
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 6, July-August 2008

A. Suganthy and T. Chithralekha: “Domain-Specific Architecture for Software Agents”, in
Journal of Object Technology, vol. 7, no. 6, July-August 2008, pp. 77-100
http://www.jot.fm/issues/issue_2008_07/article2/

Domain-Specific Architecture for
Software Agents

Suganthy. A
M.Tech Computer Science, Ramanujan School of Mathematics and
Compuer Science, Pondicherry University, India

T. Chithralekha
Reader, Department of Banking Technology, Pondicherry University, India

Abstract
The principal contribution of this paper is a methodology for the support of
developing domain-specific software agents and the development of a Reference
architecture for agents pertaining to web service discovery by following the phases
described in the proposed methodology. The proposed methodology and the
resulting architecture are evaluated to illustrate its appropriateness in contributing
for domain-specific software architecture.

Keywords
Software Agents, Domain-Specific Agents, Methodology for Domain-Specific
Agents, Service Discovery Agent.

1 INTRODUCTION AND MOTIVATION

The need for improved methods of software engineering is widely recognized as a
way to improve the quality of the software products. One prominent idea is to
synthesize new application systems by configuring appropriate sets of reusable
software components.

In order to realize the promise of reusable software, it is necessary to engineer
highly reusable software components from the start. “Domain-Specific Software
Architectures (DSSAs)” have been advanced as a methodology for factoring large
software systems into components that have high reuse potential within a particular
application domain.

As software agents are widely used in many application domains like information
gathering, network management, decision and logistic supports etc., it is necessary to
standardize domain-specific software architecture for software agents. Development
of agents from domain-specific software architecture helps the agent developers to
reuse the architectural artifacts from the analysis phase.

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

The research areas in agent technology are focusing on standardizing the agent
architecture, enabling them to interoperate with other agents. The support for the
development of agents from reusable components is not yet focused. Hence, a
methodology for building domain-specific software architecture for software agents
could also not be found in the agent literature [Joaq-1 06].

Hence, this paper is designed to overcome the limitations of developing an agent
from reusable architectural artifacts by:

• Proposing a methodology for building domain-specific architecture for
software agents and

• Developing domain-specific architecture for web service discovery agent
based on the proposed methodology.

An evaluation step is also carried out both for the proposed methodology and the
developed domain-specific software architecture for software agents in web service
discovery.

The remaining sections of this paper are arranged as follows: Section 2 of this
paper gives the background of domain-specific software architecture and software
agents. Section 3 describes the novel methodology for building domain-specific
agents. Section 4 explains the evaluation method carried out for the proposed
methodology and section 5 explains in the development method of domain-specific
software architecture for service discovery agent. Section 6 gives the evaluation
results of the proposed domain-specific architecture and section 7 gives the
conclusion of this paper.

2 DSSA AND SOFTWARE AGENTS

Domain-specific software architecture (DSSA) covers the entire software lifecycle
required to develop a software system from which concrete architectures pertaining to
that domain can be substantiated. The phases involved in the development of DSSA
are domain engineering and application engineering [Steven 02].

Domain engineering phase: This phase is responsible for providing the reusable
core assets that are exploited during application engineering when assembling or
customizing the individual applications. This phase describes the requirements of the
complete family of products, highlighting both the common and variable features
across the family [Richard 95], [Tracz 95]. In this phase, commonality analysis is of
great importance for determining the commonalities and variabilities in the domain
[Josh 05], [Baojian 99].

Application engineering phase: Application engineering phase involves the
process of building an application based on DSSA.

Both these phases can be further divided into requirements analysis, design, and
implementation (a typical software development lifecycle).

DSSA for Software Agents concentrates on the process of providing common
and variable features and on the process of deriving a final architecture for all the
applications pertaining to a domain.

