
Vol. 7, No. 6, July–August 2008

Overcoming comprehension barriers in the
AspectJ programming language

Venera Arnaoudova
Laleh Mousavi Eshkevari
Elaheh Safari Sharifabadi
Constantinos Constantinides
Department of Computer Science and Software Engineering,
Concordia University,
1455, De Maisonneuve Blvd. West,
Montréal, Québec, H3G 1M8, Canada

It has now been over a decade since the introduction of Aspect-Oriented Programming
(AOP). As the AspectJ programming language (being one of the notable technologies of
AOP) gains acceptance in industry and academia, its comprehensibility property is an im-
portant factor in determining an eventual wide acceptance by practitioners in development
and maintenance as well as by educators who aim at introducing AOP into their curric-
ula. Our objective is to improve program comprehension by identifying and addressing
potential pitfalls in code which tend to make comprehension not intuitive. In those subtle
places, we observe the behavior of the program to see the degree to which it matches the
expected results. In cases where a conflict occurs, we provide a reasoning to point out
where it would originate from, and a resolution to the conflict where applicable.

1 INTRODUCTION

Separation of concerns and its associated benefits such as good code modularity tend to be
one of the objectives of many programming paradigms and languages. One such paradigm is
Aspect-Oriented Programming (AOP) which was introduced tothe community over a decade
ago [Kiczales et al., 1997]. Aspect-Oriented Programming is currently supported by anumber
of technologies, perhaps the most notable of which is AspectJ [Kiczales et al., 2001], an aspect-
oriented extension to the Java language. With a significant collection of supporting tools and an
increasing community of practitioners and developers, theAspectJ language has influenced the
design dimensions of several other general-purpose aspect-oriented languages, and has provided
the community with a de facto common vocabulary based on its own linguistic constructs.

Over the last decade we have also experienced the worldwide adoption of AOP approaches
in institutes of higher education1. In our institution we have included AspectJ in our upper-level
undergraduate and graduate curriculum over the last four academic years. Relevant courses
include the assignment of small to medium-scale projects involving the adoption of AspectJ
for program development as well as for program maintenance.For the latter, one common

1A list of academic and industrial institutions is maintained at the following website (last accessed: June 5,
2008):http://dev.eclipse.org/viewcvs/indextech.cgi/aspectj-home/teaching.html.

Venera Arnaoudova, Laleh Mousavi Eshkevari, Elaheh Safari Sharifabadi and Constantinos Con-
stantinides: Overcoming comprehension barriers in the AspectJ programming language, in Journal
of Object Technology, vol. 7, no. 6, July–August 2008, pp. 121–142,
http://www.jot.fm/issues/issues 2008 4/

http://dev.eclipse.org/viewcvs/indextech.cgi/aspectj-home/teaching.html
http://www.jot.fm/issues/issue_2008_07/article4/

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

task includes program comprehension. Another task includes reengineering of object-oriented
(Java) programs into an aspect-oriented (AspectJ) context.

Of particular interest to us is comprehension, especially during maintenance where it consti-
tutes the initial and vital step for any task and tends to consume a significant proportion of time.
While teaching AspectJ we have realized that in some cases understanding program semantics
may not be obvious for students. The purpose of this article is, therefore, to understand why
this difficulty exists, to contribute to the comprehension of AspectJ programs based on our em-
pirical work by exploring different cases2 and to encourage people to adopt AspectJ by showing
that some of the unintuitive3 behavior originates in the underlying language (Java) and the an-
swers to some questions which seem to be AspectJ-related canbe found in the Java language
specification.

The rest of this article is organized as follows: In Section2 we provide some necessary
background and in Section3 we discuss the problem and motivation behind this research.In
Section4 we describe the subject population and the settings for our experiments. In Section5
we discuss a number of cases, where our investigation has shown that comprehension of AspectJ
programs tends to become difficult. For each case we initially describe the intent, followed by
an intuitive solution based on a survey we have conducted with a group of students. Next, we
implement and observe the behavior of the programs; in caseswhere the behavior differs from
the expectations, we provide a reasoning why this is so and discuss guidelines on how one
can achieve the intended behavior. In Section6 we discuss related work, and we conclude our
discussion in Section7.

2 BACKGROUND

The principle of separation of concerns [Parnas, 1972, Dijkstra, 1976] refers to the realization
of system concepts into separate software units and it is a fundamental principle in software
development. The associated benefits include better analysis and understanding of systems,
high readability of modular code, high level of reuse, easy adaptability and good maintainabil-
ity. Despite the success of object-orientation in the effort to achieve separation of concerns,
certain properties cannot be directly mapped in a one-to-one fashion from the problem domain
to the solution space, and thus cannot be localized in singlemodular units. Their implementa-
tion ends up cutting across the inheritance hierarchy of thesystem. Crosscutting concerns (or
“aspects”) include persistence, authentication, synchronization, contract checking and logging.
The “crosscutting phenomenon” creates two implications: 1) The scattering of a concern over
a number of modular units and 2) The tangling of code of several concerns in one unit. As a
result, developers are faced with a number of problems including a low level of cohesion of
modular units, strong coupling between them and difficult module comprehensibility, resulting
in programs that are more error prone.

2All examples discussed are compiled with the ajc compiler (version 1.5.2) and the abc compiler (version
1.2.1).

