotations into their corre-
sponding classes.

For example, the generated annotation types for the Tested and Untested at-
tributes of ICU are:

@Retention(RetentionPolicy.RUNTIME)

public @interface Tested {}

@Retention(RetentionPolicy.RUNTIME)

public @interface Untested {}

The annotation types are declared with a RUNTIME retention policy, making the
annotations available both to the compiler and to the runtime system. (Runtime
use of the attributes is discussed in the next section.)

The attribute aspects Aa transfer the annotations into the appropriate classes.
Assume that class C1 is part of the therapy division and has been tested. It should
therefore carry TherapyDivision and Tested attributes. The following aspect, a part
of Aa, introduces the annotations into C1:

32 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

4 THE SYSTEM LAW

public aspect C1_introductionAspect {

declare @type : C1 : @TherapyDivision;

declare @type : C1 : @Tested;

}

Unfortunately, a developer can add the same annotations in the original Java
code, bypassing law enforcement. The development platform provides the com-
mand verifyAnnotations(attributeList) to prevent such a situation. This command,
invoked as a consequence of the build command prior to makeAnnotationAspects,
will verify any conflicts between given attributes and the native annotations. The
attributeList argument will be all the possible attributes used by the rules; in our ex-
ample, TherapyDivision, ObservationDivision, Tested, and Untested. The command
will return all the classes in the repository that have native, class-level annotations
matching the argument list. Thus, a non-empty result indicates a conflict, and the
attempt will be prevented.

The Nature of the System Law and of its Enforcement

The system law Ls consists of a set of constraints on the system, with a prescribed
response to a violation of each constraint. The enforcement of the law consists of
two activities: the detection of all the violations of constraints, and carrying out the
response to each such violation.

Constraint violations can be detected statically or dynamically. Static detection
is done during development by analyzing the source code. Dynamic detection takes
place during system execution and examines the runtime state of the system.

In general, static detection is preferred over dynamic detection for both efficiency
and safety reasons. Dynamic verification potentially introduces significant runtime
overhead. From a safety point of view, it is better to detect potential violations be-
fore the system is operational. Unfortunately, static analysis is not always sufficient.
For example, the following constraint may be imposed on the ICU system in order
to further shield the therapy division from the observation division and to limit the
load imposed on the former: “At any moment, the observation division should have
no more than N pending calls to the therapy division.” Another example: “Calls
from an untested module to a tested one can only take place when there is no patient
in the unit.” Both constraints are inherently dynamic and may be impossible to
verify statically.

In many situations it is best to use both static and dynamic detection techniques
for enforcing the same constraint. The static method provides efficiency and safety
whenever possible, and the dynamic method provides completeness.

Responses to violations are different in the two cases. Statically-detected viola-
tions should be reported to project management. The following types of responses
are possible for dynamically-detected violations; each of these might be appropri-
ate under different circumstances: (a) log the violation and continue execution (the

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 33

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

actual response is left to an external auditor); (b) throw a runtime exception, thus
prohibiting the violating interaction from taking place, and continuing execution as
directed by the exception handlers; (c) have the law itself handle the violation by
providing the necessary recovery actions; and (d) halt the execution of the entire
system (this radical response might be necessary when the violation poses a danger
or defies the very purpose of executing the system).

It is possible to employ a combination of the four types of responses. For example,
a violation may be logged before throwing an exception.

An Aspect-Based Formulation of the System Law

We now show how to encode the detection of and response to constraint violations
using aspects, both statically and dynamically. Static verification is implemented
using aspects that declare errors or warnings if join points that correspond to law
violations can possibly be reached in the code. Dynamic enforcement is done using
advice that detects the violation and invokes the appropriate response.

