
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 8, November-December 2008

Xiufeng Ni, Cui Zhang: “Converting Specifications in a Subset of Object-Z to Skeletal Spec# Code
for both Static and Dynamic Analysis”, in Journal of Object Technology, vol. 7, no. 8, November-
December 2008, pp. 165-185 http://www.jot.fm/issues/issue_2008_11/article6/

Converting Specifications in a Subset of
Object-Z to Skeletal Spec# Code for
both Static and Dynamic Analysis

Xiufeng Ni and Cui Zhang
Department of Computer Science, California State University, Sacramento

Abstract
Construction of correctness is an essential issue for the implementation of a reliable
software system. Formal methods based verification techniques provide programmers
various ways to reason their program correctness through mathematically supported
static analysis and dynamic analysis. In this paper, we introduce a tool that converts
formal specifications in a subset of Object-Z to skeletal Spec# code with assertions.
This tool aims at facilitating the refinement from formal specifications to Spec# and the
full usage of the static and dynamic analysis techniques in Spec#.

1 INTRODUCTION

It is a challenge to deliver a reliable software system while the system is large and
complex. The major part of effort is spent in ensuring program correctness. In general, a
program is correct and perceived reliable when the results of execution are the same as
the program’s intended meaning which is defined in the requirement specifications.

Formal methods refer to mathematically rigorous techniques and tools for the
specification, design and verification of software systems [1]. The principles of formal
methods based Correctness by Construction [2] help ensure that errors are not introduced
into and can be removed from the software development process. Correctness by
Construction strongly supports a formal development from requirement specification to
system implementation, offering a logical solution to the problem of software reliability
[3].

Object-Z is an extension of Z, one of the most widely used formal specification
notation [4]. The object-oriented styled Object-Z makes it possible to structure and
develop large and complex software system specifications by defining a system as
collections of independent classes and objects. A seamless development by using an

CONVERTING SPECIFICATIONS IN A SUBSET OF OBJECT-Z TO SKELETAL SPEC# CODE

FOR BOTH STATIC AND DYNAMIC ANALYSIS

166 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

object-oriented approach to specification and then implementation can reduce the chance
of error.

Formal methods supported verification involves static and dynamic analysis
techniques. One successful dynamic technique is Design by Contract, which was
introduced by Bertrand Meyer for Eiffel [5]. Using contracts, a set of assertions, Design
by Contract can facilitate the automatic dynamic checking of assertions to guarantee that
the system in the development can perform in accordance with its specifications.
However, dynamic analysis alone can not guarantee software with reliability. Static
techniques are the most rigorous methods for analyzing source code and verifying
program correctness without executing the program. Static techniques and dynamic
techniques should and can complement each other to ensure software reliability.

In this paper, we introduce our Object-Z-to-Spec# system, a tool that can capture
formal requirement specifications in Object-Z and translate them into skeletal Spec# code
to guide actual implementations. In this way, the semantic gap between Object-Z
specification and C# programs with logic assertions can be bridged, the advantages of
Object Z can be fully utilized, and both the dynamic and static verification tools available
in Spec# can help improve code quality and the reliability of systems developed. Section
2 of this paper discusses the background and related work. Section 3 presents the Object-
Z-to-Spec# system architecture and design methodology. An example of CreditCard is
provided in Section 4 to illustrate how the system works. Section 5 concludes the paper
and points out the potential future work to further enhance this system.

2 BACKGROUND AND RELATED WORK

Design by Contract

It has been evidenced that Design by Contract has positive effect on design, testing, and
debugging activities [6]. Considering the advantages of Design by Contract, there have
been efforts to incorporate this technique into various object-oriented programming
languages. Contract Sharp [7] is one of the examples. Contract Sharp incorporates Design
by Contract to C# programming language. The system has a syntax directed graphical
user interface and generates run time traces of program executions reflecting the
automated dynamic checking of assertions. Using XML, Contract Sharp allows
programmers to go back and modify the source code without requiring the contracts to be
recreated. Contract Sharp also automatically generates documentation.

