
Vol. 7, No. 6, July–August 2008

Modeling Interdependent Concern Be-
havior Using Extended Activity Models

Mark Strembeck, New Media Lab, Institute of Information Systems,

Vienna University of Economics and BA

Uwe Zdun, Distributed Systems Group, Information Systems Institute,

Vienna University of Technology

Software engineering considers many assets relevant for developing a software

system, ranging from requirements to source code. In this context, a concern

is a particular goal, concept, or area of interest that needs to be considered

throughout a number of these assets. Even though the concerns in a software

system usually have many interdependencies among each other, specifying the

interdependent behavior of concerns is not a focus of today’s (concern) modeling

approaches. In this paper, we present an approach to model interdependent

concern behavior using extended UML2 activity models. Within these concern

activity models, we directly support the separation of interdependent concerns.

In addition, we provide bindings of the concern activity models to UML class and

interaction models to enable a detailed specification of concern behavior.

1 INTRODUCTION

A concern is a particular goal, concept, or area of interest [11]. Depending on the mod-

eling perspective and the type of development project, concerns can be in arranged in

different categories. For example, one can distinguish the core concerns of a software

system, such as payment processing in a credit card payment system, from system-level

concerns, such as logging, transactions, authentication, or performance (see [11]). A

successful approach to manage complexity when dealing with multiple concerns is the

separation of concerns (see, e.g., [5]) which describes the process of breaking a software

system down into distinct, consumable concerns that overlap as little as possible.

Most software engineering paradigms explicitly support separation of concerns. For

example, object-orientation separates concerns into classes and methods; service-oriented

computing separates concerns into services and operations; model-driven software devel-

opment (MDSD) [17] separates concerns into various model types, defined using meta-

models, and domain-specific languages (DSL) based on them; aspect-orientation (AO)

[10] separates concerns into aspects. Some concern separation techniques even offer

a multi-dimensional separation of concerns (see, e.g., [21]). For example, in aspect-

orientation, object-oriented techniques are frequently applied for the main dimension of

concern separation (often focusing on the core concerns), and aspects are used for separat-

ing tangled or cross-cutting concerns (often the system-level concerns are represented as

Cite this document as follows: Mark Strembeck, Uwe Zdun: Modeling Interdependent

Concern Behavior Using Extended Activity Models, in Journal of Object Technology, vol.

7, no. 6, July–August 2008, pages 143–166,

http://www.jot.fm/issues/issues 2008 04/article5

http://www.jot.fm/issues/issues_2008_04/article5

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

aspects). A similar multi-dimensional separation of concerns can also be achieved using

MDSD techniques (see, e.g., [23]).

Modeling of interdependent concern behavior refers to a common problem in all men-

tioned concern separation techniques. For instance, in AO, modeling interdependent con-

cern behavior refers to modeling the aspect interactions, defined through pointcuts and the

weaving algorithms of the aspect weaver. In MDSD, modeling interdependent concern

behavior refers to defining the model integration across model types (especially different

meta-models) and DSLs (for instance defined through template languages or transforma-

tion languages) as well as the code generation process.

It is not trivial though to model interdependent concern behavior because the seman-

tics of concern separation techniques are typically intricately tangled in different model

types and particularities of the environment (like an aspect weaver or a code generator).

Moreover, as modeling interdependent concern behavior is only one facet of modeling

“concerns” in general, a modeling approach for interdependent concern behavior should

be well integrated with other modeling techniques, so that it can be used together with

existing tools and approaches.

In this paper, we propose an extension to the UML2 to support modeling interdepen-

dent concern behavior. An overview of our approach is given in Section 2, the details

are specified in Sections 3, 4, and 5. In particular, our approach introduces extensions

of UML activity diagrams to model concern behavior in general, and interdependent

concern behavior in specific (explained in Section 3). In addition, we provide a straight-

forward binding of our extended activity models to classes that implement the concerns

(see Section 4) and UML interaction models that specify detailed invocation sequences

for the concerns (see Section 5). As an UML extension, the approach can also easily be

integrated with other UML-based approaches for modeling separated concerns, such as

[1, 7, 22, 26] for example.

We demonstrate our approach on a case study (see Section 6) where we modeled inter-

dependent concerns in a domain-specific language for role-based access control (RBAC).

Subsequently, Section 7 gives a comparison of our approach to related work, before Sec-

tion 8 concludes the paper.

2 APPROACH OVERVIEW AND BACKGROUND

In general, our approach consists of three principle steps, and Figure 1 shows an overview

of the models produced in the approach. The main steps are:

• Define concern activities: We use extended activity diagrams to model interdepen-

dent concern behavior (see Section 3).

• Map concern activities to classes: Each concern activity is associated with a specific

class1 implementing this particular concern (see Section 4).

1Note that UML2 classes can model composite structures and that UML2 components are defined as

144 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

2 APPROACH OVERVIEW AND BACKGROUND

• Refine concern activities via interaction models: Interaction models are used to

refine the concern activities. In particular, they define the behavior of the classes

implementing the concern activities (see Section 5).

These steps are repeated to refine the corresponding models until the software engi-

neers conducting the process define the models as complete.

Concern Activities

(Extended Activity Models)

Class ModelsInteraction Models

associated with

define behavior in detail

(invocation sequences)

refined by

Figure 1: Relations of the models produced in the approach

All modeling steps of our approach are supported via extensions of UML2. In general,

the UML standard [15] defines two extension options: a) an extension of the language

meta-model, which means a definition of new elements for the UML family of languages;

b) a profile specification, which is in essence a set of stereotypes, tag definitions, and

constraints that are based on existing UML elements with some extra semantics according

to a specific domain. In this paper, we use both extension mechanisms to extend the UML

meta-model with new modeling constructs. We also apply the object constraint language

(OCL) [14] to define the necessary constraints for the newly defined stereotypes and meta-

classes to formalize their semantics. OCL constraints are the primary mechanism for

traversing UML models and specifying precise semantics on metaclasses and stereotypes.

The bindings between the more detailed interaction and class diagrams, on the one

hand, and the more high-level control flow in the activity diagrams, on the other hand, are

needed to provide a consistent and comprehensive concern specification. They also pro-

vide the foundation for traceability between the different models (see, e.g., [6, 16]) and

for the integration in software tools. We chose this approach to modeling concerns, be-

cause the activity diagrams – as primarily behavioral models – help us to focus on concern

behavior and interdependencies. Technical details regarding the realization of concerns

are externalized into the class diagrams, interaction diagrams, and model bindings. The

detailed specification is necessary especially to get all the details into the models that are

needed for tools based on these models, such as code generators. In addition, the sepa-

ration of high-level control flow models from technical detailed models that refine them

has a number of other benefits: The high-level models provide an overview that is useful

for communicating with non-technical stakeholders such as business or domain experts,

whereas the details of the class and interaction models are needed by technical experts.