Consider a rule that prohibits calls from certain code divisions to others. In
our ICU example, therapy code is not allowed to call observation code, and tested
code is not allowed to call untested code. In both cases, the divisions are identified
by annotations. The following AspectJ code will cause a compilation error if the
tested-to-untested rule is violated:

pointcut T2US(): call(* (@Untested *).*(..)) && @within(Tested);

declare error: T2US():

"Error: Illegal call from Tested to Untested code";

This code declares a pointcut that matches any method call originating in a class
annotated with Tested and whose target is a class annotated with Untested. A
joinpoint matching this pointcut is a violation of the rule.

This aspect might not catch a violation of the above constraint if the dynamic
type of caller or callee does not match its static type. This is not an issue for the
therapy-to-observation calls in the ICU, since the second part of Rule 2 prohibits
cross-inheritance between therapy and observation. However, it could happen in
the tested-to-untested case. Consider an object o1 of type C1, where C1 is marked
Tested, and an object o2 of type C2, where C2 is marked Untested. Assume that C2
inherits from C1 (recall that Rule 4 allows untested classes to inherit from tested
classes). Suppose further that the Tested class C3 contains the call o1.m(), where
m() is a method declared in class C1. This call would not be caught by the static
verification method, since it involves a call to a tested class occurring within a tested
class. But if the reference o1 is bound at runtime to object o2 (which is valid since
C2 is a subtype of C1), this would lead to an undetected illegal interaction. This
violation can be detected dynamically:

34 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

4 THE SYSTEM LAW

pointcut T2UD(): call(* *.*(..)) && @this(Tested) && @target(Untested);

before(): T2UD() { throw new RuntimeException

("Illegal call from Tested to Untested code"); }

This pointcut captures statically all method calls in the codebase, and a runtime
check is performed for calls whose source is annotated with Tested and whose tar-
get is annotated Untested ; in this example an exception is thrown. This dynamic
verification is quite inefficient, because the runtime checks are applied to all method
calls. The problem is especially severe if there are many rules that require such com-
prehensive pointcuts. Law enforcement must obviously introduce as little overhead
as possible. A more efficient solution is:

pointcut T2UDO(): call(* (@UntestedAncestor *).*(..)) &&

@target(Untested) && @within(Tested);

before(): T2UDO() { throw new RuntimeException

("Illegal call from Tested to Untested code"); }

This pointcut relies on the existence of an UntestedAncestor annotation to mini-
mally identify the potential unsafe calls. This annotation marks all the classes that
are supertypes of classes marked Untested, since these classes can disguise polymor-
phic calls to untested classes. Such annotations are generated by the development
law, using the command markSuperclass(superclassAttribute, subclassAttribute).
This command identifies all the classes marked with subclassAttribute and adds the
attribute superclassAttribute to all their ancestors.

The static and dynamic aspects shown above still do not cover all possible calls
from the therapy division to the observation division, since it ignores reflective calls.
Reflection requires dynamic treatment, because the target of a reflective call can
only be determined at runtime. Illegal reflective calls are detected by this aspect:

pointcut T2OR(Object target, Object[] params):

call(Object Method.invoke(..)) &&

@within(Tested) && args(target, params);

before (Object target, Object[] params): T2OR(target,params) {

if (target.getClass().getAnnotation(Untested.class) != null)

throw new RuntimeException

("Reflective call from Tested to Untested not allowed");

if (target.getClass().getName().equals("java.lang.reflect.Method"))

throw new RuntimeException

("Double reflective call from Tested not allowed");

}

This pointcut captures any reflective call originating in any class marked Tested.
The advice throws an exception whenever the target of the call is annotated Untested.
The second test closes the following loophole: instead of having a reflective call to

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 35

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

the actual target, it is possible to call the invoke method itself reflectively, thus
indirecting the reflective call. This technique is not useful except for obfuscation,
and is therefore disallowed.