The limitation of the Design by Contract technique available in programming
languages is that it lacks a connection with formal specifications at a level much higher
than programming languages. In addition, Design by Contract belongs to the family of
dynamic analysis techniques thus does not support static analysis.

VOL. 7. NO. 8. JOURNAL OF OBJECT TECHNOLOGY 167

Object-Z to Java Skeletal Code

As the well accepted formal notation and techniques, various tools have been developed
to support for Object-Z and Design by Contract. Rafsanjani and Colwill [8] describe a
structural mapping from Object-Z to C++ using an object-model to reconcile the
structural aspects of Object-Z and C++. Clemens Fischer from University of Oldenburg,
Germany, did work on the conversion of Object-Z and CSP, another specification
language, to Java in 1999 and 2000 for his PhD thesis [9]. Ramkarthik and Zhang
developed a system that generates Design by Contract supported Java skeletal code from
Object-Z specifications [10]. This system provides a direct one to one correlation
between components at Z level and at Java level and aids in easy understanding of the
individual formal specification components at both levels. Java originally had very
limited built-in support for design contracts. This translation made available to Java
programmers the automated dynamic verification of preconditions, post conditions.
Implementing the translated Java skeletal code with dynamically checkable contracts will
help improve the quality of Java classes. But there is still no direct support for static
verification, which can significantly complement dynamic verification.

Static Verification, SPARK Ada, and Spec#

Static verification refers to formal method supported static analysis that does not require a
program to be executed. With tool support, static verification can automatically or semi-
automatically analyze the entire system. It can generate charts and reports that graphically
present the analysis results, and provide recommendations of potential resolutions to
identified problems [11]. The main static analysis techniques and methods include flow
analysis, path function analysis, and formal program verification. Flow analysis includes
control flow analysis, dataflow analysis, and information flow analysis.

There are few tools available for automated or semi-automated static verification.
SPARK Ada is the most successful one. SPARK Ada approach has convinced people that
rigorous static analysis should and can be an integral part of a development process [12].
Spec#, being developed by Microsoft Research Teams, also provides automated static
verification technique.

SPARK Ada is a subset of Ada for high integrity programming, first formalized by
Bernard Carre and Trevor Jennings of Southampton University in 1988 [13]. It has
continually evolved and nowadays is being more widely used and gaining general
acceptance particularly as its tools run within safety critical avionics programs. SPARK
Ada now supports tagged types, tasking, and proof of exception freedom which has
particular benefits in the context of RTCA DO- 178B [14]. Control flow analysis is
integrated into the SPARK Ada grammar. Data and information flow analysis have been
expressed as SPARK Ada program design rules. Praxis Critical Systems has used
SPARK Ada in the development of several industrial programs, and their measurements
indicate that the rigor provided by SPARK can be cost effective [14]. SPARK Ada offers
a selection of static tools, from lightweight sanity checking to full program verification

CONVERTING SPECIFICATIONS IN A SUBSET OF OBJECT-Z TO SKELETAL SPEC# CODE

FOR BOTH STATIC AND DYNAMIC ANALYSIS

168 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

with an interactive theorem prover. SPARK Ada program can be compiled by any
standard Ada compiler. However, compatibility with other existing programming
languages has been an issue for SPARK Ada to be widely accepted.

Along the same line as SPARK Ada, Microsoft Research Teams have designed
Spec#, a super set of the existing language C#, aiming at supporting easy and gradual
adoption of dynamic and static verification features [15]. Spec# is integrated into the
existing industrial-strength platform, the .NET platform. Spec# programming language
consists of specification constructs like pre- and post- conditions, class invariants, and
some mechanisms for higher-level data abstractions. Like Design by Contract, in Spec#,
specification is part of the program, where they are checked dynamically. The Spec#
programming system also consists of an automated program verifier, Boogie, which
checks specifications statically. The Boogie architecture includes design-time feedback,
distinct proof obligation generation and verification phases, and abstract interpretation
and verification condition generation. By providing design-time feedback, Boogie moves
the program verifier close to developers. By having an intermediate programming
notation, BoogiePL, Spec# separates the semantic encoding of the source program from
the analysis of this encoding. Comparing with SPARK Ada, Spec# is closer to major
software developers.