It is then fairly easy to change or exchange technical details in the separated implemen-

tation models (which is a common procedure, e.g. due to technology changes) while the

a subtype of the “Class” type (for details see [15]). Therefore, our “concern activities” can be associated

with a single class, a structured class, or a component (consisting of several classes) which implements this

particular concern.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 145

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

typically more stable control flow models – that represent the main (business) logic of the

application – can stay unaffected.

3 UML EXTENSION FOR CONCERN ACTIVITIES

Package ConcernNodes

0..1

*

+activity

Activity

(from FundamentalActivities)

ActivityNode

(from FundamentalActivities)

+node

ActivityPartition

(from IntermediateActivities)

*

*

{subsets inGroup}

+inPartition

{subsets containedNode}

+node

0..1

{subsets group}

+partition

*

0..1

*

{subsets superGroup}

+superPartition

{subsets subgroup}

+subpartition

ConcernStart ConcernEnd ConcernActivityPartition

0..1

{subsets superGroup}

+superPartition

{subsets subgroup}

+subpartition

*

Figure 2: UML Meta-model extension for ConcernNodes

As mentioned above, we model interdependent concern behavior as part of the activity

diagrams describing the system’s behavior. That is, we primarily model interdependent

concerns from a control-flow-oriented (or “process-oriented”) perspective. Furthermore,

to support separation of concerns when specifying multiple concerns and their interde-

pendencies in the same model, we use activity sub-partitions as a simple, yet effective,

means to distinguish the parts of an activity diagram that model a specific concern from

the parts of the activity diagram modeling other concerns or concern-independent parts.

We define the new package ConcernNodes as an extension to the UML2 meta-model

(see Figure 2). In particular, we introduce two new nodes as subclasses of the UML2 Ac-

tivityNode meta-class (from the FundamentalActivities package, see [15]), and a new type

of partition as subclass of the ActivityPartition meta-class (from the IntermediateActivies

package, see [15]).

A ConcernStart node is an ActivityNode that can be used in an UML activity dia-

gram to indicate that the concern referred to via the name of the ConcernStart node has

intercepted the control flow at this point. All steps in an activity diagram between a

ConcernStart and the corresponding ConcernEnd ActivityNode (referred to via the same

name for the ConcernEnd as used for the ConcernStart node) are modeling the respective

concern. In other words: ConcernEnd is an ActivityNode that can be used in an UML

activity diagram to indicate that the interception of the control flow by the corresponding

concern has ended. ConcernStart and ConcernEnd nodes are always included in a Con-

cernActivityPartition. The following OCL invariant [14] formally defines this constraint:

146 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

3 UML EXTENSION FOR CONCERN ACTIVITIES

context Activity

inv: self.node->forAll(n |

if n.oclIsKindOf(ConcernStart) or

n.oclIsKindOf(ConcernEnd) then

n.inPartition->forAll(p |

p.oclIsKindOf(ConcernActivityPartition))

endif)

Node Type Notation Explanation & Reference

ConcernActivityPartition A ConcernActivityPartition is
represented by two parallel lines
(also called swimlane notation),
either horizontal or vertical, and
a name labeling the partition in a
box at one end.
Each ConcernActivityPartition may
have an arbitrary number of sub
partitions.
See ConcernActivityPartition from
ConcernNodes and ActivityPartition
from IntermediateActivities.

ConcernStart
Each ConcernStart node is
represented by an octagonal frame
including the name of the
corresponding node. A
ConcernStart node indicates that
the concern "Concern Name" has
intercepted the control flow at this
point. All subsequent steps in the
Activity Diagram until a ConcernEnd
Activity with the same "Concern
Name" is reached are handled by
the concern "Concern Name".

A ConcernStart node is a
specialized UML2 ActivityNode
that models the start activity of a
particular concern.
See ConcernStart from
ConcernNodes and ActivityNode
from FundamentalActivities.

ConcernEnd
Each ConcernEnd node includes
the name of the corresponding
node and is represented by an
octagonal frame with an additional
vertical line on the left hand and
the right hand side of the octagon.
A ConcernEnd node indicates that
the interception of the control flow
by the concern "Concern Name"
has ended.

A ConcernEnd node is a
specialized UML2 ActivityNode
that models the end activity of a
particular concern.
See ConcernStart from
ConcernNodes and ActivityNode
from FundamentalActivities.

P
a
rt

it
io

n

N
a
m

e

Concern Name

Concern Name

P
a
rt

it
io

n
 N

a
m

e

su
b
 p

a
rt

iti
o
n

N
a
m

e
-2

su
b
 p

a
rt

iti
o
n

N
a
m

e
-1

Figure 3: Notation elements for ConcernNodes

It is also possible for another concern to intercept the control flow between a Concern-

Start and ConcernEnd. This way, we can model concern interdependencies and nested

concerns. Modeling of interdependent concerns is directly supported because each Con-

cernActivityPartition may include sub-partitions, as defined in Figures 2 and 3.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 147

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

To guarantee a proper nesting of concern nodes, the start and the corresponding end

node must be contained in the same partition. Moreover, each (sub-)partition (each swim-

lane) in a ConcernActivityPartition must contain only ConcernStart and ConcernEnd

nodes of one and the same concern. Therefore, we demand that the ConcernStart and

the ConcernEnd node within a particular ConcernActivityPartition must have the same

name2 – as defined through the following OCL invariants:

context ConcernActivityPartition

inv: self.node->forAll(n:ConcernStart |

n.name.notEmpty())

inv: self.node->forAll(n:ConcernEnd |

n.name.notEmpty())

inv: self.node->forAll(n1:ConcernStart |

self.node->forAll(n2:ConcernEnd |

n1.name = n2.name))

Because this constraint defines invariants for the ConcernActivityPartition, it holds

for all sub-partitions of type ConcernActivityPartition as well (see also Figures 2 and 3).

Activity A

[false]

[true]

An Example

Concern X

Activity B

Concern X

Figure 4: Example diagram with ConcernNodes

Figure 4 shows an example activity diagram with ConcernNodes: after Activity A is

completed, Concern X intercepts the control flow. If the subsequent condition evaluates

to “true” the control flow proceeds with Activity B. If, however, the condition evaluates

to “false”, the corresponding ConcernEnd node is reached and the activity sequence ends.

