
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 8, Novmeber - December 2008

Praveen Ranjan Srivastava, Karthik Anand V, Mayuri Rastogi, Vikrant Yadav, G Raghurama:
“Extension of Object-Oriented Software Testing Techniques to Agent Oriented Software Testing”,
in Journal of Object Technology, vol. 7, no. 8, November-December 2008, pp. 155-163.
http://www.jot.fm/issues/issue_2008_11/article5/

Extension of Object-Oriented Software
Testing Techniques to Agent Oriented
Software Testing

Praveen Ranjan Srivastava, Karthik Anand V, Mayuri Rastogi, Vikrant
Yadav, G Raghurama
Birla Institue of Technology and Science, Pilani, India

Abstract
In recent years, agent-based systems have received considerable attention in both
academics and industry. The agent-oriented paradigm can be considered a natural
extension to the object-oriented (OO) paradigm. Agents differ from objects in many
issues which require special modeling elements but have some similarities. Although
there is a well-defined OO testing technique, agent-oriented development has neither a
standard development process nor a standard testing technique. In this paper, we
propose extensions of OO testing techniques to test agent oriented systems. For
illustration purpose a multi agent air ticket booking system is implemented using JADE
3.5 and tested using our proposed method.

1 INTRODUCTION

As the technology advancing, the more we are driven towards abstraction and
generalization. The software systems now âdays need to be adaptive, autonomous and
dynamic to serve the needs of varied user community. These systems are evolved very
fast in past few decades. Software agents are an abstraction to describe computer
programs that act for a user or another program. They can be dedicated to a particular
task or, if endowed with enough intelligence and can act on behalf of a client. The agent
oriented methodologies provide us a platform for making our system abstract, generalize,
dynamic and autonomous. However, many methodologies like MASE, Prometheus,
Tropos do exist for the agent oriented framework but on contrary to it the testing
techniques for the methodologies are very few [Dam]. This paper is indented to extend
the object oriented software testing techniques to agent oriented systems.

Agents autonomously work in dynamic and uncertain environments. Each agent
senses the environment and acts accordingly. Since the environment in which the agent
reside change dynamically, the construction of the agents should be such that it is able to

EXTENSION OF OBJECT-ORIENTED SOFTWARE TESTING TECHNIQUES TO AGENT

ORIENTED SOFTWARE TESTING

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

accomplish the desired tasks by collaborating with other agents. There are very few
literature that describe software testing for agents. The simulation approach suggested by
Himmelspach et al. can be utilized to test the behavior of the agent system interacting
with environment [Himmelspach]. The virtual environment is used in contrast to the real
time environment because it will reduce the cost and effort involved. Since the
environment changes dynamically, we need to monitor the agents at each point of time.
JAMES (Java based agent modeling environment for simulation), is the simulation
system that is used for creating the virtual environments and generating the dynamic test
cases. Nguyen et al. [Nguyen] suggested the goal testing approach based on tropos
methodology. Goals are classified as mainley hard goal and soft goal. Goals are executed
by plans and a goal can have sub goal. Test cases are derived from goals.

Agents have higher level of abstraction as compared to objects. Agents encapsulate
mental state and behavior also. On the other hand, objects encapsulate data and
algorithm. Agents can change their behavior according to the environment while objects
can perform only trained tasks. Each agent has its own thread of control whereas each
object need not have its own thread of control. Even though the agents and objects have
the above mentioned differences, the modeling techniques used for analysis and design of
object oriented techniques are being extended to support agent oriented software
development [Yim]. Hoongsoon Yim et al. has extended UML to support development of
agent systems [Zied].

An example of air ticket booking agent system is described in section two. This
example is used as a reference and the testing techniques are applied on that. Section
three and four discusses about the random testing and behavioral testing techniques
respectively. Section five focusses on the partition technique at the agent level. The paper
concludes with a summary of the work and some suggestions for the potential future
work.

2 AIR TICKET BOOKING AGENT SYSTEM

The paper presents the implementation of an agent based air ticket booking system using
JADE 3.5 (Java Agent Development Framework). JADE simplifies the implementation
of multi-agent systems through a middle-ware that complies with the FIPA specifications
and through a set of graphical tools that supports the debugging and deployment phases
[Jade]. The agent platform can be distributed across machines (which not even need to
share the same OS) and the configuration can be controlled via a remote GUI. The
configuration can be even changed at run-time by moving agents from one machine to
another one, as and when required [Dam]. The air ticket booking system is a multi agent
system comprising of buyer and a seller agent. The seller agent registers with the service
directory. The buyer agent will read the flight details through the command line and
search the corresponding seller agents which are satisfying the flight requirements. The
directory service maintains the list of all available sellers. Furthermore, the buyer
receives the proposals from all the seller agents and will select the seller with best price

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 157

offer. Moreover it confirms the ticket with the seller. The seller agent will respond to the
queries made by the buyer agent and updates its state on successful transaction. The
buyer agent re-executes its plan if there are no seller agents. The buyer agent is blocked
until there is a seller of tickets. The sequence diagram for the buyer and seller agent is
shown in the Figure 1.