A growing number of researchers have realized that formal specification,
unambiguous languages, and both static analysis and dynamic analysis all help improve
code quality and reliability. With the emerging of Spec#, in addition to the dynamic
analysis techniques, the rigorous static verification techniques become available in this
commonly used programming language to enhance software productivity and reliability.
If there is a tool that can directly translates Object-Z specification to Spec#, C#
developers can be further benefited from formal methods supported techniques at both
specification language level and implementation language level. In this way, the
reliability of software systems developed in .NET platform can be enhanced. This is the
purpose of this project.

3. THE OBJECT-Z-TO-SPEC# SYSTEM

Project Approach

We take an approach similar to that for Object-Z Contract in Java [10]. The Object-Z-to-
Spec# System is accomplished by providing a GUI to accept and facilitate formal
specification in Object-Z, converting the Object-Z class schemas to XML representations,
and finally generating the Spec# skeletal code through processing of the XML
representation.

Object-Z-to-Spec# contains a graphical user interface for users to input
specifications for classes and methods. Software engineers trained in formal specification
can provide the Object-Z specification through this interface. The Object-Z specifications

VOL. 7. NO. 8. JOURNAL OF OBJECT TECHNOLOGY 169

entered through GUI is stored as XML documents. Spec# skeletal code can be generated
from XML documents according to its syntactic definition. XMLReader served as a
parser is offered by the .NET platform. Also, an Object-Z style class schema can be
generated from the stored XML documents. This document provides software engineers
with a function of class-by-class based future review.

Spec# skeletal code generated through this process keeps most of the information
from the Object-Z class schema. It includes the state variables with its types, class
constants and initial schema in addition to class invariants, and all input, preconditions
and postconditions for operations. This is a significant improvement over the approaches
that exclude the formal specifications as part of software development process.

System Architecture

Figure 1 Software Architecture of Object-Z-to-Spec# System

Figure 1 depicts the software architecture of the Object-Z-to-Spec# system. There are six
main components in the system. The functionalities of these components are as follows:

• Main Control System. This is the control unit for the Object-Z-to-Spec# System.
The Main Control invokes various components based on user input; captures

Spec# Skeletal Code
Generator

Main Control
System

Object-Z Specification Review

XML
Manager

Graphical
User
Interface

Spec# Supporting
Environment
(Dynamic and Static
verification tools)

CONVERTING SPECIFICATIONS IN A SUBSET OF OBJECT-Z TO SKELETAL SPEC# CODE

FOR BOTH STATIC AND DYNAMIC ANALYSIS

170 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

output and passes it to appropriate components. The Main Control communicates
with the Graphical User Interface (GUI). If the user action is to create the new
class specification, the user will be presented with various screens to input the
specification details. Once the user enters the various fields in the GUI to form a
class schema specification, the Main Control passes the control to the XML
Manager for further processing. If the user action is to generate Spec# skeletal
code, the Main Control passes the control to the Spec# Skeletal Code Generator.
If the user action is to generate a document of Object-Z specification, the Main
Control passes the control to the component for Object-Z Specification Review.

• Graphical User Interface (GUI). It captures the user inputs and passes them to
the Main Control and presents outputs to the user. The User interface is designed
in .NET platform with C#. The interface has a menu structure and a tree view.
The individual menu items in the menu structure are used to input appropriate
Object-Z specifications. For example choosing one menu item will help in
selecting a particular class schema and its details. The user may select an Object-
Z class name to be used to generate the Spec# skeletal code.

