

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7 No. 7, September-October 2008

Mahesh Dodani: “Applications At Your Service”, in Journal of Object Technology, vol. 7. no. 7,
September-October 2008 pp. 33-38 http://www.jot.fm/issues/issue_2008_09/column3/

Applications At Your Service
Mahesh H. Dodani, IBM, U.S.A.

1 APPLICATION ARCHITECTURE

“Some things are always the same, particularly the business problems facing IT
organizations. Corporate management always pushes for better IT utilization, greater
ROI, integration of historically separate systems, and faster implementation of new
systems; but some things are different now. Legacy systems must be reused rather
than replaced, because with even more constrained budgets, replacement is cost-
prohibitive. You find that cheap, ubiquitous access to the Internet has created the
possibility of entirely new business models, which must at least be evaluated since the
competition is already doing it. …. Systems must be developed where heterogeneity is
fundamental to the environment, because they must accommodate an endless variety of
hardware, operating systems, middleware, languages, and data stores. Within a
business environment, a pure architectural definition of a SOA might be something like
"an application architecture within which all functions are defined as independent
services with well-defined invokable interfaces which can be called in defined sequences
to form business processes.” – Migrating to a Service Oriented Architecture

Over my last three articles, I have laid a foundation for a Service Oriented
Architecture (SOA) as the enterprise architecture of the globally integrated enterprise and
focused on how to define and establish the business side of the enterprise through a well
defined business architecture. In this article, I continue our journey into the IT
architecture side and start by focusing on the application architecture (in later articles I
will cover the other aspects of the IT architecture including the information and
infrastructure architectures.) To reiterate, as shown in Figure 1, the application
architecture is a key component of aligning IT with business. In particular, the application
architecture elaborates services required to implement the defined business model and
process. The services required to implement the business model and process are defined
as applications that can be realized using existing legacy, packaged and remote
applications and services. The application architecture also elaborates the way that
consumers of the business services interact with the process and applications – as defined
by the user interface and interaction mechanisms (e.g. via portals, browsers, and mobile
devices.)

 APPLICATIONS AT YOUR SERVICE

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7

TE
CH

NI
CA

L
AR

CH
IT

EC
TU

RE

APPLI
CATI

ON

ARCHIT
ECTU

RE

BUSI
NES

S

AR
CHIT

EC
TU

RE

Legacy +
Packaged +
Remote Apps

Business
Strategy

+
Business
Process

Middleware / Platform

+
Existing IT Assets

+
Virtual Resources

Claims ApplicationClaims Application

Policy ApplicationPolicy Application
Care

Application
Care

Application

SolutionSolution

Figure 1: Aligning IT with Business

In the context of SOA, the application architecture focuses on reuse of existing assets,
and is primarily concerned with the following:

• Analyzing business processes to discover services, including both identifying
services required to perform the individual tasks defined by a given business
process as well as analyzing existing applications to identify service providers.

• Creating service providers that support the defined business services and
processes that an enterprise exposes to its consumers and users. These services
can be created from existing assets, external service providers and new service
providers.

• Connecting service consumers to business services and processes, and from these
exposed services to service providers by enabling "any-to-any" linkage and
communication between services inside and beyond the enterprise, and through
infrastructure that ensures Qualities of Service (QoS) including security,
reliability, and scalability.

In the following sections, we explore key patterns supporting application architecture in
SOA, including application reuse patterns and the main connectivity architectural pattern
– the Enterprise Service Bus.

Vol. 7, no. 7 Journal of Object Technology 35

2 APPLICATION INTEGRATION PATTERNS

Figure 2 shows the main application integration patterns established as part of IBM’s
Patterns for e-business. The direct connection application pattern represents the simplest
1-to-1 interaction between applications. It allows a pair of applications within the
organization to directly communicate with each other. Interactions between a source and
a target application can be arbitrarily complex, and this complexity can be addressed by
breaking down the interactions into more elementary components. More complex point to
point connections will have modeled connection rules that control the mode of operation
of a connector depending on external factors as shown in Figure 2. Examples include
business data mapping rules, autonomic rules, security rules, capacity and availability
rules. The indirect or broker application pattern, shown in the figure, separates
distribution rules from the applications using a 1-to-N topology. It allows a single
interaction from the source application to be distributed to multiple target applications
concurrently thereby reducing the proliferation of point-to-point connections. The
indirect or broker application pattern applies to solutions where the source application
starts an interaction that is distributed to multiple target applications. It separates the
application logic from the distribution logic based on broker rules which manages the
decomposition/ recomposition of the interaction. The broker pattern reuses the direct
connection pattern to provide connectivity between the tiers.

Direct Pattern Indirect Pattern

Legend

Figure 2: Application Integration Patterns

In the context of SOA, the direct pattern allows a defined service to be provided directly
by an existing asset or external service provider since it is capable of being accessed via a
service interface. The indirect pattern makes the existing asset or external provider a
service through a broker or service component. The indirect pattern has many sub-

 APPLICATIONS AT YOUR SERVICE

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7

patterns based on the existing asset type. The adapter or gateway sub-pattern is best
suited for external service providers, and provides a proxy-based access to the asset by
mapping standards-based interface to the asset interface. The application server sub-
pattern provides a generalized capability for interacting with multiple target assets, and
provides an environment for augmenting an asset’s capabilities. It is best suited for
reusing packaged applications as service providers. The terminal “emulation” sub-pattern
targets mainframe applications. It provides a mechanism to encapsulate a sequence of
screen interactions as a “macro” and then to expose these “macros” as a service. These
patterns have their own pros and cons – and these should be taken into consideration
when making the architectural decisions for a given solution.