Figure 1- Sequence diagram for air ticket booking system showing the interaction between buyer, seller and
search directory agent

In object oriented paradigm, the communication between the objects is via method calls
i.e. an object is actually sends a message to other object. An agent does not have any
publicly visible method which the other agents can call. The communication is achieved
by agent communication language. The communication between the agents in JADE is
done by sending ACLMessage like CFP (call for purpose), propose, failure, inform etc.

EXTENSION OF OBJECT-ORIENTED SOFTWARE TESTING TECHNIQUES TO AGENT

ORIENTED SOFTWARE TESTING

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

The testing techniques like random testing, behavioral testing and partition testing
are black box testing techniques that can be utilized to test the agents individually. Stubs
have to be written for implementing the test cases for those techniques.

3 RANDOM TESTING FOR AGENTS

The random testing proposed in the paper for agent oriented systems is analogous to that
of the object oriented framework. One agent is considered at a time. The list of all
possible messages which the agent can receive is formulated. The normal sequence of the
messages which can be sent to the agent is formed. The agent is tested by sending random
messages in that sequence and the response of the agent corresponding to the message
sequence is checked.

In the flight air ticket booking example, the sequence of messages that the buyer
agent expects is:

(Propose – Inform | Failure) | Refuse
Test cases for different message sequences are generated randomly. For example:

• Test Case 1: Propose – Inform
• Test Case 2: Propose – Failure
• Test Case 3: Refuse

The agent can also be tested under test case which sends other kinds of messages which
are not known to the agent. The following is the pseudo code for testing Propose – Inform
(Test Case 1) message sequence. Using this method the following test are generated.

Test Case 1:
Agent under test Buyer Agent
Agent goal tested Buy tickets with the cheapest seller
Collaboration agents involved Seller agent
Testing technique Random Testing
Scenario Testing Buyer by sending PROPOSE and INFORM

messages
Expected result Buyer agent will reject the proposal.

Observed result When selecting the best seller, the buyer did not

consider the price to be greater than zero. The buyer
selected the seller even though it offered a price less
than zero.

Test Case result Failed

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 159

Test Case 2:
Agent under test Buyer Agent
Goal Tested Buy tickets with the cheapest seller
Collaboration agents involved Seller agent
Testing technique Random Testing
Scenario Testing buyer agent by sending REJECT messages

for accept proposals
Expected result Buyer agent will not consider the seller agent as the

seller tickets for the required route.
Observed result Buyer agent did not consider the seller agent as the

seller tickets for the required route.
Test Case result Passed

Test Case 3:
Agent under test Buyer Agent
Goal Tested Buy tickets with the cheapest seller
Collaboration agents involved Seller agent
Testing technique Random Testing
Scenario Testing buyer agent by sending messages not known

to the buyer after receiving a ACCEPT_PROPOSAL
message.

Expected result Buyer will ignore the message and continue with its
activity.

Observed result Buyer ignored the message and continued with its
activity.

Test Case result Passed

4 BEHAVIOR BASED TESTING FOR AGENTS

Agents can have any number of behaviors like one-shot, cyclic, parallel, sequential, FSM
behaviors. Each behavior is seen as a black box. Apart from this the programmers can
write their own behaviors. Each behavior can send or receive any number of messages.
Test cases must be designed in such a way so as to test the behaviors of the agent by
sending messages. In the flight air ticket booking example, the seller agent has two cyclic
behaviors.

EXTENSION OF OBJECT-ORIENTED SOFTWARE TESTING TECHNIQUES TO AGENT

ORIENTED SOFTWARE TESTING

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

The figure 2 shows the types of messages passed between the buyer and seller
agents.

Figure 2 -Communication messages between buyer and seller agents

Example 1: One cyclic behavior is for offering the flight information request and the
other is for confirming the order request. The confirm order cyclic behavior responds to
ACCEPT_PROPOSAL (order request message with order details like flight info, number
of seats required) message with either INFORM (confirmation for booking) or REFUSE
(booking failure) message. The following test cases can be designed.

Test Case: Make a stub agent which acts like a buyer and sends
ACCEPT_PROPOSAL messages to the seller agent. The messages should be sent at
regular intervals as the behavior under test is a cyclic behavior.

Test Case 1:
Agent under test Seller Agent
Goal Tested Make proposals
Collaboration agents involved Buyer agent
Testing technique Behavior Testing
Behavior under test Cyclic behavior of the seller agent to make proposals

to the buyer agents
Scenario Testing Seller agent by sending a CFP message

periodically.
Expected result Seller agent will de-register from directory facilitator

and quit itself if it had no more tickets to sell.
Observed result Seller agent sent a refuse message. It was registered

with the directory facilitator even though it had no
ticket to sell.