• XML Manager. This unit manages the process of Object-Z specification to
Spec# skeletal code. It generates the XML document, maintains it, and performs
XmlReader and XmlWriter on the XML document for generating the objective
document. The XML Manager includes a DTD file used to define the legal
building blocks of an XML document. A DTD is declared in XML document as
an external reference. The XML Manager uses a pre-specified DTD file to proof
check the well formalness and validity of the created XML document. When
generating XML documents, the XML Manager creates a XML file in the client’s
machine. The XML document contains the Object-Z specification. The .NET
platform provides all functions to insert, delete, read and write XML documents.
XML offers important capabilities like reuse of information, information
harvesting, and fine-granularity text-management applications. Thus, the Object Z
specification in the form of XML document can be used for harvesting
information to build Spec# skeletal codes and is reusable. The XML document is
generated by XML Manager as per the document creation rules specified in DTD
files.

• Spec# Skeletal Code Generator. The Spec# Skeletal Code Generator, with the
help of the XML Manager, generates the Spec# skeletal code. The outputs from
the Spec# Skeletal Code Generator are Spec# files. A Spec# file contains one or
more Spec# class skeletal code that has the dynamically checkable contents
extracted from the Object Z specification. It also contains the comments that a
programmer can use for further implementation of the class. The generated Spec#
files can be added to a Spec# project in .NET platform. So, both the dynamic and
static verification tools can be available for C# programmer.

• Object-Z Specification Review. The outputs of Object-Z specification Review
provide a class-by-class based review for the specification input by the user.

VOL. 7. NO. 8. JOURNAL OF OBJECT TECHNOLOGY 171

4. THE IMPLEMENTATION OF OBJECT-Z-TO-SPEC# SYSTEM

This Object-Z-to-Spec# System is developed in Microsoft’s Visual Studio 2005 .NET
platform. To make Spec# work in this platform, Spec# 1.0.6526 needs to be installed.
Before you can use the Spec# Program Verifier, Boogie needs the file Simplify-
1.5.4.exe.win in ESC/Java to be installed in Spec#. This section describes how the
Object-Z-to-Spec# System is implemented, including its inputs and outputs, its functions
and how they work together. The subsections below show an example of Spec# skeletal
code generation from a subset of Object-Z specification for a simple CreditCard
application. This simple application is refined based on [16].

Object-Z-to-Spec# GUI Functions

Figure 2 depicts the main window of the Object-Z-to-Spec# GUI with the Class Tab
visible. It contains the CreditCard class in Object-Z.

Figure 2 Main Window of Object-Z-to-Spec# System

CONVERTING SPECIFICATIONS IN A SUBSET OF OBJECT-Z TO SKELETAL SPEC# CODE

FOR BOTH STATIC AND DYNAMIC ANALYSIS

172 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

The Class Definition Window Form1 appears when the user clicks Modify Class or
selects New→Class from the File menu. This is the first form for specifying the Object-Z
class. Figure 3 shows an example for specifying the CreditCard class name, class
description, inheritance, formal parameter(s), and class constants.

Figure 3 Class Definition Window Form1

After the user clicks the button Next in the Figure 3 Class Definition Window Form1,
Figure 4 Class Definition Window Form2 will be shown. This is where the class constant
values, class state variables, class invariants and initial schema are specified.

VOL. 7. NO. 8. JOURNAL OF OBJECT TECHNOLOGY 173

Figure 4 Class Definition Window Form2

The Method Definition Window Form is where the user specifies the method signature,
contracts, and input, output variables. Figure 5 depicts the Method Definition Window,
containing the CreditCard Withdraw method.

CONVERTING SPECIFICATIONS IN A SUBSET OF OBJECT-Z TO SKELETAL SPEC# CODE

FOR BOTH STATIC AND DYNAMIC ANALYSIS

174 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

Figure 5 Method Definition Window Form

The Outputs from the Illustrated Example

This section contains the running output of the CreditCard example illustrated. The
outputs include one XML document for the whole project, an Object-Z specification
document and the system generated Spec# skeletal code. Figure 6 contains the XML
document for the CreditCard project. Figure 7 contains the Object-Z specification for the
example of the CreditCard Object-Z class. Figure 8 contains the system generated Spec#
skeletal code CreditCard Spec# class for the CreditCard Object-Z class.

