
Vol. 7, No. 8, November-December 2008

An Object Model for Sensor Data Integra-
tion

Dalen Kambur, School of Computing, DCU, Glasnevin, Dublin, Ireland
Mark Roantree
John Murphy

One example of large volumes of distributed data is that of sensor networks, where
dedicated sensing equipment is used to monitor events and happenings in a wide range
of domains, including monitoring human biometrics. In areas such as Personalised
Health, large volumes of data are generated to provide an early indication of potential
health problems. Our research is focused on sensor data that has been enriched in the
form of XML trees, so that each sensor device can be regarded as an XML tree, and
in some cases, containing services. While this architecture offers a certain degree of
interoperability, current Web Services approaches are not suited to the difficult tasks
of integration, restructuring of information and global issues such as updates. While a
Web Services approach offers the advantage of loose coupling of data sources, a more
formal model is required to underpin the sensor network. In this paper we describe our
Object-Reference model (ORef), which extends a standard object-oriented model with
references as the sole concept for locating objects (sensor objects) and their properties,
and where the basic object-oriented modelling primitives are respecified to incorporate
references. References are also used to define transformations present in the model
in the sense that they are closed, meaning that each transformation operates on one
or more objects, and results in one or more objects. The purpose of this model is to
provide a stable bedrock for the loose coupling of data sources and services in an XML
sensor network.

1 INTRODUCTION

The levels of interest in pervasive computing and ubiquitous sensing are significant
enough to see the development and deployment of sensing technology all around us.
One can also see the emergence of applications such as environmental monitoring
and ambient assisted living which leverage the data gathered and present us with
applications that seek to improve our daily lives. However, most of the developments
in this area have been concerned with either developing the sensing technologies, or
the middleware to gather this data, and the issues have included power consumption
on the devices, security of data transmission, networking challenges in gathering and
storing the data and fault tolerance in the event of network or device failure. If we
assume that these issues will be addressed successfully in the short term, we are
still required to develop applications that are robust and flexible, and at such time
the issues of high-level querying and updating of global data becomes a major issue.

Cite this document as follows: Dalen Kambur, Mark Roantree, and John Murphy: An Object
Model for Sensor Data Integration, in Journal of Object Technology, vol. 7, no. 8, November-
December 2008, pages 97–117,
http://www.jot.fm/issues/issues 2008 11/article2

http://www.jot.fm/issues/issues_2008_11/article2


AN OBJECT MODEL FOR SENSOR DATA INTEGRATION

It has been shown in previous work [LRJ+07] that sensor devices can be enriched
so that their output is captured into XML documents or databases. These XML
sources may also have services associated with them.

The problem we address in this paper is how to properly integrate these sources
of data so that we can query them at a global level, restructure the data to meet the
needs of heterogeneous applications, and provide updating capabilities where sensor
data output requires recalibration or normalisation.

Motivation and Contribution

In our application of sensor networks, we assume that sensor devices are heterogen-
eous, and that the generated data is stored with the database and exposed using a
Web Service in an XML format. In general, a single sensor device offers little mean-
ingful information and requires the collaboration with a number of other devices to
generate meaningful output. The problem is that different applications will require
different collaborations and thus, we cannot form groups of sensors in advance. In
effect, this means that we must continually integrate sensor data sources during the
lifetime of the network. This presents a more traditional database integration prob-
lem similar to federated database framework [SL90]. A modern approach to this
problem is to use a loosely coupled Web Services architecture to enable collabora-
tion. However, such an approach: (1) is only a top-level integration solution, and (2)
does not address any specifics of individual Web Service implementation in terms
of data model, behaviour and collaboration. Our contribution to this problem is to
provide a new object model that: (1) is respecified to allow a precise definition of
object-oriented database modelling features, such as user-defined types, operations
and database queries, and (2) is used as the platform for providing Web Services.
In the ORef model, any transformation remains closed and does not require an ex-
tension of the model primitives. Results of a transformation remain linked to their
sources which allows the updates of the transformation results to be propagated to
their sources. Thus, deploying the ORef model in Web Services environment offers
the benefits of the ORef model ensuring that the Web Services are engineered upon
a stricter object model.

This paper is structured as follows: in §2 we examine related research projects;
in §3 we introduce the ORef model through its terminology and semantics; in §4 we
highlight the model contribution; in §5 we examine the general semantics of query
language, and finally offering the conclusions in §6.

2 RELATED RESEARCH

Our overview of the related research examines projects focused on projects that (1)
provide generic frameworks for sensors management and querying and (2) projects
that examined, designed and enhanced object models to store behaviour or to in-

98 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 8



2 RELATED RESEARCH

tegrate multiple data sources. The reason for choosing to examine (2) projects is
that object models are more expressive then others as they permit defining beha-
viour in addition to the structure and thus are well suited for modelling complex
environments such as sensors which are our target application area.

In the [RMS06] they provide a template for incorporating non-XML sources us-
ing XML thus tackling the same issues encountered by the sensor research area:
converting the data into format that is usable for integration. They define a Data
Format Description Language using which an XML representation of data is gener-
ated upon request. We feel that this approach is limited to read-only applications
as the mapping does not permit defining an identification of the original data which
thus cannot be referenced and updated; similarly, we do not see a possibility to define
behaviour which is crucial for our target application area. The ORef model provides
a unique identification of both objects and their properties that is similar to the
various numbering schemes advised with storing XML nodes, primarily elements,
attributes, text nodes and various other XML nodes as for example in [TVB+02].