Test Case result Failed

Example 2: Testing one shot behavior is simple. The message of appropriate kind should
be sent only one time. User defined behaviors are the difficult to test. It requires the

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 161

understanding of the sequence of messages expected by the behavior (if any). For
example the buyer agent has a user defined behavior called ‘RequestInformer’. It is a step
behavior. At each step, messages are either sent or received. At step one it sends the CFP
message. In step two it waits for PROPOSE message and on selecting the best seller in
step three it sends ACCEPT_PROPOSAL message and in step four waits for INFORM or
FAILURE message.

The difference between behavior and random testing is that, in behavior testing the
messages are sent behavior wise to test them individually. In random testing behaviors
are not considered and the agent is considered as a whole.

5 PARTITION TESTING AT AGENT LEVEL

Normally in functional and object oriented approaches, the partition testing is done to
reduce the number of test cases by selecting partition categories based on input, output ,
state, attributes , function type. Agents do have input, output, state and attributes and so
partition can be based on these criteria. But agents do not have externally visible
functions. Each agent has its own thread of control and behaviors. Partitions can be made
on the various types of behaviors like one-shot, cyclic, parallel, sequential, FSM
behaviors.

For example all the one shot behaviors can be tested first and then all the cyclic
behaviors can be tested. Messages can have parameters. Test cases can be designed based
on the partition on the input values of the parameters. In the flight air ticket booking
example, buyer agent the seller expects an ACCEPT_PROPOSAL message in the
‘PurchaseOrdersServer’ cyclic behavior. It requires the parameters like flight number,
flight date, starting place, destination and number of tickets required. Equivalence
partitioning can be made on these required parameters. For example a stub can be created
that will act like a buyer and sends a ACCEPT_PROPOSAL message which has the
number of required tickets as -1 or flight date as 31st February. The following test case is
generated using the partition testing.

EXTENSION OF OBJECT-ORIENTED SOFTWARE TESTING TECHNIQUES TO AGENT

ORIENTED SOFTWARE TESTING

162 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 8

Test Case 1:
Agent under test Seller Agent
Goal Tested Accept Offers
Collaboration agents involved Buyer agent
Testing technique Partition Testing
Partition base Cyclic behaviors of the seller agent. The valid range

of values for required ticket count is > 0. The invalid
range of values for required ticket count is < 0

Scenario Testing Seller agent by sending an
ACCEPT_PROPOSAL message with the required
ticket count as a negative value. Tickets are available
with the seller.

Expected result Seller sends a failure message as the required ticket
count is a negative value.

Observed result Seller sent a booking successful ‘INFORM’ message
and increased the ticket count.
Error: freeSeats-=requestrequiredticketcount caused
the number of free seats to be increased.

Test Case result Failed

6 CONCLUSION

In this paper, we have proposed three extensions of OO testing techniques to test agent
oriented systems. These techniques are applied to a simple dual agent air ticket booking
system. Random testing technique is used to generate test cases which send random
messages to the agent under test. Behavior testing technique is utilized to generate the test
cases for analyzing the type of messages which can be sent to each behavior of the
agents. Partition technique is used to limit the number of test cases by choosing
partitioning categories such as input, output, state, attributes, behaviors, message types.
Furthermore this technology can be applied to other simple agent based information
systems. But these techniques have to be studied in detail when applying to complex
multi agent systems.

VOL. 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 163

REFERENCES

[Nguyen] C D. Nguyen, A. Perini, and P. Tonella, “A goal oriented software testing
methodology”

[Yim] Yim H, Cho K, Kim J, and Park S,: “Architecture-Centric Object-Oriented Design
Method for Multi-Agent Systems”

[Zied] Zeid A: “A UML Extension for Agent-Oriented Analysis an Design, Department
of Computer Science, the American University in Cairo

[Dam] Dam K H, Winikoff M, “Comparing Agent-Oriented Methodologies”

[Himmelspach] Jan Himmelspach, “Simulation for testing software agents – An Ex-
ploration based on JAMES”

[Jade] http://jade.tilab.com/

About the authors

Praveen Ranjan Srivastava is a working as a lecturer in computer
science and information systems group at Birla Institute of Techonology
and Science(BITS),Pilani India.He is currently doing research in the
area of Software Testing.He has a several publications in the area of
software testing. His research area is software testing, Quality assurance
,agent oriented modeling, Software architecture framework and data

mining.He is reachable at praveenrsrivastava@gmail.com

Karthik Anand V is a Teaching Assistant in computer science and information systems
group at Birla Institute of Techonology and Science. He is presently doing M.E. in
Software Systems at BITS, Pilani, India. Contact him at kathikbits@gmail.com.

Mayuri Rastogi is a Teaching Assistant in computer science and information systems
department at Birla Institute of Techonology and Science. She is presently doing M.E. in
Software Systems at BITS, Pilani, India. Contact her at mayuri.b5bits@gmail.com.

Vikrant Yadav is doing M.E. in Software Systems at BITS, Pilani, India. Contact him at
mailmevicky@gmail.com.

G Raghurama is working in Electrical and Electronic Group at Birla Institute of
Techonology and Science (BITS),Pilani, India.