VOL. 7. NO. 8. JOURNAL OF OBJECT TECHNOLOGY 175

<?xml version="1.0"?>
<project projname="C:\Documents and Settings\zhiyong he\My
Documents\Visual Studio Projects\CreditCard.xml">
 <date>1/4/2007</date>
 <time>10:54 PM</time>
 <class classname="CreditCard">
 <classdescription>This is a trivial example of Credit Card
class.</classdescription>
 <inheritsfrom />
 <parameters />
 <constantvars>
 <constvar>
 <name>limit</name>
 <visibility>Yes</visibility>
 <type>N</type>
 <sub>
 </sub>
 </constvar>
 </constantvars>
 <constantvals>
 <constval>limit Equality= 5000</constval>
 </constantvals>
 <statevars>
 <statevar>
 <name>balance</name>
 <visibility>Yes</visibility>
 <type>Z</type>
 <sub>
 </sub>
 </statevar>
 </statevars>
 <classinvariant>balance+limit >= 0</classinvariant>
 <classinitial>
 <visibility>Yes</visibility>
 <statement>balance == 0</statement>
 </classinitial>
 <method methodname="Withdraw">
 <accessmodifier>Public</accessmodifier>
 <parameters />
 <deltalist>
 <modifier>balance</modifier>
 </deltalist>
 <inputvars>
 <input>
 <name>amount</name>
 <type>N</type>
 <sub>
 </sub>
 </input>
 </inputvars>

Figure 6 XML Document for CreditCard Project

CONVERTING SPECIFICATIONS IN A SUBSET OF OBJECT-Z TO SKELETAL SPEC# CODE

FOR BOTH STATIC AND DYNAMIC ANALYSIS

176 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

 <outputvars />
 <precondition>amount <= balance+limit</precondition>
 <postcondition>balance' == balance-amount</postcondition>
 </method>
 <method methodname="Deposit">
 <accessmodifier>Public</accessmodifier>
 <parameters />
 <deltalist>
 <modifier>balance</modifier>
 </deltalist>
 <inputvars>
 <input>
 <name>amount</name>
 <type>N</type>
 <sub>
 </sub>
 </input>
 </inputvars>
 <outputvars />
 <precondition>true</precondition>
 <postcondition>balance' == balance+amount</postcondition>
 </method>
 <method methodname="WithdrawAvail">
 <accessmodifier>Public</accessmodifier>
 <parameters />
 <deltalist>
 <modifier>balance</modifier>
 </deltalist>
 <inputvars />
 <outputvars>
 <output>
 <name>amount</name>
 <type>N</type>
 <sub>
 </sub>
 </output>
 </outputvars>
 <precondition>true</precondition>
 <postcondition>amount == balance+limit&balance' == -
limit</postcondition>
 </method>
 </class>
</project>

Figure 6 XML Document for CreditCard Project (Continued)

VOL. 7. NO. 8. JOURNAL OF OBJECT TECHNOLOGY 177

|----------- CreditCard ---
| Visibility List
| (limit, balance, INIT, Withdraw, Deposit, WithdrawAvail)
|
|
| | limit : N
| |--
| | limit = 5000
|
|
| |--
| | balance : Z
| |--
| | balance+limit >= 0
| |---
|
| |--------- INIT ------------------------------------
| | balance = 0
| |---
|
| |-------- Withdraw ---------------------------------
| | delta(balance)
| | amount? : N
| |---
| | amount <= balance+limit
| | balance' = balance-amount
| |--
|
| |-------- Deposit ---------------------------------
| | delta(balance)
| | amount? : N
| |---
| | balance' = balance+amount
| |--
|
| |-------- WithdrawAvail ---------------------------------
| | delta(balance)
| | amount! : N
| |---
| | amount = balance+limit
| | balance' = -limit
| |--
|
|---