3The definition of unintuitive here is based on a survey over 35upper-level undergraduate and graduate stu-
dents with experience in AOP, enrolled in Computer Science and Software Engineering programs at Concordia
University.

122 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

3 PROBLEM AND MOTIVATION

Aspect-Oriented Programming [Kiczales et al., 1997, Elrad et al., 2001] explicitly addresses
those concerns by introducing the notion of an aspect definition, which is a modular unit of de-
composition. Currently there exist many approaches and technologies to support AOP. One
notable technology is AspectJ [Kiczales et al., 2001], a general-purpose aspect-oriented lan-
guage, which has influenced the design dimensions of severalother aspect-oriented languages,
and has provided the community with a common vocabulary based on its own linguistic con-
structs. There are currently two AspectJ compilers, namelyajc4 and abc5. In the AspectJ model,
an aspect is a new unit of modularity providing behavior to beinserted over functional compo-
nents. This behavior is defined in method-like blocks calledadviceblocks. However, unlike
a method, an advice block is never explicitly called. Instead, it is only implicitly invoked by
an associated construct called apointcutexpression. A pointcut expression is a predicate over
well-defined points in the execution of the program which arereferred to asjoin points. When
the program execution reaches a join point captured by a pointcut expression, the associated
advice block is executed. Even though the specification and level of granularity of the join
point model differ from one language to another, common joinpoints in current language spec-
ifications include calls to, and execution of methods and constructors. Most aspect-oriented
languages provide a level of granularity which specifies exactly when an advice block should
be executed, such as executing before, after, or instead of the code defined at the associated
join point. Furthermore, several advice blocks may apply tothe same join point in which case
advice precedence rules [Kienzle et al., 2003, Lorenz and Kojarski, 2006] are applied. In cases
where these advice blocks are defined in the same aspect, precedence of advice execution de-
pends on the type of advice. Forbefore advice blocks, the one defined first has precedence over
the one following it, that is, it will be executed first. Forafter advice blocks, the one defined
last has precedence. Forafter advice having highest precedence means executed last. In cases
where these advice blocks are defined in different aspects, precedence can be defined through
thedeclare precedence construct. An aspect definition may also define state and behavior to
be introduced into the core functionality. It may also declare a new parent type for an existing
set of types.

3 PROBLEM AND MOTIVATION

In this article we explore some cases, in order to find an explanation why the actual behavior is
as it is, and to find one possible solution for reaching the intended goal (where applicable). Our
motivation is to decrease the gap between the semantics of the language and the understanding
of program readers.

When implementing a solution of a problem in a specific programming language, we rely
on its semantics in order to predict how the program will behave when it is executed. While
teaching AspectJ in our institution we observed that many students have difficulties in providing
the result of some AspectJ programs. We then decided to survey graduate and upper-level
undergraduate students in order to understand the criticalpoints in comprehension of AspectJ
semantics. We prepared questionnaires containing programs under different cases and we asked
the participants to provide answers to each program. In Section 4 we describe how the survey

4Available athttp://www.eclipse.org/aspectj/
5Available athttp://abc.comlab.ox.ac.uk

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 123

http://www.eclipse.org/aspectj/
http://abc.comlab.ox.ac.uk

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

Category Language Professional Good Familiar Number of
participants

Category 1 Java Y 4
AspectJ Y

Category 2 Java Y 12
AspectJ Y

Category 3 Java Y 19
AspectJ Y

Table 1: Categories of participants based on their knowledge of Java andAspectJ.

was conducted and in Section5 we discuss those cases where students had difficulties with.

4 EXPERIMENTS

In this section we describe the subject population for theseexperiments. The group of partici-
pants consists of undergraduate and graduate students someof whom are employed as industrial
developers6. The participants are categorized in three groups as shown in Table1. In the subse-
quent paragraphs we provide a more detailed description of each group.

Participants in Category 1: They are industrial Java programmers and academic AspectJ
programmers. They are currently enrolled in a graduate (master/ PhD) program in Computer
Science/ Software Engineering, engaged in AOP-related research. Four participants fell into
this category.

Participants in Category 2: They are industrial Java programmers. They have good knowl-
edge of AspectJ, since they have completed at least one course covering the principles of sepa-
ration of concerns and AOP. They are currently enrolled in anundergraduate program in Com-
puter Science (3-year program)/ Software Engineering (4-year program). Twelve participants
fell into this category.

Participants in Category 3: These students do not have any industrial experience with Java
even though they have enough background in object-orientedprograming (90% of which is
Java) in academia. They were not familiar with AOP/AspectJ but they were introduced to the
principles of separation of concerns, AOP, and AspectJ during a one-term course (13 week; 2.5
hours per week of lectures and 50 minutes per week of tutorial). We can therefore consider their
level as “being familiar with AspectJ.” Nineteen participants fell into this category.

The participants were asked to complete a printed questionnaire containing 19 questions
by providing the output of the given programs. They were given “AspectJ Language Quick
Reference” from [Colyer et al., 2004] and they were free to use any other documentation. The

6In [Penta et al., 2007] the authors discuss the identification of an appropriate subject population as still being
an open issue.

124 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR

constraints were as follows: First, the questionnaire should be completed individually and sec-
ond, it should be completed as a dry run, i.e. with no assistance from a compiler. There was no
time limitations for responding to the questionnaire.