To model concern interdependencies, we use sub-partitions to clearly separate the dif-

ferent concerns while specifying the complete activity sequence in a consistent, integrated

2A UML ActivityNode is a NamedElement (see [15]). Therefore, ConcernStart and ConcernEnd are

also NamedElements. In UML, two instances of the NamedElement type may co-exist within a namespace

if they are distinguishable. Two NamedElements are distinguishable if they a) have unrelated types, i.e. if

no direct or transitive subtype/supertype relation (in the sense of oclIsTypeOf and oclIsKindOf)

between their types exists, or b) they have related types but different names (see [15]). ConcernStart and

ConcernEnd are unrelated types, i.e. they share the same supertype (ActivityNode) but there is no sub-

type/supertype relation between ConcernStart and ConcernEnd. Therefore, a ConcernStart and a Concer-

nEnd node can share the same name and can legally co-exist in the same ConcernActivityPartition.

148 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

4 INTEGRATION WITH STRUCTURE MODELS

Another Example

sub partition 1 sub partition 2

Concern X Concern Y

Activity A

Activity B1

Activity B2

Concern YConcern X

sub partition 3

Concern Z

Activity C

Concern Z

[condition m]

[condition n]

Figure 5: Example with sub partitions and nested concerns

model. In other words, because each concern is modeled via its own sub-partition, it is,

on the one hand, easy to examine the different concerns individually, and, on the other

hand, we can analyze concern interdependencies directly using one and the same activity

model. Figure 5 depicts an example of three interdependent concerns X, Y, and Z, each

modeled in its own sub-partition.

4 INTEGRATION WITH STRUCTURE MODELS

To define bindings from ConcernNodes to corresponding classes that implement the be-

havior of the respective ConcernNodes we define the concernSpec and concern stereo-

types (see Figure 6).

Package ConcernNodes

«metaclass»

ConcernEnd

«metaclass»

Classifier

(from Kernel)

«stereotype»

concern

«metaclass»

ConcernStart

«stereotype»

concernSpec

spec:Classifier

enterOperation:Operation

leaveOperation:Operation

Figure 6: Stereotypes to integrate ConcernNodes with Classes

The concernSpec stereotype extends the ConcernStart and ConcernEnd metaclasses

introduced in Section 3. The concernSpec stereotype defines three properties, and two

of these properties especially make use of the fact that UML2 activity models have a to-

ken semantics (see below). In particular, an ActivityNode is executed when all required

tokens were accepted at the incoming ActivityEdge(s) of the respective node. When an

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 149

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

ActivityNode finishes execution, tokens are offered to one or more of its outgoing Activ-

ityEdge(s) (for details see [15]):

• The spec property refers to the class3 or an interface that implements the behav-

ior of one particular ConcernNode, i.e. the spec property includes the name of a

corresponding class or interface defined in a UML structure model (see below).

• The enterOperation property defines which operation of the class or interface

(referred to via the spec property) is invoked as soon as the corresponding Con-

cernNode is entered (i.e. when all required tokens were accepted at the incoming

ActivityEdge(s) of this particular ConcernNode).

• The leaveOperation property defines which operation of the class or interface

(referred to via the spec property) is invoked as soon as the corresponding Con-

cernNode is left (i.e. when a token is offered to one or more of the outgoing Activ-

ityEdge(s) of this particular ConcernNode).

The definition of a concernSpec for a ConcernNode is optional (depending on

the intended use of the corresponding model). However, as mentioned above, if a

concernSpec is defined, the spec property must either refer to a class or to an interface.

Moreover, it must include the spec property and at least one of the enterOperation

or leaveOperation properties, as defined through the following OCL constraints:

context concernSpec

inv: self.spec.oclIsKindOf(Class) or

self.spec.oclIsKindOf(Interface)

inv: self.spec.notEmpty() and

(self.enterOperation.notEmpty() or

self.leaveOperation.notEmpty())

«concernSpec»

spec=SomeClass

enterOperation=methodX

leaveOperation=methodY

Activity A

[false]

[true]

An Example

Concern X

Activity B

Concern X

Figure 7: A ConcernNode with a concernSpec stereotype

3As mentioned above (see Section 2): by referring to UML2 classes the spec property can also refer

to a structured class or a component (which may consist of several classes).

150 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 INTEGRATION WITH INTERACTION MODELS

In addition to concernSpec, we define the concern stereotype (see Figure 6) which

extends the UML metaclass Classifier (cf. [15]). We require that an Interface or Class

which realizes the behavior of a ConcernNode must be typed with the concern stereo-

type4:

context concernSpec

inv: concern.base_Classifier->exists(c|

c.name = self.spec and

(c.oclIsKindOf(Class) or

c.oclIsKindOf(Interface))

)

«concern»

SomeClass

methodX()

methodY()

AnotherClass

methodA()

AClass

methodA()

methodX()

1

*
option

Figure 8: A Class with a concern stereotype

Figure 7 shows the example from Figure 4 extended with a concernSpec for the

ConcernStart node of “Concern X”. The spec property of this concernSpec defines

that the behavior of the respective ConcernStart node is implemented by a class called

SomeClass. Furthermore, it defines methodX of SomeClass as the enterOperation

and methodY of SomeClass as the leaveOperation for this node. The class model

in Figure 8 includes the respective SomeClass class, stereotyped with ≪concern≫. As

can be seen in the example figure, a class (or component) implementing a concern is part

of an ordinary class diagram and may have association and/or inheritance relationships to

other classes. These other classes are often implementing parts of a concern, and the class

stereotyped by ≪concern≫ only is a Facade or Interface to the concern implementation.

In any case, we just need to tag a class (or component) with the ≪concern≫ stereotype in

order to use an existing class as a concern spec.

5 INTEGRATION WITH INTERACTION MODELS

In addition to the extensions introduced above, we need a means to describe concern

interactions (invocation sequences, return values, etc.) on a detailed level, if necessary.

Therefore, we define an additional stereotype that allows for an integration of concern

activities with UML Interaction models.

4Again: since the concern stereotype can be applied to UML classes, the same stereotype can also

be applied for structured classes and components. Moreover, the concern stereotype can be attached to

UML interfaces. Thereby we achieve additional flexibility because interfaces are abstract entities which

are implemented by one or more class, structured class, or component, and interfaces can be referenced by

component ports (for details see [15]).