In the COCOON project [SLR+94] a fully encapsulated object model was de-
ployed in which an object’s state is accessed using functions, further classified into
properties and methods. A property may not modify an object’s state and may be
stored or computed. A computed property is either derived, when defined using a
proprietary COOL programming language, or foreign, when defined using another,
general-purpose programming language. A method updates the object’s state. No
further details on behaviour definition were published. The functions available with
an object are specified in the definition of its type. A type inherits all functions from
its supertype where additional functions may be defined. A class is a set of objects
of a type where multiple classes of the same type may be defined and also, an object
may take part in multiple classes. Additionally, for a type that has subtypes, sub-
classes that contain objects of corresponding subtypes may be defined, introducing
apparently separate, but complexly linked hierarchies of types and classes which are
hard to maintain. The query language operations provided in the model are rather
simplistic and are restricted to a single class. The exception is the extend operation
which permits defining new properties of the class that result from the query by
accessing properties of a related object using a programmatic interface. Such cap-
ability is powerful, but however it is too complex to perform simple joins. Also, the
full encapsulation introduces a performance penalty when compared to the direct
access to properties available with the ORef model.

In the MultiView project [Run92], the SmallTalk object model was extended to
provide multiple inheritance by storing an object’s properties across multiple im-
plementation objects using an object-slicing technique. The object-slicing remained
transparent to client applications thanks to: (1) the full encapsulation of properties,
present with SmallTalk, and (2) generated accessor operations for properties that for
an accessed property identify the corresponding implementation object. The tech-
nique also forms the theoretical basis for providing objects that result from query
evaluation as their properties may belong to different source objects. It was also

VOL 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 99



AN OBJECT MODEL FOR SENSOR DATA INTEGRATION

demonstrated that this technique improves the performance of client applications as
properties that are not accessed are not read hence reducing the access to the persist-
ent storage. The application of the technique beyond the SmallTalk programming
language was not investigated. Due to these benefits it provides, the object-slicing
technique is relevant to our work and is built into the ORef model. However, our
approach applies and extends the original work in a more generic manner.

In the MOOD project [DOA+94], the C++ object model was used as the storage
model. The behaviour was defined using the C++ programming language, compiled
into dynamic libraries and loaded on request. SQL was used as the query language
and extended to provide query access to objects. However, no behaviour could be
invoked as part of the queries. The project provided a solid technical basis for
object database kernels, however, no issues related to the object database model
were addressed. Similarly, we use dynamic linking and loading of libraries as part
of the implementation of the ORef model.

In the LOQIS project [SKL95], a mathematical object model was designed in
which each object is assigned with a unique identifier. The state and behaviour
of an object is determined by the object’s type where an object of a simple type
contains a value, an object of a collection type contains the identifiers of the objects
that are in the collection, and finally, an object of a complex type contains the
identifiers of the objects that take the role of the object’s properties. Thus, both
objects and their properties are given unique identifiers and are addressable. Such
a feature is desirable with canonical models and correspondingly, is built into the
ORef model also. However, the project did not examine an application of the LOQIS
model as a general canonical model. Behaviour may be defined using the proprietary
SBQL query language which is rather complex for simple operations. In their later
work [KLS03] they examine updatable views that propagate updates to the original
objects by means of stored procedures. We do not follow this approach as it requires
defining many individual procedures that permit updating the original objects.

3 THE OREF MODEL

In this section, we introduce our Object-Reference model (ORef) which is an object-
oriented model enhanced with references as the only feature capable of addressing
objects and their properties. Further to this extension, the basic modelling primitives
were respecified to include references. In this section, we clarify our terminology
and we examine fundamental terms and definitions of the ORef model. These terms
include object, types, behaviour, states, references, collections, user-defined types,
relationships, inheritance and classes.

Our examples are based upon simplified sensor database schema taken from
[Leg07] and illustrated in figure 1. In these experiments, readings from over 350
sensor devices were converted to XML and placed in a peer-to-peer environment
(with output from one device on each peer). Queries against the entire sensor

100 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 8



3 THE OREF MODEL

Figure 1: Sensor Schema Database UML Diagram.

network were slow and optimisation required the dynamic integration of smaller
groups of devices for different query types. This dynamic integration proved difficult
without a formal model to create the necessary mappings. Furthermore, normalisa-
tion of sensor data (for example, to synchronise timing across devices) required an
update to the data generated by local sources, through the global schema. Later in
this paper, we discuss how updates are facilitated using ORef.

Basic definitions

An object o is an instance of a type T which is denoted as o : T . The type T
consists of the structure S(T ) and the behaviour B(T ). An object’s state state(o)
must conform to the structure of the object’s type, and likewise, an applied operation
behaviour(o) must conform to the behaviour of the object’s type. The state and the
behaviour are the basic characteristics of any object. A unique reference ref(o) can
be obtained to any object o, where this reference is the only addressing mechanism
available in the model. T is the set of all available types where a type is either
built-in, user-defined or collection.

An object o of a built-in type has an atomic state from the modelling viewpoint,
i.e. it is a single concept which cannot be divided any further. However, this does
not prevent using an operation from extracting a portion of the state. For example,
a month portion of a date object can be extracted though the state is still not
dividable. We define boolean, integer, float, date, character and lob built-in types
which are well-known, and we omit their full definitions.

In example 1 two objects of simple types are materialised: an object o1 of the
type string with the value ’HSR-10-G’ and an object o2 of the type date with the
value ’2006-09-23’. For the sake of simplicity, the values of the references in this

VOL 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 101



AN OBJECT MODEL FOR SENSOR DATA INTEGRATION

paper will correspond to the object’s subscript, i.e. ref(o2) = 2.

o1:string :=’HSR-10-G’
o2:date:=’2006-09-23’

Example 1: Three objects materialised from built-in types.

An operation m, defined on type T , transforms the state of an object o into
o′ where o and o′ conform to the type T . This transformation is denoted as
transform(o, o′), which conforms to the behaviour of the type B(T ). For ex-
ample, the expression o2.getMonth() invokes an operation getMonth against the
o2 object, extracting the month portion of the date stored in the o2 object which
remains unmodified. The transform expression for this operation is denoted as
transform(o2, o

′
2). Similarly, an expression o2.advanceToNextDay() advances the

date stored in the o2 object by one day resulting in o
′
2. Correspondingly, the trans-

formation expression is transform(o2, o
′
2). In summary, the major benefit of the

ORef model is that it is closed with regards to behaviour. This allows any object to
have behaviour.