5 CASES: INTENT AND BEHAVIOR

In this section we describe a number of cases where the provisions of the AspectJ language do
not seem to be intuitive. The cases are classified into two categories, Java and AspectJ, based
on the reason this unexpected behavior originates from.

Java

Since Java is the underlying language of AspectJ, we should not be surprised from the fact that
it inherits design/implementation decisions from Java. Thus, for some cases, one should look
for an explanation in the language specification of Java rather than AspectJ. Following are such
examples.

Exact location of “before execution” of constructors

In this example we want to capture the exact location of thebefore constructor execution join
point. We tend to think that before execution of a constructor is like before execution of a
method, meaning before the body is explored. Thus, even if the first statement of a constructor
is a call to another constructor, the first constructor to be called should start execution before
any referenced constructors. Consider the following code:

public class C {
...
C(int x){...}
C(int x, String y){

this(x);
this.y = y;}}

public class Demo {
public static void main(String[] args){

C c = new C(5, "s");}}

public aspect Tracer {
pointcut constructor():

execution(C.new(..));
before():constructor(){...}
after():constructor(){...}}

Based on the above explanation one may expect the following result7.

7Advice blocks in all cases display the signature ofthisJoinPoint.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 125

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

Before execution(C(int, String))
Before execution(C(int))
After execution(C(int))
After execution(C(int, String))

However, this is not the actual output of the program. In Java, the compiler treats methods
and constructors differently. The execution of the body of aconstructor starts after completing
the following steps [Gosling et al., 2005]:

1. Evaluation of all arguments.

2. Invocation of another constructor in the same class (by going through steps 1 to 4, fol-
lowed by the execution of its body), should an explicit call be made through the keyword
this.

3. Invocation of a constructor in the superclass (by going through steps 1 to 4, followed by
the execution of its body), should an implicit or explicit call be made to the superclass
constructor through the keywordsuper.

4. Execution of the instance initializers and instance variable initializers for this class.

Consequently, AspectJ treats methods and constructors in the same manner as Java. Execu-
tion of a method is considered to be“when the body of code for an actual method executes”,
whereas execution of a constructor is“when the body of code for an actual constructor exe-
cutes, after itsthis or super constructor calls” [The AspectJ Team, 2006]. Thus the output
of the above example (with both abc and ajc compilers) is

Before execution(C(int))
After execution(C(int))
Before execution(C(int, String))
After execution(C(int, String))

The above result can be interpreted as follows: the execution of the constructor being called
starts after the completion of the execution of its inner constructor (see Figure1). Two of the
participants in Category 1 provided the actual output, whilenone of the participants in categories
2 or 3 did.

Counting the creation of objects

In this case our intention is to capture the number of createdinstances of a particular class. The
question is “What exactly should be monitored?” and it may lead to more than one possibilities:
monitor the number of calls to constructors; monitor the number of executions of constructors
or, alternatively, count the number of classes that have been initialized. For this experiment
participants were given all possible alternatives and theywere asked to provide the output of
each alternative. If the provided result corresponds to theactual number of objects created, we

126 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR

: D e m o

c : C

T h e w a y w e m a y t h i n k i t w i l l b e . . .

c : = c r e a t e (5 , " s ")

t h i s (5)

B e f o r e e x e c u t i o n o f
n e w C (5 , " s ")

t h i s (5 , " s ")

: D e m o

c : C

T h e w a y i t i s a c t u a l l y . . .

c : = c r e a t e (5 , " s ")

t h i s (5)

t h i s (5 , " s ")

A f t e r e x e c u t i o n o f
n e w C (5 , " s ")

B e f o r e e x e c u t i o n o f
n e w C (5 , " s ")

A f t e r e x e c u t i o n o f
n e w C (5 , " s ")

Figure 1: Sequence diagram - exact location of “before execution” ofconstructors.

suppose that the participants consider this alternative asa good possible solution. At the end,
participants were asked to choose the best solution for the purpose of this case.

Consider the following definitions:

public class C1 {}

public class C2 extends C1{
int x;
String y;
C2(int x){

super();
this.x = x;}

C2(int x, String y){
this(x);
this.y = y;}}

public class Demo {
public static void main(String[] args){

C2 c = new C2(5, "s");}}

Thirty percent of the participants think that usingexecution pointcut on thenew keyword is
a good idea since we count the number of objects created. Thisresults in the following aspect
definition:

public aspect A {
before():

execution(*.new(..)) && !within(A){...}}

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 127

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

The above pointcut monitors the execution of any constructor outside aspectA, and results
in three captured join points (with both abc and ajc compilers) because three constructors are
executed (C2(int,String), C2(int), C1()).

One may argue that in order to be able to count the number of objects created withexecution,
the pointcut definition should be changed to:

before():
execution(*.new(..)) && !within(A)
&& !cflowbelow(execution(*.new(..))){...}

The above advice block means that we exclude the execution ofconstructors that are already
in the control flow of other constructors. When we asked the participants whether this would
solve the problem fifty percent replied “yes.” By running the program however, we still observe
three captured join points (with both abc and ajc compilers). The reason for this behavior is
that as explained in Section5, the execution of a constructor starts after the execution of the
nested constructors called with the keywordsthis andsuper. This implies that the inner most
constructor will be executed first, and after its execution the constructor that called it, will
start executing and so on. After returning from all nested constructors, the body of the initial
constructor (in this case the one called in themain method in classDemo) will start executing.
Thus the pointcut designator

!cflowbelow(execution(*.new(..)))

does not affect the captured join points, since there is no execution of a constructor inside the
execution of another constructor. For example, in Figure2 the constructorC2(int,String) is
called in themain method of classDemo. As the first statement of this constructor isthis(5),
the constructorC2(int) will be executed first. Since the first statement ofC2(int) is super(),
the constructorC1() will be executed first. After its execution, the rest of the body of construc-
tor C2(int) will be executed, followed by the execution of the rest of thebody of constructor
C2(int,String). Thus, the control flow below the execution ofC2(int,String) does not con-
tain any other constructor execution. This implies that keeping or deleting the previous pointcut
designator does not affect the set of captured join points.