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 151

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

Package ConcernNodes

«metaclass»

Lifeline

(from BasicInteractions, Fragments)

«stereotype»

concernInteraction

Figure 9: Stereotype to integrate ConcernNodes with UML Interaction models

In particular, the concernInteraction stereotype extends the UML metaclass

Lifeline (from the BasicInteractions Package, see [15]) to enable bindings between Con-

cernNodes and interaction participants in corresponding UML Interaction models (see

Figure 9). Using Interaction models, we can now model the detailed invocation sequences

that occur when (interdependent) concerns (implemented via certain classes) are executed

at runtime. The following OCL constraints define that a concernInteraction lifeline

must refer to the class defined in the corresponding concernSpec, or to a class imple-

menting the interface referred to via the respective concernSpec (making sure that we

specify the behavior of the correct class).

context concernSpec

inv: concernInteraction.base_Lifeline->forAll(ll |

if self.spec.oclIsKindOf(Class)

then

self.spec.role->exists(r | r.lifeline = ll)

endif

if self.spec.oclIsKindOf(Interface)

then

self.spec.interfaceRealization->exists(ir |

ir.implementingClassifier.oclIsKindOf(Class)

and

ir.implementingClassifier.role->exists(r | r.lifeline = ll)

)

endif

)

Moreover, we define two additional OCL constraints on concernInteraction. The

first constraint specifies that if the concernSpec defines an enterOperation, this op-

eration must occur as a message of the respective lifeline, and it must be the first operation

called on that lifeline (be it synchronous or asynchronous):

context concernSpec

inv: concernInteraction.base_Lifeline->forAll(ll |

if (self.enterOperation.notEmpty())

then

let mos : MessageOccurrenceSpecification =

ll.interaction.fragment->select(f |

f.oclIsKindOf(MessageOccurrenceSpecification)

and f.covered = ll)->first()

in

mos.notEmpty() and

mos.message.notEmpty() and

mos.message.oclIsKindOf(Operation) and

mos.message = self.enterOperation and

(mos.message.messageSort = #syncCall or

mos.message.messageSort = #asyncCall)

endif)

152 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 INTEGRATION WITH INTERACTION MODELS

The second OCL constraint defines that if the respective lifeline contains a message

that corresponds to a leaveOperation of the respective concernSpec, this operation

must be the last (synchronous or asynchronous) operation called on that lifeline (note that

a “reply” message does not model an operation call, for details see [15]):

context concernSpec

inv: concernInteraction.base_Lifeline->forAll(ll |

if (self.leaveOperation.notEmpty())

then

let mos : MessageOccurrenceSpecification =

ll.interaction.fragment->select(f |

f.oclIsKindOf(MessageOccurrenceSpecification)

and f.covered = ll

and f.message.notEmpty()

and (f.message.messageSort = #syncCall or

f.message.messageSort = #asyncCall))->last()

in

mos.notEmpty() and

mos.message.notEmpty() and

mos.message.oclIsKindOf(Operation) and

mos.message = self.leaveOperation

endif)

methodX()

loop [for each option]

methodX()

methodA()
result

methodY()

methodY return

alt [methodY return=false]

[methodY return=true]

ConcernX EndNoderef

Activity Bref

«concernInteraction»

: SomeClass

 : AnotherClass

sd SomeClass_concernInteraction

Figure 10: An Interaction diagram modeling the invocation sequence in the ConcernX

start node - implemented by the SomeClass class

Figure 10 depicts an interaction diagram modeling the detailed invocation sequence

that is performed when the control flow defined in Figure 7 reaches the start of Concern

X. In particular, it shows that an object of SomeClass (see Figure 8) receives an invo-

cation of methodX. Subsequently, it triggers the execution of methodX in each associ-

ated AnotherClass object before executing methodY. Depending on the return value

of methodY the control flow either proceeds with the execution of the Concern X end

node or with Activity B (cf. Figures 7 and 10).

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 153

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

6 CASE STUDY: MODELING INTERDEPENDENT CONCERNS

IN AN RBAC DSL

In this section, we demonstrate our approach on a non-trivial case where we defined inter-

dependent concerns in a DSL for the specification of role-based access control (RBAC)

policies. To ease the understanding of the example, we briefly introduce some essen-

tial RBAC terms first: In the RBAC context, an access control subject is an active entity

(e.g. a human user or a software agent) that is (or should be) able to access objects (e.g.

files or hardware resources as a printer or a network card for example) in a particular

information system. Each subject has a number of roles that are assigned to this subject.

Moreover, permissions are assigned to roles, and permissions can be associated with con-

text constraints (cf. Figure 11). Context constraints define predicates that must evaluate

to “true” in order to grant a certain access request. They allow for the consideration of

context information in access decisions and enable the definition of additional conditions

on permissions, like time constraints for example (for details see [19]).

* *

* *1.. **1..**1..
Permission

juniorRoleseniorRole

RoleSubject
owner role permissionowner

 assigned to assigned to linked to
Context

Constraint
target constraint

Figure 11: Basic elements of the role-based access control DSL

Our RBAC DSL provides the functionality of the xoRBAC component (see [13, 19])

as an expressive language that separates the different concerns in this component. To im-

plement the RBAC DSL, we defined a domain-specific weaver component that is capable

to weave the different concerns according to domain-specific restrictions. The weaver

component provides functions for role-to-subject assignment and revocation, as well as

corresponding functions for permission-to-role assignment and revocation, and for link-

ing and unlinking permissions and context constraints. Moreover, it allows to generate

new role, permission, or context constraint classes at runtime (see also [20]).

On the source code level, each model element of the role-based access control DSL

(in essence these are: subject, role, permission, and context constraint) is represented via

a class or class hierarchy, and the definition of individual elements is separated from the

classes and hierarchies representing other domain-specific model elements. It is, however,

not trivial to achieve this goal since the different concerns are interdependent, and these

concern interdependencies can hardly be modeled using standard modeling constructs.

For the specification of the DSL, we therefore used activity models with ConcernNodes

that specifically focus on the separation of concerns in the RBAC DSL.

Modeling the Authorization Decision Concern

Figure 12 depicts an activity diagram that shows the primary control flow for authorization

decisions. Furthermore, it shows the interdependencies of the Authorization concern, the

Role concern, the Permission concern, and the ContextConstraint concern.