We have shown how to enforce the calling restrictions in Rules 2 and 4. The
cross-inheritance restriction of these rules is enforced statically by the development
law, using the commands:

checkInheritance(TherapyDivision, ObservationDivision)

checkInheritance(ObservationDivision, TherapyDivision)

checkInheritance(Untested, Tested)

The first command checks the existence of classes with an attribute Observation-
Division that inherit from classes with an attribute TherapyDivision, the second
checks the other direction, and the third enforces Rule 4. A non-empty list of
classes returned by any command is considered an error.

For the above techniques to be effective in enforcing Rules 2 and 4, all the code
has to be available in the development platform for analysis by the AspectJ weaver.
If the system uses runtime (dynamic) code loading, the classes loaded this way are
not analyzed by the system aspect, and might not be marked with the attributes
normally associated through the development platform. It is possible to prevent this
by prohibiting the use of class loaders within the codebase:

pointcut illegalCL(): within(java.lang.ClassLoader+);

declare error: illegalCL(): "Error: Custom Class Loader prohibited";

Alternatively, if the functionality of the system requires some of the code to be
loaded dynamically, such code should be marked with appropriate annotations, and
the system aspect should be woven into it at load-time. AspectJ 1.5 provides a
class loader capable of dynamic weaving. The laws can be enforced properly if the
annotations and the system aspect are made available to this special class loader.

We now turn to the implementation of Rules 1 and 3. Rule 1 gives the therapy
division exclusive access to the actuators controlling the patient. We assume that
there is a fixed set of classes (perhaps in a single package) that can communicate
with the actuators.

For simplicity, we assume that the entire communication with the actuators
takes place through a single class in the therapy division, named Actuator. This
assumption might seem overly strong, but a realistic scenario is to have a small and
fixed set of entities that can communicate with the actuators. such classes can be
supplied with a password or other form of secret during initialization, so that they
can authenticate themselves to the actuators. These classes will be trusted not to
disclose the secret to other entities in the system. For simplicity of the presentation,
we assume here that a single Actuator class plays this role. Consequently, Rule 1
can be interpreted as prohibiting the observation division from calling this class

36 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

4 THE SYSTEM LAW

directly. Rule 3 reinforces this by prohibiting the observation division from calling
the Actuator class not only directly but also indirectly, by calling other methods in
the therapy division that in turn can access the actuators. Rule 3 also asserts that
the observation division is not allowed to affect the state of the therapy system. In
other words, the calls from observation division to therapy division should be side-
effect free (SEF). These rules do not prevent observation code from calling therapy
code, but they prevent calls that directly or indirectly access the Actuator class or
modify any variable in the therapy division.

Direct calls from the observation to the actuators can be prevented statically as
follows:

pointcut illegalO2TActuator():

call(* (@TherapyDivision Actuator).*(..)) && @within(ObservationDivision);

declare error: illegalO2TActuator():

"Error: Observation may not access actuators";

This pointcut captures any calls from the observation division to the Actuator

class. Similarly, the following code prevents the observation division from directly
setting any variable in the therapy division:

pointcut illegalO2TSet():

set(* (@TherapyDivision *).*) && @within(ObservationDivision);

declare error: illegalO2TSet():

"Error: Observation may not set Therapy variables";

Preventing indirect access by the observation to the actuators or variables in the
therapy division cannot be performed statically in general, as the calling path is
decided at runtime. This code enforces this law dynamically:

pointcut observationCall():

call(* (@TherapyDivision *).*(..)) && @within(ObservationDivision);

pointcut sefViolation():

cflow(observationCall()) &&

(set(* (@TherapyDivision *).*) ||

execution(* (@TherapyDivision Actuator).*(..)));

before(): sefViolation() {

throw new RuntimeException

("SE and Actuator calls from Observation to Therapy not allowed");

}

The observationCall pointcut matches any call from the observation division
to the therapy division; sefViolation matches any call that sets a variable in the
therapy division or accesses the actuator class, occurring within the control flow of
the first pointcut. On violation, an exception is thrown. Since this exception is
thrown before the state is changed, the therapy division is left in a consistent state.