Collections

A collection object O : T1 is a container for (it contains) multiple objects oi of type
T1. The state of a collection is of a set of references to the objects that are contained
in the collection i.e. state(O) = {ref(o1), ref(o2), . . . , ref(on)}. An expression
base(T1), defined only on collection types, determines the underlying type of the
contained objects. A collection is either a single, a list, a set or a bag collection
type. A single collection contains only one object. A list contains multiple objects
and preserves the order of the objects in the collection. A set contains multiple
objects where an object may not be contains in the same set more then once and
the order of the contained objects is not preserved. Finally, a bag contains multiple
objects some of which may be identical where their order is not preserved.

Collections have three basic capabilities: (1) to test whether an object is already
contained in the collection, (2) to include an object and (3) to exclude an object. For
example, for a collection O : T1 that is a set of Event objects, i.e. T1 = set(Event),
the base type of the collection is base(T1) = Event. Assuming an o1 : Event
object that is not in the collection O, the expression O.contains(o1) will result in
a boolean object that evaluates to false; otherwise it will result in a boolean object
that evaluates to true. The expression O.include(o1) transforms a collection O that
did not contain an object o1 into a collection O′ that contains all objects contained in
O and the object o1. Similarly, the expression O.exclude(o1) transforms a collection
O that contains the object o1 into a collection O′ that contains all original objects
of O but not the object o1. These three functions enable operating any object of
type set in full.

102 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 8



3 THE OREF MODEL

User-defined types

User-defined types are types that have complex structure and for which behaviour
may be defined and thus the basic model definitions applicable to types apply also to
user-defined types. The structure of a user-defined type (UDT) is a set of properties
each of which has a unique name and a type. We denote the structure of a user-
defined type as follows: S(T )=̂{(name1, T1), . . . , (namen, Tn)}. Consequently, the
state of a complex object (i.e. an object of an UDT) is a set of named references,
each pointing to the object that takes the role of the property with corresponding
name, denoted as state(o)=̂{(name1, ref(o1)), . . . , (namen, ref(on))}.

For any complex object o, the object that takes the role of its property name
may be obtained using o.name. These objects that take the role of properties are
fully independent of their complex object. This characteristic of the ORef objects is
similar to object-slicing introduced in [Run92] where their discussion was restricted
to SmallTalk. This characteristic provides the basis of the query language semantics
(QLS) discussed in §5.

In the example 2 we define the structure of the SensorReading type that consists
of properties DeviceID and LastTuned which are of string and date types respect-
ively. For the sake of simplicity, in this example we ignore the relationships that the
type has to type Viewing which is addressed in Relationships subsection, and also
the fact that the type is a base type which is addressed in Inheritance subsection.
An object o4 of the type SensorReading o4 uses objects o1 and o2 as properties.

S(SensorReading)=̂{(′DeviceID′, string), (′LastTuned′, date)}
o1 : string =’SNSR-10’
o2 : date =’2006-09-27T18:50’
o4 : SensorReading = {(′DeviceID′, ref(o1)), (′LastTuned′, ref(o2))}

Example 2: The definition of type SensorReading and an object of this type.

In the example 3, the behaviour aspects of the type SensorReading are denoted by
B(T ), i.e. this is an operation signature for the type. We first declare the behaviour
of the type SensorReading which consists of: (1) an operation getDeviceID that
receives no parameters and returns a string object that contains the identification
of the device, and (2) an operation isValidOn that receives a date and validates
whether the sensor may be used for subsequent reading at the specified date or
it must be tuned before. Then we demonstrate the invocation of the operation
getDeviceID, define a date object, and finally, invoke isValidOn ignoring the return
value.

Relationships

A binary relationship R is an association between two user-defined types TA and
TB modelled as two collection properties: (1) propertyRA→B that belongs to TA, and

VOL 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 103



AN OBJECT MODEL FOR SENSOR DATA INTEGRATION

B(SensorReading)=̂{(getDeviceID, (), string), (isValidOn, (date), boolean)}
o4.getDeviceID()
o5 : date =’2007-09-27T18:50’
o4.isV alidOn(ref(o5))

Example 3: Behaviour of the type SensorReading.

(2) propertyRB→A that belongs to TB. For each object oA of type TA, the property
propertyRA→B contains references to all related objects oB of the type TB. Similarly,
the same applies to each object oB of TB, its respective propertyRB→A and corres-
ponding oA of TA. For each relationship R, referential integrity is preserved which
means that an object oA is related to oB via propertyRA→B if and only if the object
oB is related to oA via property propertyRB→A. Maintaining referential integrity is
straightforward due to the mechanism of references built into the model as explained
in §4.

In example 4 as we are only interested in the relationship properties, we do
not elucidate the behavioural properties denoted by B(T ). We provide definitions of
types Viewing and SensorReading, and a relationship SensorReadingsInViewing that
specifies all sensor readings for a single viewing of a movie clip. From this example,
for the sake of simplicity, we omit all other relationships class Viewing has with other
classes. Furthermore, the example also does not consider that SensorReading is a
base class which is addressed in Inheritance subsection. In this example, a Viewing
object o7 is related to a SensorReading object o11. This relationship, from Viewing
to SensorReading is named ConsistsOf and its traversal, from SensorReading to
Viewing is named ReadIn.