Figure 7 Object-Z-to-Spec# System Generated Object-Z Specification

CONVERTING SPECIFICATIONS IN A SUBSET OF OBJECT-Z TO SKELETAL SPEC# CODE

FOR BOTH STATIC AND DYNAMIC ANALYSIS

178 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

using System;
using Microsoft.Contracts;
using System.IO;
using System.Text;

namespace testCreditCard
{
 public class CreditCard
 {
 [SpecPublic] int balance;
 public short limit = 5000;
 invariant limit+balance >= 0;

 public CreditCard()
 ensures balance == 0;
 {
 }

 public void Withdraw(short amount)
 requires amount <= balance+limit
 otherwise ArgumentException;
 ensures balance == old(balance)-amount;
 modifies balance;
 {
 }

 public void Deposit(short amount)
 ensures balance == old(balance)+amount;
 modifies balance;
 {
 }

 public void WithdrawAvail(short amount)
 ensures amount == balance+limit;
 ensures balance == amount-limit;
 modifies balance;
 {
 }

 }//end of class
}//end namespace

Figure 8 Object-Z-to-Spec# System Generated Spec# Skeletal Code

5. EXAMPLES OF DYNAMIC AND STATIC VERIFICATION

The previous section illustrates functionalities of the Object-Z-to-Spec# system through a
small CreditCard example. Through the same example, this section shows the availability
of support in Spec# for both dynamic verification and static verification. Due to the

VOL. 7. NO. 8. JOURNAL OF OBJECT TECHNOLOGY 179

reality that the Spec# programming system is still under developing, some steps described
below possibly are not stable.

Dynamic Verification Example

To complete the implementation with the Object-Z-to-Spec# system generated Spec#
skeletal code, the programmer needs to create a new Spec# project in Visual Studio 2005
for adding implementation details to the skeletal Spec# code. For dynamic verification in
Spec#, the programmer only needs to compile and run the implemented Spec# class.
Figure 9 contains the Spec# Command Window for dynamic verification. The verified
CreditCard Spec# code is contained in Figure 10.

Figure 9 Spec# Command Window for Dynamic Verification

CONVERTING SPECIFICATIONS IN A SUBSET OF OBJECT-Z TO SKELETAL SPEC# CODE

FOR BOTH STATIC AND DYNAMIC ANALYSIS

180 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

using System;
using Microsoft.Contracts;
using System.IO;
using System.Text;
namespace testCreditCard
{
 public class CreditCard
 {
 [SpecPublic] int balance;
 private int avail;
 public short limit = 5000;
 invariant balance+limit >= 0;

 public CreditCard()
 ensures balance == 0;
 { balance = 0;}

 public void Withdraw(int amount)
 requires amount <= balance+limit otherwise ArgumentException;
 ensures balance+limit >= 0;
 ensures balance == old(balance)-amount;
 modifies balance;
 { balance = balance - amount;}

 public void Deposit(int amount)
 ensures balance == old(balance)+amount;
 modifies balance;
 { balance += amount; }

 public void WithdrawAvail(int amount)
 ensures amount == balance+limit;
 ensures balance == amount-limit;
 modifies balance;
 {
 amount = balance + limit;
 balance = amount-limit;
 avail = amount;
 }

 public static void Main (string[] args)
 {
 CreditCard test = new CreditCard();
 test.Withdraw(5000);
 Console.WriteLine("Withdraw $5000 from test account.");
 Console.WriteLine("Test account balance = " +
 test.balance.ToString());
 test.Deposit(5000);
 Console.WriteLine("Deposit $5000 in test account.");
 Console.WriteLine("Test account balance = " +
 test.balance.ToString());
 test.WithdrawAvail(test.avail);
 Console.WriteLine("Withdraw available amount in test
 account = " + test.avail.ToString());
 Console.WriteLine("Test account balance = " +
 test.balance.ToString());
 }
 }//end of class
}//end namespace

Figure 10 The DynamicallyVerified Spec# Code in Figure 9

If the programmer adds a line of code “test.Withdraw(5001)” to the Main method in
Figure 10, dynamic verifier in Spec# programming system will throw an exception, and

VOL. 7. NO. 8. JOURNAL OF OBJECT TECHNOLOGY 181

emit error messages. Figure 11 contains such dynamic verification commands and the
error messages.