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 37

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

The code above deals only with non-reflective calls and field accesses. The tech-
nique shown above for dealing with reflection can be used in this case as well.

The dynamic rule presented above might introduce significant overhead when the
number of field accesses in the therapy division is large. The pointcut sefViolation
inserts a check before every instruction that modifies any field throughout the ther-
apy division. In order to reduce this overhead, it is possible to reduce the granularity
of this pointcut. If the body of a method can potentially change a field in multi-
ple places, a single check can be inserted at the beginning of the method instead
of in every field modification within the method. An optimized pointcut would be
responsible for recognizing only calls to such methods instead of field modifications.
For the implementation of such a pointcut we need another coding convention: “Ev-
ery method in the therapy division that changes a field has to be marked with the
annotation SetterMethod.”

Such a convention can be enforced by the following code:

pointcut illegalSetting():

set(* (@TherapyDivision *).*) &&

!withincode(* @SetterMethod (@TherapyDivision *).*(..));

declare error: illegalSetting():

"Error: SetterMethod annotation required when setting a field";

This pointcut captures any field modification occurring outside a method or con-
structor not marked SetterMethod, and an error is declared.

Once this rule is in place, the dynamic enforcement of field modifications and
actuator calls changes to:

pointcut observationCall():

call(* (@TherapyDivision *).*(..)) && @within(ObservationDivision);

pointcut sefViolation():

cflow(observationCall()) &&

(execution(* @SetterMethod (@TherapyDivision *).*(..)) ||

execution(* (@TherapyDivision Actuator).*(..)));

before(): sefViolation() {

throw new RuntimeException

("SE and Actuator Calls from Observation to Therapy not allowed");

}

The pointcut observationCall remains unchanged; sefViolation is modified to
match the execution of an actuator method or any method in the therapy division
that is annotated SetterMethod, occurring in the control flow of the first pointcut.

38 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

4 THE SYSTEM LAW

The Regulation of Common Types of Interaction

The constraints can be viewed mostly as defined over various interactions between
classes. The types of interactions we consider include, but are not limited to, the
following: (a) call interaction, which occurs when the code in one class calls a
method defined in another class; (b) field-access interaction, which occurs when the
code of one class reads or writes a field defined in another class; (c) instantiation
interaction, which occurs when the code in one class instantiates another class; and
(d) inheritance interaction, which occurs when one class inherits from another. Some
constraints are expressed in terms of a combination of these interactions. In this
section we motivate the need to impose constraints over such inter-class interactions,
and briefly discuss how they can be enforced.

Call Interaction: Calls are the main means of interaction between system com-
ponents, and their regulation has been an important concern of many programming
languages. Under Java, calls are regulated mostly by the access-level modifiers.
Unfortunately, these modifiers are not flexible enough to express system laws. In
particular, our ICU example suggests the need to regulate calls based on grouping
classes by extra-linguistic attributes. Such control cannot be represented by Java’s
access modifiers.

Java has another technique for regulating calls by security managers, which are
mostly designed to regulate the ability of untrusted code to affect the development
platform via operations on files and on the network. This technique is also not
flexible enough, as argued by Papa et al. [21], and it is fully dynamic.

We have shown above how to enforce call interaction constraints using aspects.

Field-Access Interaction: As in the case of call interactions, the field visibility
rules provided by Java are coarse-grained and cannot capture more complex, non-
hierarchical organizations of the code. Furthermore, Java does not provide different
visibility scope for reading and writing operations. An example of constraint that
requires such different visibility is Rule 3 of the ICU, which prohibits the observation
division from setting (directly or indirectly) any field defined in the therapy division.
This rule, however, permits the observation division to read the fields defined in the
therapy division.

Reading and writing of variables can be regulated in a similar manner to the
regulation of method calls, using the AspectJ pointcuts get and set.