We then proposed an alternative solution, chosen by more than fifty percent of the partici-
pants, which is to use thewithincode pointcut designator as follows:

execution(*.new(..)) && !within(A)
&& !withincode(*.new(..)){...}

The above pointcut captures every join point from the code defined outside the code of any
constructor of any class (and not in aspectA). However addingwithincode to anexecution

pointcut does not change the set of captured join point (witheither abc or ajc compilers), be-
cause forexecution pointcut, the enclosing code of the method is the method itself. Thus,
adding

128 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR

: D e m o

c : C 2

T h e w a y i t i s a c t u a l l y . . .

c : = c r e a t e (5 , " s ")

t h i s (5)

E x e c u t i o n o f
C (5 , " s ")

t h i s (5 , " s ")

s u p e r ()

Figure 2: Sequence diagram - counting number of objects created.

!withincode(*.new(..))

to the join point designatorexecution(*.new(..)) is interpreted as “execution of a method
and not inside its body”, orp∧¬p which is always false for any value ofp. This implies no
captured join points. Thus, capturing the execution of constructors is not a suitable solution for
this purpose. More than fifty percent of the participants believed in another candidate solution
to this question: the use of theinitialization pointcut. This solution is invalid due to the
underlying semantics of AspectJ. In Java, when an object is created its direct superclass is
initialized first [Gosling et al., 2005]. The initialization(*.new(..)) pointcut matches two
join points and produces the following output (with both abcand ajc compilers):

initialization(C1())
initialization(C2(int, String))

Another solution may be the following:

public aspect A {
before():

call(*.new(..)) && !within(A){...}}

The above pointcut monitors any call to any constructor (outside the definition of aspectA),
thus one may expect to have three captured join points:

1. In the main method of class Demo (because of the statementC2 c = new C2(5, "s");).

2. In the constructorC2(int x, String y) in classC2 because we explicitly call another
constructor of the class in it (this(x);).

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 129

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

3. In the constructorC2(int x) because we explicitly call the constructor of the superclass
(super();).

In reality, we have only one captured join point (with both abc and ajc compilers). The
captured join point corresponds to the call of the constructor in themain method of classDemo.
Even if we explicitly call another constructor within the called constructor usingthis andsuper,
these join points are not captured. We can then conclude thateven if all three of them represent
a call to a constructor, there is a difference between capturing the creation of an object with the
keywordthis or super on one hand, and with the keywordnew on the other hand, when the
pointcut is based oncall.

Finally, we can conclude that in order to count the number of objects created, one should
monitor the calls to class constructors, usingnew keyword, i.e.,

call(*.new(..)) && !within(A)

Unfortunately when the participants were asked to chose themost suitable solution for
counting the number of objects created only one sixth of themchose the above pointcut.

AspectJ

For some other examples, one should search an explanation for the behavior of AspectJ pro-
grams in the design/implementation decisions behind the AspectJ language. In the following
paragraphs we discuss some of these cases.

Library methods

Consider the following code:

public class Demo {
public static void main(String[] args) {
Vector v = new Vector();
v.size();}}

public aspect A {
pointcut callVectorSize():
call(public int java.util.Vector.size());

pointcut execVectorSize():
execution(public int java.util.Vector.size());

before():callVectorSize(){...}
after():callVectorSize(){...}
before():execVectorSize(){...}
after():execVectorSize(){...}}

As we define four advice blocks, two third of the participantsexpected that call and execu-
tion of methodsize() of classVector will be captured, and the following output will observed:

130 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR

Figure 3: Class diagram - tracing methods.

callVectorSize before call advice
execVectorSize before execution advice
execVectorSize after execution advice
callVectorSize after call advice

The actual result, however (with both abc and ajc compilers)is:

callVectorSize before call advice
callVectorSize after call advice

One main difference betweencall andexecution pointcuts is thatcall refers to the caller
side (classDemo in this case) whereasexecution refers to callee side (classVector in this
case) [Masuhara et al., 2002]. The question is then “Why execution of library methods is not
captured?”.

In order to explain the difference between expected and observed behavior, we need to
consider how advice weaving is done based on static shadows.
Static shadow is a specific place in the source code or bytecode which corresponds to possible
joint points. For each static shadow the back-end AspectJ compiler checks if a precompiled
advice can match this shadow. Should this be the case, a call to the specific advice is injected
into the bytecode [Hilsdale and Hugunin, 2004]. But if the weaver is not able to modify the
bytecode, then the call to an advice can not be inserted. Basedon AspectJ Language Guide,
execution join point can be advised if the compiler controlsthe bytecode for the method or
constructor body in question. Thus, in the previous example, because the weaver does not have
control over the bytecode of the library methods, the execution of java.util.Vector.size() is
not captured by the aspect. However, the call tojava.util.Vector.size() is captured because
a call to the advice is injected in classDemo.