Viewing=̂(S(Viewing), B(Viewing))
SensorReading=̂(S(SensorReading), B(SensorReading))
SensorReadingsInViewing=̂R(′ConsistsOf ′, set(SensorReading),

′ReadIn′, single(Viewing))
S(Viewing)=̂{SensorsReadingsInViewing(Viewing)}
S(SensorReading)=̂{(′DeviceID′, string), (′LastTuned′, date),

SensorReadingsInViewing(SensorViewing)}
o6 : SensorsReadingsInViewing(Viewing).type = {ref(o11)}
o7 : Viewing = {(′ConsistsOf ′, ref(o6))}
o8 : string = ’SNSR−3’
o9 : date =’2007−10−01 ’
o10 : SensorsReadingsInViewing(SensorReading).type = {ref(o7)}
o11 : SensorReading = {(′DeviceID′, ref(o8)), (′LastTuned′, ref(o9)),

(′ReadIn′, ref(o10))}
Example 4: The relationship SensorReadingsInViewing.

104 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 8



4 MODEL CONTRIBUTION

Inheritance

The model supports single inheritance which is a feature of the model whereby
a new type Tsub can be defined to inherit from an immediate original type the
following: (1) the structure, in terms of all original properties inclusive of original
relationships, and (2) the behaviour. Tsub may optionally extend the original type
with new properties and behaviour and thus, is a subtype of the original type T .
Any object osub of the subtype Tsub may substitute for an object o of the original
type T , as it features all properties and operations supported by objects of the type
T . The inheritance mechanism may not be used to remove the original properties
or operations, nor to modify the names or types of the original properties. However,
operations may be redefined thus facilitating polymorphism.

In example 5, we first repeat the definitions of types Viewing and SensorReading,
and also the definition of the relationship SensorReadingsInViewing from example 4.
Then, we define the type HeartSensorReading that inherits from SensorReading
hence it contains all the properties and has all behaviour of the type SensorReading
namely properties DeviceID and LastTuned, and the relationship to type Viewing .
Additionally, the type HeartSensorReading also has properties MinHeartRate and
MinHeartRate that contain the heart rate reading of the sensor. Finally, when an
object of the type HeartSensorReading is accessed as an object of type SensorRead-
ing, only DeviceID, LastTuned and ReadIn are visible.

Classes

An extent of a type T denoted as ext(T ) is a set that contains objects that are only
of the type T and of no other type thus excluding the objects of subtypes of T .
Such an extent is also referred to as shallow, contrary to a deep extent deepExt(T )
that contains all objects that are of the type T including objects of subtypes of T .
A class of a type T is an ordered pair consisting of a type T and the extent that
corresponds to the type T .

4 MODEL CONTRIBUTION

In this section, we highlight the contribution of the ORef model by describing the
model-specific enhancements. Our discussion covers: (1) direct addressability of
objects and properties, (2) direct access to properties, (3) maintaining referential
integrity of relationships, (4) ORef operations, (5) modelling aggregations, (6) re-
placing multiple inheritance, and finally (7) subclassing.

VOL 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 105



AN OBJECT MODEL FOR SENSOR DATA INTEGRATION

Viewing=̂(S(Viewing), B(Viewings))
SensorReading=̂(S(SensorReading), B(SensorReading))
SensorReadingsInViewing=̂R(′ConsistsOf ′, set(SensorReading),

′ReadIn′, single(Viewing))
S(Viewing)=̂{SensorsReadingsInViewing(Viewing)}
S(SensorReading)=̂{(′DeviceID′, string), (′LastTuned′, date),

SensorReadingsInViewing(SensorReading)}
HeartSensorReading=̂(S(HeartSensorReading), B(HeartSensorReading))

.SensorReading
S(HeartSensorReading)=̂S(SensorReading)

⋃
{(′MinHeartRate′, integer), (′MaxHeartRate′, integer)}

o12 : string = ’HR−SNSR−12’
o13 : date =’2007−10−01 ’
o14 : SensorsReadingsInViewing(SensorReading).type = {ref(o17)}
o15 : integer = 122
o16 : integer = 150
o17 : Viewing = {(′ConsistsOf ′, ref(o18))}
o18 : SensorsReadingsInViewing(Viewing).type = {ref(o19)}
o19 : HeartSensorReading = {(′DeviceID′, ref(o12)), (′LastTuned′, ref(o13)),

(′ReadIn′, ref(o14)),
(′MinHeartRate′, ref(o15)), (′MaxHeartRate′, ref(o16))

Note : When viewed as SensorReading object, o19 does not have properties
MinHeartRate and MaxHeartRate.

o19 : HeartSensorReading = {(′DeviceID′, ref(o12)), (′LastTuned′, ref(o13)),
(′ReadIn′, ref(o14))}

Example 5: HeartSensorReading type that inherits from SensorReading.

Direct Addressability of Objects and Properties

Objects and properties in the ORef model are addressable using the single paradigm
of references. References use the unique identification of both objects and properties
provided using an orefOID. Namely, each object o is assigned with an orefOID which
is an intrinsic feature of each object and provides a unique identification of the
object with no other associated or implied meaning. Thus, two objects are identical
if and only if they both have the same orefOID. Throughout this paper, we adopt
a convention that an orefOID of an object oi is i and also that each i is a plain
integer. A reference ref(oi) points to an object oi by embedding its orefOID, or
simply storing i. While references conceptually model the notion of pointing to
objects from a user’s point of view, orefOIDs are the internal model mechanism
that achieves the physical of effect. In [KRM07] we demonstrated that orefOIDs
play the central role in transparent transformation of database objects into ORef
objects, and also provide access to remote ORef objects that are not available on
the same ORef server.

106 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 8



4 MODEL CONTRIBUTION

Direct Access to Properties

An object used as a property of any complex object may be obtained by specify-
ing the complex object and the name of the required property. The expression
o19.DeviceID in example 5 results in obtaining a reference to object o12 (DeviceID)
that takes the role of the property DeviceID of object o19.