154 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

6 CASE STUDY: MODELING INTERDEPENDENT CONCERNS IN AN RBAC DSL

Authorization Decision Activity

[true]

Authorization

Role

Lookup

Permission

Lookup

Check

Permission

[Access granted]

ContextConstraint

Lookup

Check

Constraints

[Not Linked to ContextConstraint(s)]

[Receive method call:

checkAccess(s op ob)]

[all constraints

fulfilled]

[constraint(s)

not fulfilled]

[Access denied]

[Last permission and

all permissions false]

Subject / Authorization Concern Role Concern Permission Concern ContextConstraint Concern

Role

[for each role]

Permission

[for each

 permission]

[else]

ContextConstraintRole Permission

[false]

[Last permission and

constraint(s) not fulfilled]

ContextConstraint

Authorization

Issue

"Access denied"

message

Issue

"Access granted"

message

Figure 12: Control flow of the Authorization concern and corresponding nested concerns

The checkAccess operation provides a central functionality of the RBAC DSL and

is applied to check if a certain access can be granted or must be denied, i.e. if a certain

subject s is allowed to perform operation op on object ob (see Figure 12). After receiv-

ing a checkAccessmessage, the Authorization concern is responsible to make an access

decision for the corresponding access request. In order to reach this decision, it has to in-

teract with the Role concern. The Role concern then performs a role lookup procedure

to determine the roles assigned to the respective subject. Subsequently, the Permission

concern takes over to check the permissions which are assigned to the corresponding role

objects. However, as mentioned above, to grant a certain access request it is not sufficient

to own the appropriate permission - all context constraints associated with the correspond-

ing permission must be fulfilled at the same time. Thus, if a certain permission actually

grants the access request (indicated by returning “true”) the ContextConstraint concern

intercepts the control flow to check the constraints linked to this particular permission

object (cf. Figure 12).

Figure 13 shows an excerpt of Figure 12 that includes ≪concernSpec≫ stereotypes

for the ConcernStart nodes of the Role and the Permission concerns. In particu-

lar, these concernSpecs define that the behavior of the corresponding concerns is

implemented through the Role and Permission classes, respectively. Moreover, the

enterOperation of both concerns is implemented via the checkAccess operation of

the corresponding classes.

Figure 14 depicts an excerpt of the RBAC DSL class model (for the purposes of this

paper we show only an excerpt of the class model, for details see [19]). It indicates

how the Subject, Role, and Permission classes, that implement the corresponding

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 155

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

Role

Lookup

Permission

Lookup

Check

Permission

Role Concern Permission Concern

Role

[for each role]

Permission

[for each

 permission]

«concernSpec»

spec=Role

enterOperation=checkAccess

leaveOperation=writeLogEntry

«concernSpec»

spec=Permission

enterOperation=checkAccess

leaveOperation=writeLogEntry

Figure 13: The Role and Permission Concerns with concernSpec stereotypes

checkAccess()

isMutualExclusive(r)

writeLogEntry()

«concern,metaclass»

Role

**seniorRole juniorRole

permission
checkAccess()

writeLogEntry()

«concern,metaclass»

Permission

*

owner

*1.. *1.. *

checkAccess()

getRoles()

roleAssignmentPermitted(r)

writeLogEntry()

«concern»

Subject

ownerrole

Figure 14: Excerpt of the RBAC DSL class model

concerns in the DSL, are interconnected.

In Figure 15, we see an interaction diagram that models the invocation sequence in the

Role concern. After receiving a checkAccessmessage, the corresponding Role object

invokes the checkAccess method on the permission objects assigned to this particular

role. If one of the permissions grants the access by returning “true”, the Role object

immediately stops checking its permissions (see the “break” InteractionOperator in Figure

15), writes a corresponding log entry, and returns the access decision.

Modeling the Role-to-Subject Assignment Concern

Subject-to-Role Assignment deals with the procedure of associating roles with subjects,

and, similar to the Authorization concern, the Assignment concern of the RBAC DSL

consists of several interdependent concerns (see Figure 16). In particular, RBAC directly

supports the “separation of duty” concept (see, e.g., [3, 4, 18]) which directly affects

subject-to-role assignment. In access control, separation of duty constraints enforce con-

flict of interest policies. Conflict of interest arises as a result of the simultaneous assign-

ment of two mutual exclusive roles (or permissions) to the same subject. Mutual exclusive

roles (or permissions) result from the division of powerful rights or responsibilities to pre-

vent fraud and abuse. An example is the common practice to separate the “controller” role

and the “chief buyer” role in medium-sized and large companies.

When a roleSubjectAssign message is received, the Assignment concern inter-

156 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

6 CASE STUDY: MODELING INTERDEPENDENT CONCERNS IN AN RBAC DSL

«concernInteraction»

: Permission

«concernInteraction»

: Role

checkAccess()

loop [for each permission]

checkAccess()

loop [for each constraint]

ContextConstraint Concernref

writeLogEntry()

result

break [result=true]

writeLogEntry()

result

sd RoleCheckAccess

Figure 15: Interaction model for the Role concern

Role

Role-to-Subject Assignment Activity

Assignment

[Receive method call:

roleSubjectAssign(r s)]

Assignment Concern

Check role

exists

[role exists]

[else]

[subject exists]

[else]

Separation of Duty Subject

Get roles

assigned to

subject

Role

[for each role]

Check mutual

exclusive roles

[not mutual

exclusive to "r"]

[mutual

exclusive to "r"]

SubjectSeparation of Duty

[last role and not

mutual exclusive

to "r"]

Assign role

to subject

Check subject

exists

Assignment

SOD Concern Subject Concern Role Concern

Issue

"Assignment failed"

message

Issue

"Assignment successful"

message

[else]

[Assignment

granted]

Figure 16: Control flow the Role-to-Subject Assignment Concern

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 157

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

cepts the control flow and first checks if the corresponding role and subject actually exist

(cf. Figure 16). Subsequently, the Separation of Duty (SOD) concern interacts with the

Subject and Role concerns to determine if the corresponding role can legally be assigned

to the respective subject. In case the role to be newly assigned is defined as mutual exclu-

sive to one of the roles already owned by the subject, the assignment is denied.

«concernSpec»

spec=Role

enterOperation=isMutualExclusive

Subject

Get roles

assigned to

subject

Role

[for each role]

Check mutual

exclusive roles

Subject Concern Role Concern

[not mutual

exclusive to "r"]

«concernSpec»

spec=Subject

enterOperation=roleAssignmentPermitted

Figure 17: The Subject and Role Concerns with concernSpec stereotypes

Figure 17 depicts an excerpt of Figure 16 that includes ≪concernSpec≫ stereotypes

for the ConcernStart nodes of the Subject and Role concerns. These stereotypes de-

fine that the enterOperation of the Subject concern is implemented through the

roleAssignmentPermittedmethod of the Subject class and the enterOperation

of the Role concern is implemented via the isMutualExclusivemethod of Role class

(see also Figure 14).