Tracing methods

Our intent in this case is to capture any call and execution ofany method (with no parameters)
of a given class. Consider the class diagram in Figure3.

We have defined pointcutP_EXE_C1() asexecution(* C1.*()), and pointcutP_CALL_C1()
ascall(* C1.*()). In the same manner we defined six more pointcuts for the otherclasses

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 131

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

and interface as follows:P_EXE_C2(), P_CALL_C2(), P_EXE_C3(), P_CALL_C3(), P_EXE_F(),
P_CALL_F(). For each pointcut we have defined abefore advice block. Consider classDemo
defined as follows:

public class Demo {
public static void main(String[] args) {
C3 o3 = new C3();
o3.anOverriddenMethod();}}

Based on the fact that only methodanOverriddenMethod() is called on objecto3, more
than fifty percent of the participants think that onlyP_EXE_C2() andP_CALL_C3() pointcuts will
capture the join point:

• P_CALL_C3() because the call is made too3 which is of typeC3.

• P_EXE_C2() becauseC2 is the first parent ofC3 which contains the method definition.

This results in the following output:

P_CALL_C3:
call(void C3.anOverriddenMethod())

P_EXE_C2:
execution(void C2.anOverriddenMethod())

However, after running the program we obtain the following (with both abc and ajc compil-
ers):

P_CALL_C1:
call(void C3.anOverriddenMethod())

P_CALL_C2:
call(void C3.anOverriddenMethod())

P_CALL_C3:
call(void C3.anOverriddenMethod())

P_EXE_C1:
execution(void C2.anOverriddenMethod())

P_EXE_C2:
execution(void C2.anOverriddenMethod())

This result is justified by the fact that for bothcall andexecution pointcuts two factors
must be taken into consideration: type and method declaration. However, there is a subtle
difference betweencall andexecution with regards to those characteristics:

• For acall pointcut to match a join point two criteria are important:

– thestatic typeof the object involved in the join point should be of type (or subtype)
of the one involved in the pointcut,

132 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR

– signature of the method involved in the join point should exist in theclass (or su-
perclass)of the one monitored by the pointcut.

• For anexecution pointcut to match a join point two criteria are important:

– the dynamic type of the object involved in the join point should be of type (or
subtype) of the one involved in the pointcut,

– signature of the method involved in the join point should exist in theclassmonitored
by the pointcut. Note that here superclasses are not checked.

Barzilayet al. discussed previously the patterns for matchingcall andexecution pointcuts
[Barzilay et al., 2004] but with an early version of AspectJ and are not applicable any more with
the current version. The authors showed that for matching acall pointcut the method should be
defined in the specific class (inheritance is not a sufficient condition). In the above guidelines
however we explain that inheritance is now enough. Also, formatching anexecution pointcut
the authors explained that the method should be defined or overridden, whereas we show that
currently a signature is enough.

Applying our guidelines on the above example, we observe thefollowing:

1. P_CALL_C1(): call(* C1.*()) pointcut captureso3.anOverriddenMethod() join point
because

• static type ofo3 is C3, which “is-a” C1 and

• the signature ofanOverriddenMethod() exists in classC1.

2. P_CALL_C2(): call(* C2.*()) pointcut captureso3.anOverriddenMethod() join point
because

• static type ofo3 is C3, which “is-a” C2 and

• the signature ofanOverriddenMethod() exists in classC2.

3. P_CALL_C3(): call(* C3.*()) pointcut captureso3.anOverriddenMethod() join point
because

• static type ofo3 is C3, and

• the signature ofanOverriddenMethod() exists in a superclass ofC3, which isC2.

4. P_EXE_C1(): execution(* C1.*()) pointcut captureso3.anOverriddenMethod() join point
because

• dynamic type ofo3 is C3, which “is-a” C1 and

• the signature ofanOverriddenMethod() exists inC1.

5. P_EXE_C2(): execution(* C2.*()) pointcut captureso3.anOverriddenMethod() join point
because

• dynamic type ofo3 is C3, which “is-a” C2 and

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 133

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

Table 2: Results of execution, wheref is declared asF f = new C3().

Code in Demo Call Execution
f.anEnforcedMethod() P_CALL_F:

call(void F.anEnforcedMethod())
P_EXE_C3:
execution(void C3.anEnforcedMethod())

P_EXE_F:
execution(void C3.anEnforcedMethod())

• the signature ofanOverriddenMethod() exists inC2.

Applying our guidelines on the example in Table2 (wheref is defined asF f = new C3()),
we can see that

1. P_CALL_F(): call(* F.*()) pointcut capturesf.anEnforcedMethod() join point because

• static type off is F, and

• the signature ofanEnforcedMethod() exists in interfaceF.

2. P_EXE_C3(): execution(* C3.*()) pointcut capturesf.anEnforcedMethod() join point
because

• dynamic type off is C3, and

• the signature ofanEnforcedMethod() exists in classC3.

3. P_EXE_F(): execution(* F.*()) pointcut capturesf.anEnforcedMethod() join point be-
cause

• dynamic type off is C3, which “is-a” F and

• the signature ofanEnforcedMethod() exists in interfaceF.

More examples and results are summarized in Table3 (whereo3 is declared asC3 o3 =

new C3()) and Table4 (whereo23 is declared asC2 o23 = new C3()).