Maintaining Referential Integrity of Relationships

The direct addressability of properties introduced in previous subsection forms the
basis for maintaining the referential integrity of relationships. Assuming a rela-
tionship SensorReadingsInViewing from example 4, any modification to ConsistsOf
property of o7 object must also result in updating the property ReadIn of all re-
lated (SensorReading) objects, which in our case is only o11. This is a straightfor-
ward process as the ConsistsOf property of each Viewing object contains all related
SensorReading objects. Due to the direct addressability of properties, it is possible
to obtain the traversal property for each such related SensorReading objects and
update accordingly.

Operations

References interface ORef operations and objects as: (1) an operation receives both
the target object and parameter objects as references, and (2) evaluates a single
object that is returned as a reference. Thus, ORef operations are closed in the
ORef canonical model. Implementation of references includes transparent reading
of objects and their materialisation on-demand, allowing ORef operations to be
deployed against persistent objects.

Modelling Aggregations

A property may only be of a built-in or a collection type, but not a user-defined
type. Some other object-oriented models support properties of user-defined types
to model aggregations where the object aggregated to the parent object is deleted
once the parent object is removed. To model an aggregation in the ORef model, (1)
an aggregated object is connected to its parent object using a relationship, and (2)
the behaviour that deletes the parent object is defined also to delete all aggregated
objects.

Replacing Multiple Inheritance

Multiple inheritance is a feature present in some object-oriented models whereby a
type is allowed to inherit from more then one type. This feature introduces unne-

VOL 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 107



AN OBJECT MODEL FOR SENSOR DATA INTEGRATION

cessary modelling complexities such as the dreaded diamond which occurs when a
type A is inherited by two different subtypes B and C which again are inherited by
type D resulting in property propagation conflicts. From a modelling perspective,
multiple inheritance can be easily avoided by using other modelling primitives hence
it was intentionally omitted from many object-oriented models, and also from our
work in the ORef model.

Subclassing

We do not introduce subclassing which allows the definition of a subclass of an
existing class, but which is really only a subset of the extent of the type, e.g.
SQL:1999 [GP99]. This separation between classes and types introduces unneces-
sarily complex interconnections between type and class hierarchies. As similar effect
may be achieved using views, this is the effect achieved in the ORef model.

5 QUERY LANGUAGE SEMANTICS

In the previous sections, we illustrated the benefits introduced by the ORef model.
We now examine the query language semantics (QLS) which is a set of rules that any
query language must follow to be compliant with the ORef model. EQL [KBR03], an
EGTV Query Language used in the EGTV research implements these rules. In the
remainder of this chapter, we introduce the semantics and examine its relationship
with the model providing examples using EQL.

The query language semantics is based upon object-generating semantics (OGS)
that requires a set of objects with new object identifiers to be generated to represent
the query result. Kim et al [KK95] examine object-generating semantics in relation
to object-preserving semantics (OPS) and demonstrate that deploying OPS is crucial
for ensuring query result updatability. However, OPS is not compatible with current
object-oriented models as generated objects preserve the identity of their sources.
This further implies that both the generated and the original object have the same
identity, yet may be of a different type which violates the principle of object identifier
uniqueness, hence our decision to choose an OGS. In our semantics, we deploy OPS
using properties in a manner that preserves object identifier uniqueness as explained
in §5 which is facilitated by the ORef model. Hence we preserve compatibility with
current object-oriented models, but we also enable update propagation.

The QLS specifies that a query results in a single class that, as per our ORef
model class definition in §3, is an ordered pair of a type and an extent. All generated
objects in the query result conform to the result type and they belong to the result
extent. As described in Classes subsection of §3 this extent is a set object that
is returned to the client application using a reference. This implies that no special
interface is deployed to process classes and objects that are query results. The direct
benefit is that client applications are not aware whether they process objects stored

108 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 8



5 QUERY LANGUAGE SEMANTICS

by the database, or objects that result from queries (closure property). This also
provides a solid theoretical basis for nesting queries as the result of any query is a
class, and thus, it can be nested in another query requiring no special considerations
as is the case with other models where the query might result in a set of structures,
literals or objects for example, the ODMG [CB99].

Specifying and evaluating a query

Following the traditional approach to query languages, we specify that a query
consists of source, projection and restriction clauses where: (1) source clause lists
classes that participate in a query and determines the set of valid expressions that
can be used in projection and restriction clauses; (2) projection clause establishes
the structure S(T ) of the resulting type T in terms of its properties where each
property is a named expression; and finally (3) all resulting objects o must comply
with the condition given in the restriction clause which is a boolean expression.
The resulting type T has no behaviour as the original behaviour was defined only
for objects of the original type, and thus cannot be applied against the generated
objects as they may have different structure.

To materialise resulting objects o, the restriction clause is evaluated for each
element in the Cartesian product of source classes, and if this clause evaluates to
true, an object o is materialised with the structure specified in the projection clause.
We now describe the clauses in detail and then we examine the deeper implications
of such a query definition.

Definition 5.1 A query Q(projection, source, restriction) transforms classes listed
in a source clause into a new class such that the structure of its type S(T ) is given
by the projection clause. The type has no behaviour B(T ) = ∅. And the restriction
clause specifies the condition that all generated objects must satisfy.

Source clause.

The classes that participate in a query are listed in the source clause along with
their corresponding aliases. A new alias permits a class that is previously listed in
the source clause of a query to participate as a different role. If omitted, an alias
defaults to the class name. Aliases are used to form expressions in projection and
selection clauses, thus each alias evaluates to one of the objects that belongs to the
containing class. We shall further explain this concept using examples 6 and 7.

In example 6 class HeartSensorReading under alias hsr is listed as the only class
in the source clause, and projection and restriction clauses are evaluated for each
object of this class. Throughout the query evaluation, the alias hsr will contain a
reference to an object of class HeartSensorReading. Similarly in example 7, classes
HeartSensorReading and Viewing are listed as hsr and vw respectively, and evalu-
ation is performed for each element of the Cartesian product of these two classes.