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 79

As the agent architectures and frameworks were designed to match the project
requirements, it creates incompatible systems that are difficult to reuse from project to
project. Therefore, research in the area of agent technology has focused on the
standardization of architectures supporting for distributed interoperation of agents.
This forms the basis for developing core architecture for agents [Joaq-1 06]. But the
standardization of agent architecture cannot facilitate the reuse of architecture of
agents pertaining to a single domain. This is because the domain-specific architecture
will contain domain-specific components which facilitate a higher level of reusability
for developing agents pertaining to a domain.

An initial attempt in developing Reference architecture for agents is made by
DARPA Control of Agent Based Systems (CoABS) which gives only a template that
provides the various functional viewpoints which has to be addressed while
developing architecture for agents [Craig-3]. This template only provides a guideline
rather than providing an insight in developing reference architecture for agents.

The feasibility analysis for developing domain-specific agents has been
conducted by NASA in 2006 [Joaq-2 06]. This is only a feasibility study and does not
provide any concrete details for developing domain-specific architecture for agents.

In conclusion, it could be found that, though the necessity for developing
domain-specific agents is well understood by the research community, yet realizing
the development of domain-specific architecture for agents has not reached a
reasonable milestone. Because of this limitation a methodology for developing
domain-specific architecture for agents could also not be found. Hence the objectives
of this work are devising a methodology for developing domain-specific architecture
for agents and illustrate the use of the same in developing domain-specific
architecture for agents.

3 PROPOSED METHODOLOGY FOR DOMAIN-SPECIFIC
AGENT DEVELOPMENT

As the development of software agents is also similar to the conventional software
development methods, the following phases are identified for building domain-
specific agents:

• Domain engineering
• Creation of Reference Architecture
• Validation of the reference architecture and
• Application engineering

These phases differ from those used in the conventional DSSA development methods.
The variations are discussed in the following sections with respect to each phase.

The proposed methodology for the development of domain-specific agents is
diagrammatically represented in Figure 1. The first phase in the construction of
domain-specific agent is the domain engineering. This phase identifies the domain
artifacts that may be reused in developing agents in a domain. These domain artifacts
are then used in the next phase for creating the reference architecture (otherwise
called as domain-specific architecture). The third phase involves the validation of the
reference architecture. The feedback of the validation results are then sent back to the

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

domain engineering phase for the refinement process. The final step is the
development of agents using the reference architecture.

Figure 1: Methodology for Domain-specific Agent development

Domain Engineering

The purpose of domain engineering is to develop domain artifacts that may be reused
in developing application for a given domain. Domain engineering consists of
activities for gathering and representing information on systems that share a common
set of capabilities and data. In conventional software development the domain
engineering phase consists of identifying the reusable components.

In this methodology, the domain knowledge is engineered and organized in a
more comprehensive manner. This phase involves in identifying the roles of the
agents, as all AOSE (Agent-Oriented Software Engineering) methodologies use role
abstraction for characterizing agents. These role models are similar to the one used in
agent-oriented methodologies like GAIA [Woold 00], MaSE [Wood 01] etc. The
agent developed using this methodology plays in two different types of roles: domain
dependent Roles and application dependent Roles. Figure 2 shows the roles played by
an agent.

Each Role (Domain dependent or application dependent) identified in the domain
engineering phase should be defined using a Role Schema [Woold 00]. The role of an
agent also identifies the agent’s properties like autonomy, reactivity, proactivity and
social ability that should be present in the domain-architecture. The template for
defining the role schema is given in Figure 3.

Figure 2: Roles played by an agent

Creation of Reference
Architecture

Validation of Reference
Architecture

Application Engineering

Domain Engineering

Agent

Domain
Dependent Roles

Application
Dependent Roles

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 81

Role Schema Name of the Role
Description Short English description of the role
Protocols and Activities Protocols and activities in which the role plays a part
Permissions Rights associated with the role
Responsibilities

Liveness
Safety

Liveness responsibilities
Safety responsibilities

Figure 3: Template for Role Schema

Activities to be carried out in the domain engineering phase of this methodology are:
• Identification of Domain Dependent Roles
• Identification of Application Dependent Roles and
• Identification of Role interactions

Identification of Domain Dependent Roles: The domain dependent roles are the roles
of the agent that are common to all the applications that can be developed in a
domain. For example, the communication role provides the specifications for
communication between the systems (from one system to another). This specification
will not be changed from one application to another and hence this role is domain
dependent.