«concernInteraction»

: Subject

roleAssignmentPermitted(r)

loop [for each role in role_list]

«concernInteraction»

: Role

getRoles()

role_list

isMutualExclusive(r)

result

break [result=true]

result

sd MutualExclusionCheck

Figure 18: Interaction model for the Subject concern

The interaction model shown in Figure 18 specifies the invocation sequence of

the Subject concern in detail. After receiving a roleAssignmentPermitted mes-

sage the corresponding Subject instance invokes the getRoles method to obtain a

list of all roles currently assigned to this particular subject. Subsequently, it calls the

158 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

7 COMPARISON TO RELATED WORK

isMutualExclusive method for each of these roles. In case one of the roles returns

“true” as result of the isMutualExclusive call (indicating it is in fact mutual exclu-

sive to the role to be newly assigned), the subject stops checking its roles (see “break”

InteractionOperator in Figure 18) and the assignment is denied (see also Figure 16).

Subject ConcernRole ConcernContext Constraint Concern Permission Concern

 per-object-mixin per-object-mixin
checkAccess()

constraint1

 per-object-mixin checkAccess()

constraint2

checkAccess()

ContextConstraint

 instance-of

Subject

checkAccess()

 instance-of

checkAccess()

role1

checkAccess()

Role

 instance-of

checkAccess()

permission1

checkAccess()

Permission

 instance-of

 per-object-mixin

subject1

Figure 19: Example of a composed executable model

Finally, Figure 19 sketches an example of a composed runtime model generated from

our RBAC DSL. In particular, the role role1 is assigned to a subject subject1. Again,

there is a permission assigned to role1, and the permission is linked to two context con-

straints constraint1 and constraint2. In our implementation each of these assign-

ment relations is realized through a transitive mixin relation (as explained in [20, 27]).

However, other implementation techniques such as aspects or generated classes could

have been used equivalently.

7 COMPARISON TO RELATED WORK

Tarr et al. introduced the concept of multi-dimensional separation of concerns [21], which

aims at a separation of arbitrary kinds of concerns. That is, a modeler does not need to

decompose different concerns of a system along a single dimension and neglect other di-

mensions. They use so called hyperslices to model concerns in different dimensions and

these hyperslices are composed in hypermodules. This concept necessarily includes inter-

dependencies among the concerns, such as overlapping, nested, or interacting concerns.

Our approach supplements the work of Tarr et al. with a concept for modeling interde-

pendent concern behavior using Activity Diagrams as the primary model type, as well as

Class and Interaction Diagrams to specify the details of each concern.

A number of other authors have proposed approaches to model mostly structural facets

of (multi-dimensional) concern separation, especially in the field of aspect-orientation.

For instance, in [26] we have proposed an approach for modeling the evolution of aspect

configurations using model transformations. Barros and Gomes [1] use UML2 activity

diagrams to model crosscutting in aspect-oriented development. Via an UML profile they

define a new composition operation called “activity addition”. Activity additions are used

for weaving a crosscutting concern in a model. In particular, they define two stereotypes

to mark certain nodes in activity diagrams that define the so called interface nodes which

are then used to merge two or more activity diagrams, and the so called subtraction nodes

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 159

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

which define what nodes need to be removed from a given activity diagram. Hence, Barros

and Gomes use a similar approach to model concerns via activity diagrams. However, they

do not focus on modeling interdependent concern behavior and do not provide bindings

to other models that specify concern implementations in detail.

Han et al. [7] present an approach to support modeling of AspectJ language features to

narrow the gap between implementations based on AspectJ and the corresponding mod-

els. Mahoney and Elrad [12] describe a way to use statecharts and virtual finite state

machines to model platform specific behavior as crosscutting concerns. They especially

plan to evaluate the effectiveness of their approach in a model driven development context.

Tkatchenko and Kiczales [22] present another approach to model crosscutting concerns.

They extend the UML with a joinpoint model, advice and inter-type declarations, and

role bindings. Moreover, they provide a weaver to process the corresponding extensions.

Jezequel et al. [9] represent crosscutting behavior using contract and aspect models in

UML. They model contracts using UML stereotypes, and represent aspects using param-

eterized collaborations equipped with transformation rules expressed as OCL constraints.

In particular, OCL is used in the transformations for navigating instances of the UML

meta-model.

Each of the above mentioned approaches provides some type of modeling support

for multiple concerns that might be cross-cutting – as their primary focus is on aspect-

oriented systems. However, none of these approaches supports modeling concern interac-

tion based on the behavior of interdependent (multi-dimensional) concerns, which is the

major focus of our concern modeling approach.

Czarnecki and Antkiewicz propose an approach to model variants of behavioral mod-

els [2]. In particular, they use feature models to describe the possible variants of UML

activity diagrams. Model templates specify the possible composition of a system’s fea-

tures. Furthermore, they use a special-purpose tool to instantiate the model templates

from a feature configuration. Hence, the feature models are akin to our approach in the

sense that they also lead to a separation of concerns. Feature modeling, however, con-

centrates on modeling variants of behavioral models, whereas our approach is intended to

model the control flow together with concern interdependencies, as well as the connection

to implementation classes for the concerns.

The Concern Manipulation Environment [8] supports the composition of software sys-

tems from concern models. It produces directives that can be applied to compose arbitrary

object-oriented structures. The main focus of concern composition in the Concern Ma-

nipulation Environment is to support a wide variety of aspect-oriented approaches. The

Concern Manipulation Environment supports various relationships among concerns, such

as overlap and cross-cut. Due to the focus on aspect-oriented approaches, the concern

models in the Concern Manipulation Environment are closer to aspects or feature models

than to our more general behavioral models based on Activity Diagrams.