Instantiation Interaction: Controlling instantiation interaction is important
since it can ensure that a system is composed of the right objects, which are in-
stantiated in the right places. For example, consider how objects representing
medical treatment are dealt with. A reasonable rule is to restrict the creation of
MedicalTreatment objects to the Therapy division, without preventing the use of
these objects by other divisions.

There are several ways to create objects in Java. The instantiation of a new
object can be regulated using the AspectJ initialization pointcut, while other

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 39

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

creation procedures, such as cloning or deserialization, can be treated as calls to the
clone or readObject methods, using the mechanisms described previously.

Inheritance interaction: Inheritance is a powerful mechanism, and needs to
be regulated. In particular, inheritance tends to undermine encapsulation and it can
invalidate desired uniformity properties in a system. The conflict between inheri-
tance and encapsulation is due to the fact that a subclass can access the internal
implementation of its superclass, and it can redefine inherited methods, possibly
expanding the original visibility scope. The potential negative implications of these
aspects of inheritance to encapsulation have been pointed out by Snyder [28] as far
back as 1980, but little has been done about it in programming languages.

The manner in which inheritance undermines uniformity can be illustrated by
the following example. Suppose that we require all objects representing a medical-
treatment to have precisely the same structure and behavior. This cannot be ensured
in the presence of inheritance because, due to polymorphism, instances of any sub-
class of class MedicalTreatment can “masquerade” as instances of MedicalTreatment.
Besides having additional features, these “fake” medical-treatments may have dif-
ferent behavior created by overriding the methods defined in the original class. In
order to prevent this redefinition of behavior by an unauthorized division, Rule 2
of the ICU system prohibits cross-inheritance between the therapy and observation
divisions.

To determine whether a class A, defined in one division, inherits from class B, de-
fined in a different division, it is possible to use the pointcut within(A) && within(B+).
This pointcut identifies join points within type A that are also inside subclasses of
type B. Such join points can only exist when type A inherits from B. However,
if A contains no join points (for example, if it is an interface), this pointcut is
empty and cannot be used for enforcement. These constructs are not sensitive to
annotations, and in certain cases cannot be used for regulating inheritance based
on attributes. For this purpose, our development platform provides the command
checkInheritance(superclassAttribute, subclassAttribute), which identifies all the
classes annotated with subclassAttribute that inherit from classes annotated with
superclassAttribute. The implementation of this command traverses all the classes
in the repository, finds all their ancestors, and compares their attributes. The com-
mand is employed by the development law. It is issued automatically before the
makeAnnotationAspects command during the build phase.

5 RELATED WORK

The work of Shomrat and Yehudai [26] is closely related to ours, and it is the first
attempt to implement several LGS types of laws using aspect-oriented techniques.
The authors discuss several types of laws, such as a distributed coordination pol-
icy and a kernelized structure similar to our ICU system. In this context, they
show how the AspectJ call pointcuts can be used to enforce global architectural

40 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

5 RELATED WORK

principles, and recognize several shortcomings in the AspectJ language that hin-
der the enforcement of regularities such as the inheritance. Our work addresses
the shortcomings pointed out in that paper, and provides a platform-aided enforce-
ment complementary to AspectJ. While Shomrat and Yehudai are concerned with
showing how some interactions can be regulated in principle, we study a complete
enforcement of properties, based on both static and dynamic methods, as occurring
in modern systems. Additionally, we show how complex properties can be enforced
using powerful AspectJ constructs like cflow. More importantly, we show how a
controlled development platform can be used to associate extra-linguistic attributes
with the code and to express interaction properties using these attributes. This is a
necessary step in asserting high-level architectural principles which are conceptually
decoupled from the code. We use generative techniques to associate these attributes
with the code using aspect-introduced annotations. The enforcement methods pre-
sented in this paper are largely dependent on these attributes.