VOL 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 109



AN OBJECT MODEL FOR SENSOR DATA INTEGRATION

Thus, throughout the query evaluation, aliases hsr and vw will each contain a ref-
erence to an object of classes HeartSensorReading and Viewing respectively.

FROM HeartSensorReading hsr

Example 6: A source clause containing
HeartSensorReading class.

FROM HeartSensorReading hsr,
Viewing vw

Example 7: A source clause containing
HeartSensorReading and Viewing
classes.

Projection clause.

The projection clause projection contains a list of named expressions ej that de-
termine the structure S(T ) of the resulting type T . When expression names are
omitted, implementation query languages such as EQL provide a default naming
convention. For the purposes of our discussion, we shall assume we can always name
the expressions and that these names are available.

When a query is evaluated, a query result object is materialised which contains
the generated objects. Each generated object contains the projected properties.

There are two basic restrictions with e expressions. Firstly, it is not possible to
change the type of an expression. Secondly, it is not possible to perform projections
on relationships as this would violate the model restriction that each relationship is
bi-directionally navigable.

These limitations can be overcome using behaviour expressions to simulate chan-
ging the resulting type of a property, i.e. an operation is invoked which receives the
original property, and this operation transforms the original property type into the
desired type. For example, assuming that a date is transformed to a string, a user-
defined type DateString that inherits from a string is defined, and an operation that
performs the translation is provided. This operation receives a date, and returns a
DateString object materialised to represent the date as a string. A similar approach
is used to transform a bi-directional relationship property into a uni-directional
property which is then aggregated by the resulting object to overcome the second
limitation we noted previously. Essentially, this establishes a uni-directional rela-
tionship between the resulting query class and source class instead of a bi-directional
relationship which would violate the model semantics.

Restriction clause.

The restriction clause restriction is an expression that generates a reference to a
boolean object. This expression is evaluated before materialising the result object,
and if it evaluates to true, the corresponding result object is materialised and
added to result extent, otherwise it is just discarded. The restriction clause may be
omitted and then all result objects are added to query extent. Multiple expressions
can be connected using logical operators defined for a boolean type thus evaluating

110 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 8



5 QUERY LANGUAGE SEMANTICS

a single boolean object. This alleviates the need to define logical operations as part
of the QLS, and relies instead on the corresponding model definition. In example 8
we process only the heart sensor readings that average below 150.

WHERE hsr.getAvgRate() < 150

Example 8: Filtering for all experiments that are executed in the beginning of a
movie.

Benefits of the Query Language Semantics

Query languages that follow our QLS may provide object manipulation using only
the object’s properties and operations. Specifically, a query language may not in-
troduce a new operation to transform objects. Instead, this effect is achieved by
extending the corresponding type with additional operations that are then invoked
from the query language. This restriction prevents a query language from intro-
ducing an operation that is not compliant with the model definition. Additionally,
this restriction promotes code-reuse as any new operation must: (1) be developed
for the stored type at the correct model level, thus is accessible to all applications
directly; (2) invoked through the query language processor, the same any other oper-
ation. From a practical viewpoint and purely as an optimisation technique, a query
processor may re-implement some operations to improve performance. Typically,
boolean operations would be re-implemented and improved using well known heur-
istics, for example, not evaluating the right side of boolean operator (and), if the
left side has already evaluated to false.

In the introduction of §5 we argued our preferences towards OGS as the basis
for our QLS, as OGS requires objects with new identifiers to be generated from each
query, which then preserves the principle of object identifier uniqueness. This is
the opposite to OPS, which requires the resulting objects to preserve the identity of
objects used in their materialisation (introducing the notion that multiple objects
share the same identity). The difficulty that arises here, however, is that, though an
object identifier still identifies a single object, it does not identify its own type as the
object belongs to multiple types and classes. For example, assuming classes Person
and Adult, whereby adults are persons over a certain age, then an adult person is
represented by an object that belongs to both classes, and is accessible through both
interfaces, where both person’s and adult’s type interface are applicable. Determin-
ing which interface needs to be applied to the particular object depends purely on
the context which then needs to be provided along with the object identification.
Current object models do not support such a configuration as they presume a single
interface per object and per type. Additionally, we see that such a combined object
identification itself is a new complex identity, and hence internally implements OGS
which supports our decision to implement OGS.

We deploy an OPS with regards to properties as these objects result from the

VOL 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 111



AN OBJECT MODEL FOR SENSOR DATA INTEGRATION

evaluation of expressions and are aggregated into resulting objects without changing
their type as demonstrated in query structure subsection of §5. The implication of
this is that no additional type identification is required thus avoiding unnecessary
complexity.

This combination of OGS in relation to resulting objects, and OPS in relation
to properties of resulting objects, permits us to preserve compatibility with current
object technologies while providing a solid basis for query result updatability. In
essence, properties are re-aggregated by result objects, and thus any update to the
resulting object is actually an update against the object used to materialise it. This
means no additional processing is required. We now examine updatability issue in
more detail.

Updatability

The QLS defines that materialisation of the query result deploys OPS in relation to
properties, which in turn provides updatability to result objects. Namely, properties
result from the evaluation of expressions, hence updates applied against properties
are applied to the source objects directly. The definition of this model relationship
was a pre-requisite to clear specification of updates semantics. The only exception
to full update capability occurs when the property results from an operation invoc-
ation. Then relationship between the target object the operation is invoked against,
and result object that the operation returns, purely depends on the definition of the
operation. Hence, to enable the update propagation, the object returned by an op-
eration must maintain a link to the instance object to facilitate update propagation.
This capability is supported by the ORef model as it allows for the original reference
to the original object to which the query is targeted to be stored and furthermore
it provides a capability to define new operations on the generated object.

Modifying objects using queries

The query language semantics facilitates object modifications to be achieved using
defined type operations. In the remainder of this section, we examine how traditional
DML1 operations namely INSERT, UPDATE and DELETE are achieved.