Identification of Application Dependent Roles: This step identifies the roles
which consist of the customizable implementation of agents with application-specific
functionality. For example, if the agent acts as a match maker role, then the match
making algorithm, the parameter used in the match making process etc, will depend
on the application to be developed.

Identification of Role Interactions: The final step in domain engineering phase is
the identification of the interaction between the domain dependent and the application
dependent roles. These interactions may help the roles to communicate and/or
collaborate among themselves.

The steps used in the domain engineering phase of the proposed methodology are
diagrammatically represented in Figure 4.

Figure 4: Domain Engineering

Creation of Reference Architecture

This phase uses the outcomes of the domain enginering phase, the domain dependent
roles, the application dependent roles and the interactions among these roles. This
phase involves the following activities:

Domain Engineering

Identification of Domain Dependent Roles

Identification of Application
Dependent Roles

Identification of Role Interactions

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

• Design of Agent model and
• Design of Reference architecture

Design of Agent Model: The design of agent model involves in transforming the
analysis model into sufficiently low level of abstraction for implementing the agents.
The following three models are generated in this design:

• Agent model: This model documents the various agent types that will be used
in the system under development and the agent instances that will realize these
agent types at run time.

• Services model: This model identifies the services (functions) associated with
each agent role and specifies the main properties of these services.

• Acquaintance model: This model defines the communication links that exist
between agent types.

Design of Reference Architecture: The design of reference architecture involves in the
creation of reference architecture for the domain under consideration.

Reference architecture should be defined in terms of the components. Hence, the
roles identified in the domain engineering phase are considered to be corresponding to
the components. A role identified in the domain engineering phase may correspond to
a single component (one-to-one mapping) or multiple roles correspond to a single
component (many-to-one) or a role can be present in more than one component (one-
to-many). The mapping of the roles to components is diagrammatically depicted in
Figure 5.

 (a) One-to-one Mapping (b) Many-to-one Mapping (c) One-to-many Mapping

Figure 5: Mapping of Roles to Components

The crucial step in this phase is the identification of the suitable agent architecture for
the placement of these roles. Existing agent architectures like Reactive architecture,
Deliberative architecture, Layered architecture and Hybrid architectures are evaluated
with reference to the domain under consideration for placing these roles.

Validation of the Reference Architecture

Once the reference architecture is created, it should be assessed for its quality. This
phase is used for evaluating the quality of the reference architecture using any of the
existing DSSA evaluation methods.

Some of the existing DSSA validation techniques are SACAM (Software
Architecture Comparison Analysis Method), DoSAM (Domain-Specific Architecture
Comparison Model) [Klaus 05], a variation of the SAAM model (Software
Architecture Analysis Method) [Mugurel 03] and Multi-Criterion Analysis of
Reference Architecture [Marius 05].

Roles

R1

R2

Components

C1

C2

Roles

R

R

Components

C1

Roles

R

Components

C1

C2

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 83

The results of the evaluation process are then sent back to the domain
engineering phase for the refinement process if necessary.

Application Engineering Phase

The last phase is the development of the agent itself. This phase involves the process
of building an agent based on the reference architecture. The agent to be developed
should instantiate the reference architecture and it should customize the
implementation details of the application dependent roles.