In addition to the research already mentioned in Section 1, other papers address
the issue of regulating the interaction within a system. Among them is the Design
by Contract (DbC) [2] approach, and its AOP implementations [7, 27]. The en-
forcement of contracts in these implementations is somehow similar to the dynamic
regulation mechanism proposed by this paper. There are, however, fundamental dif-
ferences between LGS and DbC. LGS enforces global, crosscutting principles upon a
software system, whereas DbC enforces local interaction, relative to a single compo-
nent. In LGS such notions as preconditions or postconditions are irrelevant. Global
constraints, or regularities, regarding the system as a whole are verified instead. In
an approach different from DbC, Morgan et al. [18] use AOP techniques to express
design rules—constraints about the behavior and structure of a program. Unlike
our off-the-shelf use of AspectJ, this work introduces a specialized domain specific
language. Another important difference is that this language is based on a fully
static pointcut language that limits its applicability over dynamic features of the
base system.

Other authors propose various constraints within a system, without using AOP.
Bokowski’s CoffeeStrainer [3] is related to this work in that it proposes various stylis-
tic, implementation, and coding constraints that apply globally to a Java system.
CoffeeStrainer, however, is only marginally concerned with interactions between the
architectural entities of a system; it does not provide the means to associate high-
level architectural attributes with the code itself. Moreover, the constraint mecha-
nism is entirely static and is not able to capture dynamic aspects of the language or
constraints that are dynamic in nature.

From a security perspective, Papa et al. [21] address the control of interactions
between Java classes by extending the language to provide flexible package-based
access control. This work is also based on the observation that Java access modifiers
and the security manager are neither flexible nor powerful enough to implement a
wide range of interaction policies. The control provided by Papa et al. is indeed
necessary, but is not sufficient for our purpose. It is not able, for example, to

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 41

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

distinguish between read and write access to a variable, or to implement a system-
wide policy that prohibits the tested code from calling untested code. Additionally,
the enforcement of the policies is entirely dynamic, with the resulting disadvantages.

Finally, Aldrich et al., in their ArchJava work [1], bridged some of the gap
between architectural specifications and the system itself, by enforcing “communi-
cation integrity: [where] each component in the implementation may only commu-
nicate directly with the components to which it is connected in the architecture.”
Even though this is a useful constraint, it does not provide support for inherently
dynamic properties as presented in our paper, since ArchJava relies on an entirely
static techniques. Even more important in this context is the fact that ArchJava
does not support global constraints.

6 CONCLUSIONS

This paper presented an approach to implementing Law-Governed Systems using
aspect-oriented techniques. We use aspects for two purposes. First, extra-linguistic
attributes—whose association with classes is regulated by the development law—are
transferred into the code as annotations, using the aspect introduction mechanism.
Second, aspects are used to verify and enforce architectural properties expressed as
constraints mainly defined over these extra-linguistic attributes.

The enforcement is performed both statically and dynamically. Static enforce-
ment provides efficiency and safety, but does not capture all constraint violations
due to polymorphism and reflection. Dynamic enforcement offers completeness, and
is used to capture inherently dynamic constraints and interactions that cannot be
recognized statically. AOP’s advice is used to implement the dynamic checks, and
the cflow pointcut provides the mechanism to express constraints of combined types
of interaction. We discussed a number of alternatives and possible optimizations of
the enforcement process.

We have found aspects very convenient for instrumenting the program to enforce
system laws. However, there were some cases where AspectJ was not expressive
enough to enforce a law, and we needed to use special commands in the development
platform to solve the problem. For example, the pointcut within(A) && within(B+)

identifies join points within type A that are also inside subclasses of type B, and
might be used to enforce a rule that prohibits type B to extend A. However, if A
contains no join points, this pointcut is empty and cannot be used for enforcement.

One of the major problems with AspectJ is that the presence of multiple aspects
can lead to aspect interference, potentially violating the architectural constraints,
and complicating the enforcement mechanism. For the presentation in this paper,
we therefore assumed that the system itself does not employ aspects. The problem
of aspects interference can be solved by tools such as AspectJTamer [24], which can
be used to extend the techniques presented here for programs that use aspects.