Our discussion first examines these three basic cases, and then we demonstrate
that when practical, they can be combined in the same query. This results in a
reduction of the amount of code written and its complexity.

Creating objects. The creation of objects corresponds to INSERT DML opera-
tion, and is achieved by invoking a constructor operation as a part of the projection
clause. For each result object, and corresponding contained object within the result

1DML stands for Data Manipulation Language which is a commonly found section of the query
language that permits modifying stored data using the query language.

112 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 8



5 QUERY LANGUAGE SEMANTICS

object, references are generated by the constructor. In example 9 we demonstrate
the creation of a single object of type HeartRateReading using a constructor. The
corresponding query has a type that corresponds to the projection clause of the
query. The result object extent contains a single object namely the object that con-
tains the newly created HeartRateReading object. In example 10 we demonstrate
the semantics of INSERT...AS SELECT by creating a corrected copy of the ori-
ginal HeartRateReading objects for sensor HR-SNRS-12. Similarly to example 9,
the resulting extent contains a generated object for each created HeartRateRead-
ing object; this generated object has a single collection property that contains the
corresponding created HeartRateReading object.

SELECT HeartSensorReading(’HR-SNRS-12’,’2007-10-01’, 80, 124)
FROM HeartSensorReading

Example 9: Create new heart rate sensor reading.

SELECT HeartSensorReading.HeartSensorReading(
hsr.DeviceID + ’ Corrected’, hsr.LastTuned,
hsr.MinHeartRate - 5, hsr.MaxHeartRate - 5)

FROM HeartSensorReading hsr
WHERE hsr.DeviceID=’HR-SNRS-12’

Example 10: Create corrected copies of the original heart sensor readings.

Updating objects. The QLS equivalent of the DML operation UPDATE...SET,
provides the same effect by invoking modification operations on properties as part
of the projection clause, i.e. the result object contains references to the modified
properties. In example 11, all HeartSensorReading objects with the DeviceID of
’HR-SNRS-12’ is updated: their DeviceID is extended to include word ’Corrected’,
and minimum and maximum heart rate decreased by 5. The result set contains a
single generated object for each modified HeartSensorReading object; this generated
object has a three properties: DeviceID, MinHeartRate and MaxHeartRate each
containing the corresponding modified property.

SELECT hsr.DeviceID := hsr.DeviceID + ’ Corrected’,
hsr.MinHeartRate := hsr.MinHeartRate - 5,
hsr.MaxHeartRate := hsr.MaxHeartRate - 5

FROM HeartSensorReading hsr
WHERE hsr.DeviceID=’HR-SNRS-12’

Example 11: Correct HeartSensorReading sensor readings.

Deleting objects. Deleting an object corresponds to the DML DELETE opera-
tion, and it is achieved by invoking a destructor operation within the projection

VOL 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 113



AN OBJECT MODEL FOR SENSOR DATA INTEGRATION

SELECT hsr := nil
FROM HeartSensorReading hsr
WHERE hsr.DeviceID=’HR-SNRS-12’

Example 12: Delete HR-SNRS-12 sensor readings.

clause. The EQL syntax accomplishes this by assigning a nil to the alias. In
example 12 this operation is used to remove the HeartSensorReading with the
DeviceID of ’HR-SNRS-12’. The resulting type has a single property named hsr
which contains a reference to the deleted object. Should the operation be success-
ful, this property will point to nil allowing to process exceptions in cases where a
deletion of an object fails. This is outside of the scope of the current paper.

Combining DML operations. We have demonstrated that the query language
semantics covers commonly found DML operations. However, the actual benefit
from the semantics arises when DML operations are combined in a single query to
achieve the effect of multiple queries. In example 13, for each HeartSensorReading
object the DeviceID of which is ’HR-SNRS-12’, its corrected copy is created and at
the same time, the DeviceID of the original object is modified to include the word
’Original’. For each copied HeartSensorReading object, the generated object that
belongs to the query result contains: (1) the copied HeartSensorReading object, (2)
property DeviceID of the original HeartSensorReading object.

SELECT HeartSensorReading.HeartSensorReading(
hsr.DeviceID + ’ Corrected’, hsr.LastTuned,
hsr.MinHeartRate - 5, hsr.MaxHeartRate - 5),
hsr.DeviceID + ’ Original’

FROM HeartSensorReading hsr
WHERE hsr.DeviceID=’HR-SNRS-12’

Example 13: Create a corrected copy of HeartSensorReading with the DeviceID of
’HR-SNRS-12’ and update the DeviceID of the original one.

Defining query class operations

The QLS requires that output from a query is a result object which has a class
extent and in query structure subsection of §5 we described how resulting objects are
materialised. This implies that the operations applicable to source objects cannot
be used on resulting objects, as these objects are of different types. From user’s
viewpoint, objects resulting from a query are no different to other object, and no
theoretical obstacles exist which would prevent further definition of operations, i.e.
section of the model semantics relevant for operations elaborated in §4 applies to
operations of result type. Thus, result type operations are defined using properties,

114 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 8



6 CONCLUSIONS

their operations, and the operations defined for the result type. However, it is often
necessary to use the operations of source types to define the result type operations.

For example, returning to the HeartSensorReading type that inherits getDeviceID
and isValidOn operations from SensorReading type defined in example 3 and has
own getAvgHeartRate operation, a HighAvgHeartRateReadings query that returns
only the heart rate readings that average above 150 for which the WHERE clause is
illustrated in example 8 contains no operations. However, in order to verify whether
these readings are caused by sensors that were not tuned properly at the time the
reading was taken, an access to operation isValidOn must be provided. To facilitate
this, each result object contains properties which take their names from the aliases
that containing references to corresponding source objects, through which the op-
erations of source types can be accessed. To provide a result object with access a
source operation, a wrapper operation can be defined which extracts the correspond-
ing source object, and invokes the source operation against it, where the wrapper
operation is named after the source operation. For example, isValidOn operation
would often be used for the HighAvgHeartRateReadings type.