Figure 11 Dynamic Verification with Error Messages

Static Verification Example

This example applies the static verifier to the previous dynamically verified Spec#
CreditCard code. When compiling Spec# code, the compiler emits a BPL file for static
verification. In the Spec# Command Window, the programmer can use command “boogie
*.bpl”. Also, the programmer can turn on the RunProgramVerifier under the
Configuration Properties in the Spec# project properties window for static verification.
Or, the programmer can add a command option “\verify” to the compiling command.
Figure 12 contains the Spec# static verification window with the command “boogie
CreditCard.bpl”. Figure 13 contains the error information window in the Visual Studio
2005 platform with RunProgramVerifier property on. These two figures show the same
errors for the Spec# code.

CONVERTING SPECIFICATIONS IN A SUBSET OF OBJECT-Z TO SKELETAL SPEC# CODE

FOR BOTH STATIC AND DYNAMIC ANALYSIS

182 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

Figure 12 Static Verification of CreditCard BPL File

Figure 13 Error Information Window for Static Verification

The first three warnings can be gotten rid of by placing the assignment to balance within
an expose block. In the Spec# programming system, an assignment to a field of an object
o is allowed only when o is exposed, i.e. in o's constructor or within an expose(o) block.
Spec# separately verifies each method and only takes the specification of called methods
into account, not their implementation. So, one way to get rid of the fourth warning is to
add an additional postcondition to the constructor. Figure 14 contains the corrected Spec#
code.

VOL. 7. NO. 8. JOURNAL OF OBJECT TECHNOLOGY 183

using System;
using Microsoft.Contracts;
using System.IO;
using System.Text;
namespace testCreditCard
{
 public class CreditCard
 {
 [SpecPublic] int balance;
 private int avail;
 public short limit = 5000;
 invariant balance+limit >= 0;
 public CreditCard()
 ensures balance == 0;
 ensures limit == 0;
 { balance = 0;}
 public void Withdraw(int amount)
 requires amount <= balance+limit otherwise ArgumentException;
 ensures balance+limit >= 0;
 ensures balance == old(balance)-amount;
 modifies balance;
 { expose(this){balance = balance - amount;}}
 public void Deposit(int amount)
 requires amount >= 0;
 ensures balance == old(balance)+amount;
 modifies balance;
 { expose(this){balance += amount; }}
 public void WithdrawAvail(int amount)
 ensures amount == balance+limit;
 ensures balance == amount-limit;
 modifies balance;
 {
 amount = balance + limit;
 expose(this){balance = amount-limit;}
 avail = amount;
 }
 public static void Main (string[] args)
 {
 CreditCard test = new CreditCard();
 test.Withdraw(5000);
 test.Deposit(5000);
 }
 }//end of class
}//end namespace

Figure 14 the Corrected CreditCard Spec# Code

6. CONCLUSIONS AND FUTURE WORK

As Jim Woodcock advocated in [17], “Given the right computer-based tools, the use of
formal methods will become widespread, transforming the practice of software
engineering.” To make this a reality, the computer scientists have been collaborating to
develop verification technology enhancing software productivity and reliability. Spec#
programming language seems a right tool to facilitate the application of formal methods
as it is built upon C#, a widely used object oriented programming language integrated
into the .NET platform.

Our work on the Object-Z-to-Spec# system is an attempt in the direction of making
formal specification and verification available for software practitioners. By automating

CONVERTING SPECIFICATIONS IN A SUBSET OF OBJECT-Z TO SKELETAL SPEC# CODE

FOR BOTH STATIC AND DYNAMIC ANALYSIS

184 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

the translation from Object-Z specifications to Skeletal Spec# code capturing the
information form Object-Z, our system bridges the semantic gap between Object-Z and
Spec#, facilitates the refinement from Object-Z to Spec#, and encourages practitioners to
fully take the advantages of formal specification in Object-Z and of the static and
dynamic analysis techniques available in Spec#.