42 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

6 CONCLUSIONS

As a demonstration of the efficacy of our approach, we have shown how to specify
and enforce an appropriate global architecture for a safety-critical system. There
are, of course, many other types of architectures that can be established via LGS.
Some of these have been studied using our Eiffel-based implementation of LGS,
including the on-line monitoring of financial systems; enforcing the law of Demeter;
and supporting design patterns, such as providing multiple views for objects. A
comprehensive study of the use of LGS is yet to be carried out. Such study of the
patterns of architectural constraints should classify various types of principles that
may be useful for different applications, and it should show how these principles
could be enforced, using different aspect libraries.

REFERENCES

[1] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: connecting software archi-
tecture to implementation. In Proc. ICSE, pages 187–197, 2002.

[2] S. Balzer, P. Eugster, and B. Meyer. Can aspects implement contracts? In
Rapid Integration of Software Engineering Techniques Workshop,, Greece, 2005.

[3] B. Bokowski. Coffeestrainer: statically-checked constraints on the definition
and use of types in Java. In Proc. FSE, pages 355–374, 1999.

[4] C. K. Duby, S. Meyers, and S. P. Reiss. CCEL: A metalanguage for C++. In
USENIX C++ Conference, August 1992.

[5] M. Eichberg, M. Mezini, T. Schäfer, C. Beringer, and K.-M. Hamel. Enforcing
system-wide properties. In Australian SE Conference, pages 158–167, 2004.

[6] R. Eshuis and R. Wieringa. Verification support for workflow design with UML
activity graphs. In Proc. ICSE, 2002.

[7] Y. A. Feldman, O. Barzilay, and S. Tyszberowicz. Jose: Aspects for design by
contract. In Proc. SEFM, September 2006.

[8] K. Gybels and J. Brichau. Arranging language features for more robust pattern-
based crosscuts. In Proc. AOSD, pages 60–69, 2003.

[9] IBM. Jazz overview: Innovation through collaboration. http://www-
01.ibm.com/software/rational/jazz/, last visited October 2008.

[10] K Lieberherr, D. H. Lorenz, and P. Wu. A case for statically executable advice:
Checking the Law of Demeter with AspectJ. In Proc. AOSD, pages 40–49,
2003.

[11] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 43

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

[12] N. H. Minsky. Law Governed Interaction (LGI): A Distributed Coordination
and Control Mechanism (An Introduction, and a Reference Manual). Technical
report, Rutgers University, June 2005.

[13] N.H. Minsky. Independent on-line monitoring of evolving systems. In Proc.
ICSE, pages 134–143, March 1996.

[14] N.H. Minsky. Law-governed regularities in object systems; part 1: An abstract
model. Theory and Practice of Object Systems, 2(1), 1996.

[15] N.H. Minsky. Why should architectural principles be enforced? In Computer
Security, Dependability, and Assurance. 1999.

[16] N.H. Minsky and P. Pal. Providing multiple views for objects. Software Practice
and Experience, 30(7):803–823, June 2000.

[17] N.H. Minsky and P.P. Pal. Law-governed regularities in object systems; part
2: A concrete implementation. TAPOS, 3(2):87–101, 1997.

[18] C. Morgan, K. De Volder, and E. Wohlstadter. A static aspect language for
checking design rules. In Proc. AOSD, pages 63–72. ACM, 2007.

[19] G.C. Murphy, D. Notkin, and K. Sullivan. Software reflection models: Bridging
the gap between source and high level models. In Proc. FSE, 1995.

[20] P. Pal. Law-governed support for realizing design patterns. In Proceedings of
TOOLS Conference, pages 25–34, August 1995.

[21] M. Papa, O. Bremer, R. Chandia, J. Hale, and S. Shenoi. Extending Java for
package based access control. In Proc. ACSAC, pages 67–76, 2000.