Our initial intent was to capture one call and one execution in classDemo since only one
call is made by the user and only one method body is executed. In order to reach this goal we
propose one possible solution which is applicable for bothcall andexecution pointcuts. Thus
we defineP_CALL_C1 as:

call(* C1.*())
&& if(thisJoinPoint.getSignature().getDeclaringType() == C1.class)

And P_EXE_C1 as:

execution(* C1.*())
&& if(thisJoinPoint.getSignature().getDeclaringType() == C1.class)

In the same manner we must define all other pointcuts previously addressed.

134 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR

Table 3: Results of execution, whereo3 is declared asC3 o3 = new C3().

Code in Demo Call Execution
o3.aVeryNewMethod() P_CALL_C3:

call(void C3.aVeryNewMethod())
P_EXE_C3:
execution(void C3.aVeryNewMethod())

o3.anEnforcedMethod() P_CALL_C3:
call(void C3.anEnforcedMethod())

P_EXE_C3:
execution(void C3.anEnforcedMethod())

P_CALL_F:
call(void C3.anEnforcedMethod())

P_EXE_F:
execution(void C3.anEnforcedMethod())

o3.aNewMethod() P_CALL_C2:
call(void C3.aNewMethod())

P_EXE_C2:
execution(void C2.aNewMethod())

P_CALL_C3:
call(void C3.aNewMethod())

o3.anOverriddenMethod() P_CALL_C1:
call(void C3.anOverriddenMethod())

P_EXE_C1:
execution(void C2.anOverriddenMethod())

P_CALL_C2:
call(void C3.anOverriddenMethod())

P_EXE_C2:
execution(void C2.anOverriddenMethod())

P_CALL_C3:
call(void C3.anOverriddenMethod())

o3.anInheritedMethod() P_CALL_C1:
call(void C3.anInheritedMethod())

P_EXE_C1:
execution(void C1.anInheritedMethod())

P_CALL_C2:
call(void C3.anInheritedMethod())

P_CALL_C3:
call(void C3.anInheritedMethod())

Table 4: Results of execution, whereo23 is declared asC2 o23 = new C3().

Code in Demo Call Execution
o23.aNewMethod() P_CALL_C2:

call(void C2.aNewMethod())
P_EXE_C2:
execution(void C2.aNewMethod())

o23.anOverriddenMethod() P_CALL_C1:
call(void C2.anOverriddenMethod())

P_EXE_C1:
execution(void C2.anOverriddenMethod())

P_CALL_C2:
call(void C2.anOverriddenMethod())

P_EXE_C2:
execution(void C2.anOverriddenMethod())

o23.anInheritedMethod() P_CALL_C1:
call(void C2.anInheritedMethod())

P_EXE_C1:
execution(void C1.anInheritedMethod())

P_CALL_C2:
call(void C2.anInheritedMethod())

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 135

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

Access and modification of instance variables

In this case our goal is to capture accesses and modificationsof instance variables. Consider the
following definitions:

public class C1 {
public int x;}

public class C2 extends C1 {}

public class Demo {
public static void main(String[] args) {
C2 o = new C2();
o.x++;}}

We also define an aspect, which monitors the accesses and modifications of all instance
variables in both classes:

public aspect FieldAccessModification {
pointcut accessorC1():
get(* C1.*);

pointcut accessorC2():
get(* C2.*);

pointcut mutatorC1():
set(* C1.*);

pointcut mutatorC2():
set(* C2.*);

after(): accessorC1() {...}
after(): accessorC2(){...}
after(): mutatorC1(){...}
after(): mutatorC2(){...}}

In Java, whenever a class instance is created, memory space is allocated for it with room
for all the instance variables declared in the class and all instance variables declared in each
superclass of the class, including those that may be hidden [Gosling et al., 2005]. Thus, these
instance variables are accessed and modified when an instance of the class is manipulated.
Based on this, one third of the participants expected two captured join points by running the
above example - one for modification and one for access, whichis:

Accessed(accessorC2): get(int C2.x)
Modified(mutatorC2): set(int C2.x)

In contrast, for a similar example theAspectJ Language Guideexplains that for aget point-
cut where a class does not directly declare a member, the joinpoint matches each superclass
up to and including the most specific supertype that does declare the member. This resumes
in having two join points captured for the access pointcut. The guide also explains that the
signatures for aset pointcut are derived in an identical manner, which in our case will result in
having also two join points captured for modification pointcut.

136 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR

The abc compiler: If the abc compiler follows the semantics defined in theAspectJ Language
Guide, we will expect the following output:

Accessed(accessorC1): get(int C1.x)
Accessed(accessorC2): get(int C2.x)
Modified(mutatorC1): set(int C1.x)
Modified(mutatorC2): set(int C2.x)

This output was predicted by one third of the participants. The above result was verified by
running the program8. In order to reach our initial intention, which is capturingthe number of
real modifications and accesses of the instance variablex, we need to modify the definitions of
the pointcuts as follows:

public aspect FieldAccessModification{
pointcut accessorC1():

get(* C1.*)
&& if(thisJoinPoint.getSignature().getDeclaringType() == C1.class);

pointcut accessorC2():
get(* C2.*)
&& if(thisJoinPoint.getSignature().getDeclaringType() == C2.class);

pointcut mutatorC1():
set(* C1.*)
&& if(thisJoinPoint.getSignature().getDeclaringType() == C1.class);

pointcut mutatorsC2():
set(* C2.*)
&& if(thisJoinPoint.getSignature().getDeclaringType() == C2.class);

...}

Thus we observe our original expected behavior, which is:

Accessed(accessorC2): get(int C2.x)
Modified(mutatorC2): set(int C2.x)

This result corresponds to one access and one modification ofinstance variablex in class
C2.