A number of other authors and tools provide explicit representations of multiple in-

teracting concerns (and aspects) using MDSD concepts. Voelter summarizes the best

practices that have been developed in this area in software patterns form [23]. Our ap-

160 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

7 COMPARISON TO RELATED WORK

Table 1: Overview and comparison of related work

Approach Modeling of

multiple con-

cern dimen-

sions

Behavioral

concern

models

Structural

concern

models

Modeling

behavioral

concern

interdepen-

dencies

Separation

of high-level

and detailed

concern

models

Separation

of different

concerns

in behavior

models

Toward Support for

Crosscutting Con-

cerns in Activity

Diagrams [1]

supported supported not sup-

ported

not sup-

ported

not explicitly

supported

not sup-

ported

Mapping Features

to Models: A

Template Based

Approach [2]

supported supported not explicitly

supported

supported not explicitly

supported

not explicitly

supported

Towards Visual As-

pectJ [7]

supported not explicitly

supported

supported not explicitly

supported

not explicitly

supported

not sup-

ported

Concern Manipu-

lation Environment

[8]

supported not sup-

ported

supported supported not explicitly

supported

not explicitly

supported

From Contracts to

Aspects [9]

supported not sup-

ported

supported not sup-

ported

not explicitly

supported

not sup-

ported

Aspect-Oriented

Statecharts and

Virtual Finite State

Machines[12]

not explicitly

supported

supported not sup-

ported

not sup-

ported

not explicitly

supported

not sup-

ported

Multi-Dimensional

Separation of

Concerns [21]

supported not explicitly

supported

supported not explicitly

supported

not explicitly

supported

not explicitly

supported

Modeling Cross-

cutting Structure

[22]

supported supported supported not explicitly

supported

not explicitly

supported

not explicitly

supported

Patterns for Han-

dling Cross-

Cutting Concerns

[23]

supported not explicitly

supported

supported not explicitly

supported

not explicitly

supported

not explicitly

supported

Concern Activities

(our approach)

supported supported supported supported supported supported

proach follows these best practices in a way using a control flow model as the primary

model to interconnect other model types. For example, this practice can also be used for

process-driven SOA models, as described in detail in [24].

Table 1 summarizes the comparison to related work in terms of the major features

of our approach. In the table, we use the term “supported”, if the (research) papers and

additional materials (e.g. available from related web pages) about the other approaches

explictly describe a support for the respective feature; “not supported” is used, when

we did not find information that the approach explicitly supports the feature. Finally,

“not explicitly supported” is used, when we did not find information that a particular

approach explicitly supports a certain feature, but other concepts that are available from

the approach can be used to (straightforwardly) build some support for the respective

feature.

Our approach, as well as most of the related approaches mentioned above, supports

modeling of multiple concern dimensions – even though each approach uses different ab-

stractions and mechanisms. A key contribution of our approach is that it supports the

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 161

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

modeling of interdependent concern behavior together with the structure of concern mod-

els and the detailed specification of interaction sequences. None of the related approaches

explicitly supports all of these facets. However, many related approaches can be extended

with the missing model types. For instance, it would be possible to create feature models

on top of class diagrams, to extend the approach in [2]. This can for instance be done

using the a similar binding between the structural and behavioral models as used in our

approach.

Our approach explicitly models the interactions between concerns through intercep-

tion of the control flow by concern start and end nodes. Some other approaches offer

explicit support for modeling concern interaction, either through composition primitives

on the structural models or through feature composition in feature models (cf. Table 1).

None of the related approaches supports a separation of abstraction levels – rang-

ing from the specification of concern behavior in activity diagrams to low-level concern

implementation specifications in structural and interaction models. However, because

most approaches mentioned above directly support multiple concern dimensions, these

approaches could be extended with support for concern levels. Our approach addition-

ally provides a binding between the different concerns levels – which is needed for tools

such as code generators. Moreover, our approach supports the separation of interdepen-

dent concerns in models through activity sub-partitions (swimlanes). Though activity

swimlanes are a standard means for structuring behavioral models (especially in activity

models) this is not explicitly supported by the related approaches, most of them, how-

ever, could be extended with the same concept. Finally, our approach can be directly

integrated with model transformation diagrams (see [25]) to model dynamic changes in

concern behavior.

With our work we aimed to define an approach that is well integrated with the UML

(as it is the de-facto standard for software systems modeling) and combines the strengths

of related approaches while providing an integrated, easy-to-use, and easy-to-understand

modeling approach for interdependent concerns. Note that, due to the focus of this paper,

Table 1 merely summarizes features that refer to modeling support for interdependent

concern behavior and blanks out other modeling concepts additionally supported by the

different approaches.

8 CONCLUSION

We introduced an approach to model interdependent concern behavior. While our general

concepts to modeling interdependent concern behavior are independent of a certain mod-

eling language, we chose the UML to demonstrate the approach because it is a standard-

ized and well-known language. The approach provides an extension to UML2 activity

models where concern start and concern end nodes are applied to model how different

concerns intercept the control flow in a system. Each concern is modeled via an own ac-

tivity (sub-)partition, and each activity model may include an arbitrary number of activity

partitions. Hence, modelers can examine the different concerns individually by focusing

162 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

8 CONCLUSION

on a single partition. On the other hand, our approach also supports the examination of

concern interdependencies in the same activity model by inspecting all (sub-)partitions of

the respective activity model.

In addition, we provide a straightforward integration with the classes (or compo-

nents) that implement the concerns and with interaction models that specify invocation

sequences in detail. The high-level concern activity models provide an overview that is

useful for communicating with non-technical stakeholders such as business or domain

experts. The more low-level class and interaction models are needed by technical experts.

Using these different abstraction levels it is fairly easy to change or exchange low-level

concern details in class and interaction models, while the typically more stable control

flow models, that represent the main application logic, can remain unaffected. The inte-

gration of high-level concern activity models with class and interaction models is useful,

for example, in the context of MDSD approaches and code generation techniques.

Furthermore, as each of our modeling constructs is defined as UML2 extension, the

approach can be applied to supplement other UML-based approaches and can be inte-

grated in UML-based software tools.

References

[1] J. Barros and L. Gomes. Towards the Support for Crosscutting Concerns in Activ-

ity Diagrams: a Graphical Approach. In Proc. of the AOSD Modeling with UML

Workshop, October 2003.

[2] K. Czarnecki and M. Antkiewicz. Mapping features to models: A template approach

based on superimposed variants. In Proceedings of 4th International Conference

on Generative Programming and Component Engineering (GPCE 2005), Sep/Oct

2005.

[3] D. Ferraiolo, J. Barkley, and D. Kuhn. A Role-Based Access Control Model and

Reference Implementation within a Corporate Intranet. ACM Transactions on Infor-

mation and System Security (TISSEC), 2(1), February 1999.

[4] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli. Proposed

NIST Standard for Role-Based Access Control. ACM Transactions on Information

and System Security (TISSEC), 4(3), August 2001.