[22] M. Sefica, A Sane, and R.H. Campbell. Monitoring complience of a software
system with its high-level design model. In Proceedings of ICSE, 1996.

[23] C. Serban and S. Tyszberowicz. Enforcing Interaction Properties in AOSD-
Enabled Systems. In Proc. ICSEA, October 2006.

[24] C. Serban and S. Tyszberowicz. AspectJTamer: The controlled weaving of
independently developed aspects. In Proc. SwSTE, pages 57–65, 2007.

[25] M. Shaw and D. Garlan. Software Architecture: Perspectives on an emerging
discipline. Prentice Hall, 1996.

[26] M. Shomrat and Y. Yehudai. Obvious or not?: regulating architectural decisions
using aspect-oriented programming. In Proc. AOSD, pages 1–9, 2002.

[27] Therapon Skotiniotis and David H. Lorenz. Cona: aspects for contracts and
contracts for aspects. In OOPSLA Companion, pages 196–197. ACM, 2004.

[28] A. Snyder. Encapsulation and inheritance in object-oriented programming lan-
guages. In Proceedings of the OOPSLA’86 Conference, pages 38–45, 1986.

44 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

6 CONCLUSIONS

ABOUT THE AUTHORS

Constantin Serban has received a B.S. degree in Computer Sci-
ence and Engineering from the Polytechnic University of Bucharest,
Romania, in 1996, an M.S. in Computer Science and Engineering
from the same university in 1997, and a Ph.D. in Computer Science
from Rutgers University in 2008. His research interests are in secu-
rity, dependability, and software engineering for large and networked
systems. His primary research area is the policy based enforcement
of access control in distributed systems. He also worked on software
engineering, where he addressed the enforcement of software archi-
tectures on large systems, both monolithic and distributed. Cur-
rently Constantin Serban is a senior researcher with the Policy-Based
Network Management Group in the Applied Research Department
at Telcordia Technologies. He is a member of the IEEE and ACM.
He can be reached at serban@research.telcordia.com.

Shmuel Tyszberowicz received his Ph.D. degree from Tel-Aviv
University. He studied mathematics and computer sciences. He
is presently at the School of Computer Science at the Academic
College of Tel-Aviv Yaffo, Israel. His research interests include
tools and techniques for high-quality software development, object-
oriented development, aspect-oriented programming, agile method-
ologies, testing, design by contract, and the theory of reactive sys-
tems.
He can be reached at tyshbe@tau.ac.il.

Yishai A. Feldman received his Ph.D. from the Weizmann Insti-
tute of Science. He is interested in the creation of intelligent tools,
mainly for software development. His previous research includes
tools for program understanding and transformation, contract-based
software development, and video editing. Several of these tools
were successful commercially. He has published on various top-
ics, including automated theorem-proving, static analysis of pro-
grams, design by contract, software engineering, aspect-oriented pro-
gramming, and agile methodologies. After spending many years in
academia, he recently joined IBM’s Haifa Research Lab, where he
leads a group developing program analysis tools for legacy software.
He can be reached at yishai@il.ibm.com.

VOL 7, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 45

mailto:serban@research.telcordia.com
mailto:tyshbe@tau.ac.il
mailto:yishai@il.ibm.com

DEVELOPING LAW-GOVERNED SYSTEMS USING ASPECTS

Naftaly Minsky received his Ph.D. in Theoretical Physics from the Hebrew Uni-
versity of Jerusalem. He is presently a Professor of Computer Science at Rutgers
University. His current research interests include distributed systems, security (ac-
cess control, in particular), electronic commerce, and software engineering. He can
be reached at minsky@cs.rutgers.edu.
His website is http://www.cs.rutgers.edu/∼minsky.

46 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 9

mailto:minsky@cs.rutgers.edu
http://www.cs.rutgers.edu/\protect $\relax \sim $minsky