Application engineering is the process of developing a specific application by
making use of the domain knowledge obtained during domain engineering.
Application engineering proceeds by first analyzing user’s requirements, then framing
the corresponding application design and completing the application development by
reusing the software components identified in the domain engineering phase. The
application engineering phase is further divided into [Boajin 99]:

• Application requirements analysis
• Application design and
• Application development

Application requirements analysis: Application engineering starts with the
requirements analysis phase. This is done by first analyzing user’s requirements for
the target application, and finding a matching set of roles identified in the domain
engineering phase. Apart from the specific requirements of the application, the other
domain-specific requirements are taken from the domain engineering and the
reference architecture. Thus, this phase gets its input from the outcomes of the domain
engineering and the reference architecture and developers work is simplified as the
reusability is started from the analysis phase of the application development.

Application design: The application requirements are then used for the design of
the application under development. The reference architecture is instantiated in this
phase and the application requirements from the previous phase helps to define the
application dependent roles of the reference architecture. The architecture pertaining
to the specific application is developed in this phase.

Application development: The final step is the development of the agents using
any agent development languages and agent development tools/frameworks.

4 EVALUATION OF THE METHODOLOGY

The evaluation of the proposed methodology helps to understand the limitations
existing in it and thereby helps to develop a better solution. Evaluation process
identifies the strengths, weaknesses and the ways to improve the methodology. Only a
few frameworks for comparing the agent-oriented methodologies have been suggested
[Sudeikat], [Chia-En 07].

The evaluation process carried out for the proposed methodology includes the
criteria for both software processes and agent-oriented properties. The evaluation
framework adopted here is based on the work done by Sturm and Shehory [Sturm 03].
This framework consists of the following four evaluation criteria:

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

• Concepts and Properties
• Notations and Modeling Techniques
• Process
• Pragmatics

Concepts and Properties

A concept is an abstraction or a notation inferred or derived from specific instances
within a problem domain. A property is a special capability or a characteristic.
Concepts and Properties collect all the basic building blocks of Agents. This category
deals with questions on whether or not a methodology adheres to the basic notions of
Agents.

Notations and Modeling Techniques

Notations are a technical system of symbols used to represent elements within a
system. A modeling technique is a set of models that depict a system at different
levels of abstraction and different system's aspects. Hence the methodology will found
to be complete only when it supports the notations and modeling techniques.

Process

A process is a series of steps that guide practitioners to construct a software system
from the beginning to the end. It serves as a detailed guideline of all activities
throughout subsequent phases. The newly developed methodology should also have a
well defined process and should describe the activities that it supports.

Pragmatics

Pragmatics refers to real use scenarios as developers apply methodology in building
Agent-based systems. This provides reviews in real situations from instituting
concepts, building models, and implementing details. This division deals with the
exploration of practical deployment while using a methodology.

Evaluation Results

The evaluation process carried out for the proposed methodology based on the four
evaluation criteria: Concepts and Properties, Notations and Modeling techniques,
Process and Pragmatics are summarized in Table 1. These evaluation results show that
the methodology is suitable, appropriate and well defined for the development of the
domain-specific agents.

Criteria Issues to be addressed
Supportability
in the proposed

methodology
Reason

Autonomy Yes The roles identified in the domain engineering
phase possess the autonomy property.

Mental Mechanism Domain
dependent

Mental mechanism is possessed by the roles
identified in a domain.

Adaptation Yes The application dependent roles are flexible
enough to the changing environment.

Concepts
and

Properties

Concurrency No -

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 85

Communication Yes
Communication is supported by the interaction
between the domain dependent and the
application dependent roles.

Collaboration Yes
The methodology supports collaboration among
the domain dependent and the application
dependent roles.

Abstraction Yes Abstraction is provided with the help of role
schemas for describing the roles of the agent.

Agent-oriented Yes
The roles identified in the methodology are
mapped to agents and thereby supporting agent-
oriented criteria.

Expressiveness Yes This methodology uses Role schema for
supporting expressiveness.

Complexity Yes Decomposition of agent into roles helps to avoid
the complexity of the agent.

Modularity Yes Identification of roles helps in supporting
modularity.