Currently, changing the type of the instance variablex to a user defined type, however,
results in different behavior. We observe one modification of x in classC1 and one access ofx in
classC29. The insufficient documentation regarding this behavior may be misleading and may
decrease the comprehensibility of the language.

8For access and modification of all other primitive types we observe the same behavior.
9The aspect pointcuts do not yet contain the proposed solution.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 137

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

The ajc compiler: The result with the ajc compiler differs from what is explained inAspectJ
Language Guideand was expected only by one of the participants. We observe the following
output after compiling the program with the ajc compiler:

Accessed(accessorC1): get(int C1.x)
Modified(mutatorC1): set(int C2.x)
Modified(mutatorC2): set(int C2.x)

It seems that for primitive types, reasoning about field access is based on the exact class
where the field is defined. For field modification pointcut however, checking is based on the
class where the field is defined or whose parent has the field definition. The above output seems
to contradict what is specified in theAspectJ Language Guide.

The solution previously discussed in Paragraph The abc compiler is applicable when using
the ajc compiler and the result is as following:

Accessed(accessorC1): get(int C1.x)
Modified(mutatorC2): set(int C2.x)

The above result is interpreted as one access ofx in classC1, and one modification ofx in
classC2, which is different from the result previously discussed inParagraph The abc compiler.
Regarding the number of accesses and modifications, the result matches with our expectation.
However, there seams to be a conflict between the two compilers regarding the place where the
access is performed.

Currently, changing the type of the instance variablex to a user defined type, however,
results in different behavior from the one observed with theabc compiler. We observe one
modification and one access ofx both in classC1.

Overall we think that field access and modification should be documented better in the
literature in order to improve the understanding of programreaders.

Purpose of initialization

Our intent is to observe the behavior of initialization pointcut in AspectJ. The result of all above
mentioned cases is that AspectJ follows also Java specification. Therefore, our intuition in
this case is also based on Java specification. In Java, a classis initialized by invoking static
initializers and initializers for static fields of the class. Before the class is initialized, its direct
superclass is initialized, but not the interfaces implemented by the class (if any). In the same
manner, the superinterface of an interface does not need to be initialized when the subinterface
is initialized [Gosling et al., 2005]. Consider the class diagram on Figure4 and the following
definitions:

138 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

5 CASES: INTENT AND BEHAVIOR

Figure 4: Class diagram - purpose of initialization.

public class Demo {
public static void main(String[] args){

Interface2 c= new Class2();}}

public aspect A {
pointcut P_Init():

initialization(*.new(..)) && !within(A);
before():P_Init(){...}}

One third of the participants expected the following resultbased on the fact that theInterface1
andInterface2 will not be initialized (according to the above discussion):

initialization(Class1())
initialization(Class2())

This corresponds to initialization of superclassClass1, followed by initialization ofClass2
itself. Referring to theAspectJ Language Guidehowever,initialization join point captures
call to constructor through the keywordnew, and invocation of non-static initializers of super-
classes and superinterfaces. There are few rules regardingthe order of initialization within
inheritance hierarchy chain:

• A supertype is initialized before the subtype.

• A superclass is initialized before superinterface.

• Initializers are executed once.

The ajc compiler In what seems to be in contradiction with theAspectJ Language Guide,
after running the program with the ajc compiler, we observedthe following result:

initialization(Class1())
initialization(Class2())
initialization(Interface2())
initialization(Interface1())

Note thatClass2 is initialized before the initialization of its superinterfaces. In addition,
it seems thatInterface2 is initialized beforeInterface1. Both observations indicate that the
above rules are not followed by the ajc compiler.

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 139

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

The abc compiler Similarly, the abc compiler provides the following output:

initialization(Class1())
initialization(Class2())
initialization(Interface1())
initialization(Interface2())

In this case the order of initialization of interfaces follows the above rules, but stillClass2 is
initialized before the initialization of its superinterfaces which seems to contradict theAspectJ
Language Guide.

Overall, it is important to note that initialization in Javaandinitialization pointcut in
AspectJ are two different concepts, which means thatinitialization pointcut in AspectJ does
not capture the initialization such as defined in Java. Therefore, in order to capture initialization
as defined in Java, one should usestaticinitialization pointcut.

6 RELATED WORK

In [Barzilay et al., 2004] the authors argue about certain “unintuitive aspects” of AspectJ. They
observed certain unexpected results with AspectJ (version1.1.1) regarding the semantics of
call and execution pointcuts and proposed alternative semantics. Their observations and
guidelines can not be applied to the current version of AspectJ (1.5.2). The authors showed
that for matching acall pointcut the method should be defined in the specific class (inher-
itance is not a sufficient condition). In Section5 however we explain that inheritance is now
enough. Also, for matching anexecution pointcut the authors explained that the method should
be defined or overridden, whereas in Section5 we show that currently a signature is enough.

In [Breu, 2005] the author introduces an aspect mining tool called DynAMiT, which uses
AspectJexecution pointcut for trace generation. The authors mentions about the incapability
to trace system methods. In Section5 we provided a more detailed explanation for call and
execution of system methods.