6 CONCLUSIONS

This paper introduced the ORef model which is used as canonical model for integ-
rating information systems. The ORef model is a standard object-oriented model
enhanced with the paradigm of references in order to define closed transformations.
This simply means that each transformation operates on one or more objects, and
results in one or more objects, where transformations are operations and queries.

A reference points to an object or to its property, and is the only model construct
capable of pointing to objects or their properties. Where appropriate, basic object-
oriented modelling primitives are re-specified to include references, for example an
object does not directly contain its properties, rather they are independent objects
and are connected using references. References permit the pass of objects into
an operation as the objects are unknown when the operation is defined except for
their type. The references form the basis for all further communication between an
operation and objects. The object that results from the operation is returned using
its reference. This correlation between references and operations provides database
independent definition of behaviour when the ORef model is needed to create the
same operation on different databases or peers.

References also influenced the query language semantics that specified the rules
for materialising the query result. The QLS is based upon the object-generating
semantics which specifies that new objects result from a query and obtain new
identifiers, thus preserving the uniqueness of object identifiers. Unique object iden-
tifiers permit the definition of operations for objects that result from queries, and
in a similar manner, the definition of operations of stored objects, and also per-
mits access to operations of source objects. Moreover, maximum compatibility with

VOL 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 115



AN OBJECT MODEL FOR SENSOR DATA INTEGRATION

existing object-oriented systems is preserved. With regard to properties, the object-
preserving semantics is deployed to enable updatability of the result objects.

While this paper focuses entirely on the object model and its properties, our
current work focuses on the functionality of the model, and plans for future research
include benchmarking an ORef implementation against its equivalent native object-
oriented database application. This step includes the actual sensor network used
to provide examples in this paper to develop a set of ORef virtual schemas and
demonstrate both usability and performance in a peer-to-peer scenario.

References

[CB99] Catell, R. and Barry, D., The Object Data Standard: ODMG 3.0, Morgan
Kaufmann Publishers, 1999.

[DOA+94] Dogac, A., Ozkan, C., Arpinar, B. et al., METU Object-Oriented
DBMS, in Object-Oriented Database Systems, pp. 513–541, Springer-
Verlag, 1994.

[GP99] Gulutzan, P. and Pelzer, T., SQL-99 Complete, Really, R&D Books,
1999.

[KBR03] Kambur, D., Bećarević, D. and Roantree, M., An Object Model Interface
for Supporting Method Storage, in Proceedings of the 7th East European
Conference on Advances in Databases and Information Systems (AD-
BIS), 2003.

[KK95] Kim, W. and Kelley, W., On View Support in Object-Oriented Databases
Systems, in Modern Database Systems: The Object Model, Interoperab-
ility, and Beyond, pp. 108–129, ACM Press and Addison-Wesley, 1995.

[KLS03] Kozankiewicz, H., LeszczyÃlowski, J. and Subieta, K., Implementing Me-
diators through Virtual Updateable Views, in Proceedings of the 5th
Workshop EFIS 2003, pp. 52–62, IOS Press, 2003.

[KRM07] Kambur, D., Roantree, M. and Murphy, J., Using an Object Refer-
ence Approach to Distributed Updates, in 18th International Conference
on Database and Expert Systems Applications (DEXA), pp. 182–191,
Springer-Verlag, 2007.

[Leg07] Legeay, N., Experimental Architecture and Sensor Data Descrip-
tions, Technical Report ISG-07-02, Dublin City University, 2007,
URL http://www.computing.dcu.ie/~isg/publications/
ISG-07-02.pdf.

[LRJ+07] Legeay, N., Roantree, M., Jones, G. J. et al., Semi-Automatic Enrichment
of Raw Sensor Data, in to appear in ODBASE 2007, 2007.

116 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 8

http://www.computing.dcu.ie/~isg/publications/ISG-07-02.pdf
http://www.computing.dcu.ie/~isg/publications/ISG-07-02.pdf


6 CONCLUSIONS

[RMS06] Rose, K. H., Malaika, S. and Schloss, R. J., Virtual XML: a toolbox and
use cases for the XML world view, in IBM Systems Journal, vol. 45(2),
pp. 411–424, 2006.

[Run92] Rundensteiner, E. A., MultiView: A Methodology for Supporting Mul-
tiple Views in Object-Oriented Databases, in Proceedings of the 18th
International Conference on Very Large DataBases (VLDB’92), Van-
couver, British Columbia, Canada, pp. 187–198, Morgan Kaufmann Pub-
lishers, 1992.

[SKL95] Subieta, K., Kambayashi, Y. and LeszczyÃlowski, J., Procedures in
Object-Oriented Query Languages, in Proceedings of the 21st Inter-
national Conference on Very Large DataBases, pp. 182–193, Morgan
Kaufmann Publishers, 1995.

[SL90] Sheth, A. and Larson, J., Federated Database Systems for Managing
Distributed, Heterogeneous and Autonomous Databases, in ACM Com-
puting Surveys, vol. 22(3), pp. 183–226, 1990.

[SLR+94] Scholl, M., Laasch, C., Rich, C. et al., The COCOON Object Model,
Technical Report 211, Dept of Computer Science, ETH Zurich, 1994.

[TVB+02] Tatarinov, I., Viglas, S. D., Beyer, K. et al., Storing and querying ordered
XML using a relational database system, in SIGMOD ’02: Proceedings
of the 2002 ACM SIGMOD international conference on Management of
data, pp. 204–215, ACM, 2002.

ABOUT THE AUTHORS

Dalen Kambur is a PhD student at the Dublin City University, Ireland and may be
reached at dalen.kambur@computing.dcu.ie. See also http://www.computing.dcu.ie/˜dalenk.

VOL 7, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 117

mailto:dalen.kambur@computing.dcu.ie
http://www.computing.dcu.ie/~{}dalenk