[5] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.

Prentice Hall, 1991.

[6] O. Gotel and A. Finkelstein. An analysis of the requirements traceability problem. In

Proc. of the IEEE International Conference on Requirements Engineering (ICRE),

1994.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 163

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

[7] Y. Han, G. Kniesel, and A. Cremers. Towards Visual AspectJ by a Meta Model

and Modeling Notation. In Proc. of the International Workshop on Aspect-Oriented

Modeling, March 2005.

[8] W. Harrison, H. Ossher, S. Sutton, and P. Tarr. Supporting aspect-oriented software

development with the concern manipulation environment. IBM Systems Journal,

44(2), 2005.

[9] J. Jezequel, N. Plouzeau, T. Weis, and K. Geihs. From Contracts to Aspects in UML

Designs. In O. Aldawud, G. Booch, S. Clarke, T. Elrad, W. Harrison, M. Kande,

and A. Strohmeier, editors, Aspect-Oriented Modeling with UML, Enschede, The

Netherlands, April 2002.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Loingtier,

and J. Irwin. Aspect-oriented programming. In Proceedings of the European Con-

ference on Object-oriented Programming (ECOOP). LCNS 1241, Springer-Verlag,

June 1997.

[11] R. Laddad. AspectJ in Action, Practical Aspect-Oriented Programming. Manning

Publications Co., 2003.

[12] M. Mahoney and T. Elrad. Modeling Platform Specific Attributes of a System as

Crosscutting Concerns using Aspect-Oriented Statecharts and Virtual Finite State

Machines . In Proc. of the International Workshop on Aspect-Oriented Modeling,

March 2005.

[13] G. Neumann and M. Strembeck. Design and Implementation of a Flexible RBAC-

Service in an Object-Oriented Scripting Language. In Proc. of the 8th ACM Confer-

ence on Computer and Communications Security (CCS), November 2001.

[14] OCL 2.0 Specification. http://www.omg.org/technology/documents/formal/

uml.htm, May 2006. Version 2.0, formal/06-05-01, The Object Management Group.

[15] OMG Unified Modeling Language (OMG UML): Superstructure.

http://www.omg.org/technology/documents/formal/uml.htm, November 2007.

Version 2.1.2, formal/2007-11-02, The Object Management Group.

[16] B. Ramesh and M. Jarke. Toward reference models for requirements traceability.

IEEE Transactions on Software Engineering (TSE), 27(1), January 2001.

[17] T. Stahl and M. Voelter. Model-Driven Software Development. J. Wiley and Sons

Ltd., 2006.

[18] M. Strembeck. Conflict Checking of Separation of Duty Constraints in RBAC -

Implementation Experiences. In Proc. of the Conference on Software Engineering

(SE 2004), February 2004.

164 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

8 CONCLUSION

[19] M. Strembeck and G. Neumann. An Integrated Approach to Engineer and Enforce

Context Constraints in RBAC Environments. ACM Transactions on Information and

System Security (TISSEC), 7(3), August 2004.

[20] M. Strembeck and U. Zdun. Definition of an Aspect-Oriented DSL using a Dynamic

Programming Language. In Proc.of the Workshop on Open and Dynamic Aspect

Languages (ODAL), March 2006.

[21] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of separation: Multi-

dimensional separation of concerns. In Proceedings of the 21st International Con-

ference on Software Engineering (ICSE), May 1999.

[22] M. Tkatchenko and G. Kiczales. Uniform Support for Modeling Crosscutting Struc-

ture. In Proc. of the 8th International Conference on Model Driven Engineering

Languages and System (MoDELS). LNCS 3713, Springer Verlag, October 2005.

[23] M. Voelter. Patterns for handling cross-cutting concerns in model-driven software

development. In Proceedings of 10th European Conference on Pattern Languages

of Programs (EuroPlop), July 2005.

[24] U. Zdun and S. Dustdar. Model-Driven Integration of Process-Driven SOA Models.

International Journal of Business Process Integration and Management (IJBPIM),

2(2), 2007.

[25] U. Zdun and M. Strembeck. Modeling Composition in Dynamic Programming Envi-

ronments with Model Transformations. In Proc. of the 5th International Symposium

on Software Composition. LNCS 4089, Springer-Verlag, March 2006.

[26] U. Zdun and M. Strembeck. Modeling the Evolution of Aspect Configurations using

Model Transformations. In Proc.of the Linking Aspect Technology and Evolution

Workshop (LATE), Bonn, Germany, March 2006.

[27] U. Zdun, M. Strembeck, and G. Neumann. Object-based and class-based compo-

sition of transitive mixins. Information and Software Technology, 49(8), August

2007.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 165

MODELING INTERDEPENDENT CONCERN BEHAVIOR USING EXTENDED ACTIVITY MODELS

ABOUT THE AUTHORS

Mark Strembeck is currently working as an assistant professor in the

Institute of Information Systems at the Vienna University of Economics

and BA, Austria. Mark received two diploma degrees in information

systems from the University of Essen (Germany) in 1998 and 1999 re-

spectively, and a doctoral degree in information systems from the Vienna

University of Economics and BA in 2003. His research interests include

access control, role engineering, distributed systems, services comput-

ing, model-driven development, language engineering, and the modeling

and management of dynamic software systems. Mark can be reached at

strembeck@acm.org.

Uwe Zdun is currently working as an assistant professor in the Dis-

tributed Systems Group at the Vienna University of Technology, Vi-

enna, Austria. Prior to that, Uwe has worked as an assistant professor

in the Institute of Information Systems at the Vienna University of Eco-

nomics and BA, Vienna, Austria. He received his doctoral degree from

the University of Essen in 2002. His research interests include software

patterns, software architecture, language engineering, SOA, distributed

systems, and object-orientation. Uwe has published in numerous confer-

ences and journals, and is co-author of the books “Remoting Patterns”

(J. Wiley & Sons) and “Software-Architektur” (Elsevier/Spektrum). He

is (co)author of open-source software systems, such as Frag, Extended

Object Tcl (XOTcl), Leela, ActiWeb, and many other software systems.

Uwe served as conference chair for EuroPLoP 2005, program chair for

EuroPLoP 2006, is the European Editor of the Transactions on Pattern

Languages of Programming (TPLoP) journal published by Springer, and

is Associate Editor-in-Chief for the IEEE Software magazine. Uwe can

be reached at zdun@infosys.tuwien.ac.at

166 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

mailto:strembeck@acm.org
mailto:zdun@infosys.tuwien.ac.at