7 CONCLUSION

In this article we addressed the comprehensibility property of the AspectJ programming lan-
guage as a notable representative of AOP technology, havinggained an increasing acceptance
both in industry as well as in academia. There seems to be two different issues that affect the
comprehensibility property of AspectJ: The first is a conflict between the two different imple-
mentations, ajc and abc. The second is the conflict between what the two implementations
seems to have intended and what program readers seem to expect. We identified cases where
the provisions of the language do not seem to be intuitive or lack of detailed documentation. We
provided a reasoning in cases where the behavior does not seem to be obvious for the partici-
pants which may result in lack of comprehension and also may affect the correctness of systems.
Programmers should be careful when writing AspectJ programs and in some cases, should take

140 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

7 CONCLUSION

into consideration the semantics of the underlying language - Java. Finally, we feel that by
providing more clarity on some subtle cases, the understandability property as well as the usage
of the AspectJ programming language can be increased considerably. We also feel that lessons
learned from this experience can be beneficial to language designers and practitioners alike.

ACKNOWLEDGMENTS

We would like to thank Therapon Skotiniotis for his commentsduring the preparation of this
article.

REFERENCES

[Barzilay et al., 2004] Barzilay, O., Feldman, Y. A., Tyszberowicz, S., and Yehudai, A. (2004). Call
and Execution Semantics in AspectJ. InProceedings of the 3rd AOSD Workshop on Foundations of
Aspect-Oriented Languages (FOAL).

[Breu, 2005] Breu, S. (2005). Extending Dynamic Aspect Mining with Static Information. InProceed-
ings of the 5th IEEE International Workshop on Source Code Analysis and Manipulation(SCAM).

[Colyer et al., 2004] Colyer, A., Clement, A., Harley, G., and Webster, M. (2004). Eclipse AspectJ:
Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ Development Tools. Addison-
Wesley.

[Dijkstra, 1976] Dijkstra, E. W. (1976).A Discipline of Programming. Prentice Hall.

[Elrad et al., 2001] Elrad, T., Filman, R. E., and Bader, A. (2001). Aspect-Oriented Programming:
Introduction.Communications of the ACM, 44(10):29–32.

[Gosling et al., 2005] Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005). The Java Language Speci-
fication. Addison Wesley, 3rd edition.

[Hilsdale and Hugunin, 2004] Hilsdale, E. and Hugunin, J. (2004). Advice Weaving in AspectJ. In
Proceedings of the 3rd International Conference on Aspect-Oriented Software Development (AOSD).

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.,Palm, J., and Griswold,
W. G. (2001). An overview of AspectJ.Lecture Notes in Computer Science, 2072:327–355.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M., and Irwin, J. (1997). Aspect-Oriented Programming. InProceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP).

[Kienzle et al., 2003] Kienzle, J., Yu, Y., and Xiong, J. (2003). On Composition and Reuse of Aspects.
In Proceedings of the 2nd AOSD Workshop on Foundations of Aspect-Oriented Languages (FOAL).

[Lorenz and Kojarski, 2006] Lorenz, D. H. and Kojarski, S. (2006). Feature Interaction in AspectJ 5. In
Proceedings of the 5th AOSD Workshop on Software-engineering Properties of Languages forAspect
Technologies (SPLAT).

[Masuhara et al., 2002] Masuhara, H., Kiczales, G., and Dutchyn, C. (2002). Compilation Semantics
of Aspect-Oriented Programs. InProceedings of the 1st AOSD Workshop on Foundations of Aspect-
Oriented Languages (FOAL).

VOL 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 141

OVERCOMING COMPREHENSION BARRIERS IN THE
ASPECTJ PROGRAMMING LANGUAGE

[Parnas, 1972] Parnas, D. L. (1972). On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058.

[Penta et al., 2007] Penta, M. D., Stirewalt, R. E. K., and Kraemer, E. (2007). Designing your Next Em-
pirical Study on Program Comprehension. InProceedings of the 15th IEEE International Conference
on Program Comprehension (ICPC).

[The AspectJ Team, 2006] The AspectJ Team (2006). The AspectJ Language Guide.

ABOUT THE AUTHORS

Venera Arnaoudova is a graduate research assistant at the Department
of Computer Science and Software Engineering of Concordia University,
Canada. She can be reached atv arnaou@encs.concordia.ca.

Laleh Mousavi Eshkevari is a PhD student and research assis-
tant at the Department of Computer Science and Software Engi-
neering of Concordia University, Canada. She can be reached at
l mousa@encs.concordia.ca.

Elaheh Safari Sharifabadi is a graduate research assistant at the De-
partment of Computer Science and Software Engineering of Concordia
University, Canada. She can be reached ate safari@encs.concordia.ca.

Constantinos Constantinidesis an Assistant Professor at the Depart-
ment of Computer Science and Software Engineering of Concordia Uni-
versity, Canada. He holds an MS degree in Computer Science fromthe
New York Institute of Technology and a PhD degree in Computer Sci-
ence from the Illinois Institute of Technology. He can be reached at
cc@encs.concordia.ca.

142 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 6

mailto:v_arnaou@encs.concordia.ca
mailto:l_mousa@encs.concordia.ca
mailto:e_safari@encs.concordia.ca
mailto:cc@encs.concordia.ca