The direct pattern has a shorter deployment cycle especially compared to the indirect
pattern. Since the service interface is defined by the asset, no further analysis is required
to determine the interface. Furthermore no knowledge of other runtimes (Java, messaging
middleware, etc.) is necessary when building the service. On the other hand, consumers
become coupled to the asset environment, and therefore it becomes difficult to substitute
an alternate asset to provide the service. The direct pattern also places a burden on the
asset runtime environment, requiring it to have support for service invocation, be able to
match the service requirements, and handle the additional XML processing burden.

The indirect pattern is more suited to support the IT alignment with business by
ensuring that the service interface aligns with the business view rather than with existing
assets. The service component is used to map between the two worlds, and this facilitates
a substitution of the asset as the service provider without impacting the consumer. This
service component can allow the business service to be implemented using behavior from
more than one asset – the service component aggregates the behavior to realize the
service, and can also enable additional capability. The main issues associated with the
indirect pattern include longer deployment cycles and more complexity in developing the
service component. Generally, the indirect pattern involves the use of connector/adapter
technology between the service component and the backend systems – and usually
introduces a middle tier.

The above pros/cons of the patterns provides the basis for the architectural decisions.
Choose the direct pattern when the existing asset platform is strategic, expediency is a
key business driver, and the development team has skills only on the existing asset.
Choose the indirect pattern when several assets need to be aggregated to provide the
needed functionality and in some cases a subset of the functionality of an existing asset is
required. This pattern is also useful to put a façade on an asset that needs to be replaced
or modernized.

3 THE ENTERPRISE SERVICE BUS ARCHITECTURAL PATTERN

The Enterprise Service Bus (ESB), shown in Figure 3, is an architectural pattern that
supports connectivity between service requestors and service providers, and forms the

Vol. 7, no. 7 Journal of Object Technology 37

backbone of any SOA realization. The ESB supports this requestor/provider connectivity
by handling multiple communication protocols supporting pre-defined interaction
patterns. The ESB enables these interactions through defined mediation flows to process
request messages and correlated results using defined patterns. The ESB should be
flexible in supporting multiple message content models usually based on meta-models.

In an SOA-based implementation, the ESB facilitates a “virtualization” of the
services’ identity, protocol and interfaces. Through its capabilities to route service
requests, the ESB can virtualize a services’ identity. It also facilitates conversion between
different protocols and transformation between various interfaces. Furthermore, the ESB
pattern also enables aspect-oriented connectivity to handle security, management,
logging, auditing, etc.

Service
Requestor

Service
Requestor Message Models

Mediation Flows

Communication Protocols

Enterprise Service Bus

Interaction Patterns

Mediation Patterns

Meta modelsMessage Models

Mediation Flows

Communication Protocols

Enterprise Service Bus

Interaction Patterns

Mediation Patterns

Meta models

Registry

Service
Provider
Service
Provider

Direct Brokered

Federated
Figure 3: The Enterprise Service Bus Patterns

ESB mediation flows leverage several mediation patterns. Mediation patterns are well-
defined types of processing the ESB uses to manipulate the messages during an
exchange. Mediation patterns take many forms and many levels of granularity. We have
already identified two important mediation patterns – the conversion processing needed
to support virtualization of communication protocol and interaction pattern, and the
transformation processing needed to support virtualization of interface.

 APPLICATIONS AT YOUR SERVICE

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 7

A family of mediation patterns provide virtualization of identity via routing. Routing
allows the ESB to send messages from a service requester to a service provider chosen
dynamically, based on the conditions at the time of the request. The ESB can provide
routing mediation patterns that range from very simple to very complex. The most useful
routing mediation patterns are driven via service metadata derived from the service
registry. In addition, different routing patterns can contribute to differing qualities of
service, for example offering request retry and failover. An ESB may support more
complex routing patterns such as distribution of a request and correlated aggregation of
responses.

Other mediation patterns support additional message manipulation – examples
include message enrichment and message filtering. Still other mediation patterns
contribute directly to aspect-oriented connectivity, such as monitoring and logging and
access to the services registry, the security and management policy definition points, and
other parts of the solution infrastructure. Finally, more complex mediation patterns
include capabilities such as complex event processing.

The key ESB patterns are also shown in Figure 3. In the direct pattern, typically we
see peer domains connected, generally with little distinction between them, though
sometimes interactions tend to remain within a domain, especially in the case of
geographic distribution. In the brokered ESB pattern, we typically see peers connected,
but where generally the majority of traffic is within a domain. In the federated pattern, the
key difference is that the common interaction is within a domain, but a ‘backbone’ e.g. a
retail headquarters supplies some services, and may offer peer to peer routing.

In summary, the application architecture is key to aligning IT to business which is in
turn an integral part of ensuring succesful SOA adoption in the enterprise. We have
discussed the key patterns that can be used to make appropriate architectural decisions
when designing solutions. In the next article, we continue our journey into the IT side
with a focus on the Information Architecture.

About the author
Mahesh Dodani is a software architect at IBM. His primary interests
are in enabling communities of practitioners to design and build
complex business solutions. He can be reached at dodani@us.ibm.com.