The Object-Z-to-Spec# system presented can be further improved. For instance, the
system currently does not provide a way to handle the method return type and return
value verification. This limitation should be addressed in the future. Besides, the system
currently only supports formal specifications in a subset of Object-Z with primitive data
types only, which limits the expressiveness of specifications in Object-Z. The system can
be extended and enhanced by providing all data types for the constants and variables
according to the Object-Z data type definitions. Formal specification in the full Object-Z
can then be converted to skeletal Spec# code for the implementation strengthened by the
formal methods supported static and dynamic analysis techniques.

REFERENCES

[1] David Crocker, Developing Reliable Software using Object-Oriented Formal
Specification and Refinement, Escher Technologies Ltd., Mallard House,
Hillside Road, Ash Vale, Aldershot GU12 5BJ, United Kingdom.

[2]Martin Croxford, Roderick Chapman,
http://www.stsc.hill.af.mil/crosstalk/2005/12/0512CroxfordChapman.html,
October 2006.

[3] Ricky W. Butler, What is formal Methods?, http://shemesh.larc.nasa.gov/fm/fm-
what.html, August 2006.

[4] Graeme Smith, The Object-Z Specification Language, Kluwer Academic Publishers,
1999.

[5] Bertrand Meyer, Eiffel: The Language, Prentice Hall, 1992.

[6] Robert Binder, “Testing Object-Oriented Systems,” Addison Wesley Longman, 2000,
pp 807-916.

[7] Rachel Henne-Wu, William Mitchell, and Cui Zhang, Support for Design by Contract
in the C# Programming Language, Journal of Object Technology, September-
October 2004, pp65-82.

[8] GHB Rafsanjani and SJ Colwill, From Object-Z to C++: A Structural Mapping. In Z
User Meeting (ZUM'92). Springer-Verlag, 1992.

[9] Clemens Fischer, Combination and Implementation of Processes and Data: from CSP-
OZ to Java. PhD thesis. University of Oldenburg, 2000.

VOL. 7. NO. 8. JOURNAL OF OBJECT TECHNOLOGY 185

[10] Sowmiya Ramkarthik and Cui Zhang, Generating Java Skeletal Code with Design
Contracts from Specifications in a Subset of Object Z, Proceedings of the
IEEE/ACIS International Conference on Computer and Information Science,
Honolulu, Hawaii, July 2006, pp. 405-411

[11] Andy German, Air Vehicle Software Static Code Analysis Lessons Learned – Ninth
Safety Critical Club Symposium, Bristol, United Kingdom: Springer,
February 2001.

[12] John Barnes, High Integrity Software The SPARK Approach to Safety and Security,
Addison-Wesley, 2002.

[13] SPARK(programming language),
http://en.wikipedia.org/wiki/SPARK_programming_language, August 2006.

[14] SPARKAda Quotes, http://www.praxis-his.com/sparkada/quotes.asp, August 2006.

[15] Microsoft Research Spec#: http://research.microsoft.com/specsharp.

[16] Brian Stevens, Implementing Object-Z with Perfect Developer, Journal of Object
Technology, March-April 2006, pp189-202.

[17] Jim Woodcock, First Steps in the Verified Software Grand Challenge, IEEE
Computer Society, October 2006, pp57-64.

About the authors
Xiufeng Ni earned her Master degree in Computer Science from California State
University, Sacramento, in May, 2007. She is currently employed by AgileIT Inc. in
White Plains, New York as a software developer. She can be reached at
xiufeng@agileitinc.com.

Dr. Cui Zhang is a full professor in the Department of Computer Science, California
State University Sacramento (CSUS). Her research and teaching interests include
software engineering, object-oriented techniques and methodologies, programming
languages, and formal methods for software engineering and for information assurance
and security.She received her Ph.D. in Computer Science from Nanjing University,
China, in 1986. She has published research papers in professional conferences and
journals, and served on program committees for several international conferences. She
can be reached at zhangc@ecs.csus.edu.