Executable Yes Support for the development of prototypes using
the roles helps the executable property.

Refinement Yes The role schema and the protocol definitions of
the agents are used in the refinement process.

Notations
and

Modeling
Techniques

Traceability Yes The methodology supports the traceability of the
development process in a linear fashion.

Specification Yes The methodology provides a way of forming a
system specification from the scratch.

Life-cycle Coverage Yes Analysis, Design, Implementation and Testing
phases are covered in this methodology.

Architecture Design Yes
The methodology provides mechanisms to
facilitate design by using the roles and their
interactions.

Implementation
Tools No -

Process

Deployment No -
Tools Available No -

Required Expertise Minimal The methodology does not require any prior
knowledge for its application.

Modeling Suitability No The methodology is not based on any Model.

Domain Applicability Applied to all
domains

The methodology does not restrict any particular
domains for its applicability in developing
domain-specific software architecture for agents.

Pragmatics

Scalability Yes The methodology can also be used for the
development of MAS.

Table 1: Evaluation Results

5 CASE STUDY – DSSA FOR SERVICE DISCOVERY AGENT

This section explains the development of DSSA for service discovery agent using the
methodology described in Section 3.

Domain Engineering

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

The domain engineering phase of developing the web service discovery agent is
carried out by static analysis method [Pragnesh 06]. By this method, the domain
dependent roles, the application dependent roles and the interactions among those
roles are identified by analyzing the existing web service discovery architectures. The
main goal of this domain engineering phase is finding the architectural artifacts
pertaining to web service discovery.

This section explains the domain engineering phase carried out for the service
discovery agent. Role schema for each of the domain dependent roles identified in the
domain engineering phase is also given in this section.

Identification of Domain Dependent Roles

The domain dependent roles are identified by analyzing the common properties found
in all of the existing web service discovery architecture. The definition of these roles
remains to be the same with respect to all the applications in the service discovery
agent. The roles are defined using the Role Schema.

The following are the domain dependent roles identified in the domain
engineering phase:

• Communication handler
• Message handler
• Repository
• Security

Role Schema for Communication Handler

The purpose of this role is to provide a mechanism for the interchange of messages
between the service requestor and the discovery agent. This role gets the input
messages from the user and submits it to the message handler for further processing.
This role helps in obtaining the agent’s social behavior property. The agent can able to
communicate with the environment (in this case the user) using this role and hence the
social ability property of the agent is present in this role. Figure 6 gives the role
schema for communication handler.

Role Schema: Communication Handler
Description:

This role acts as a communication media. It passes the incoming and
the outgoing messages.

Protocol and Activities:
ReceiveMessages
SubmitMessages

Permissions:
Pass Received messages

Responsibilities:
Liveness: (ReceiveMessages . SubmitMessages) +
Safety: Messages arrived # Null

Figure 6: Role Schema for Communication Handler

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 87

Role Schema for Message Handler

The correct interpretation of the user’s request is handled by this role by handling
different types of user interactions. This role possesses the social ability property of
the agent. It is used for parsing the incoming and the outgoing messages based on the
type of the request interacting with the service discovery agent. The users requesting
the services may be an agent, other web services or a software system. These systems
may interact with the discovery agent by KQML/ACL, SOAP or Natural Languages
(NL) respectively. Message handler role should contain three types of handlers for
handling the messages from different users. Figure 7 gives the role schema for
Message handler. The functions provided by this message handler role is

• Conversion of ACL/KQML to WSDL and vice versa.
• Handling the SOAP messages
• Conversion of NL request into WSDL format and generating the NL messages

from WSDL.

Role Schema: Message Handler
Description:

This role handles the different types of the messages by parsing
them and submits it for the match making process.

Protocol and Activities:
ReceiveUserRequest
SubmitResult
ConvertRequest
ConvertResult
EncryptResult
EncryptRequest

Permissions:
Read Request query, Result, Security policy
Change Result format // encrypt
 Request format // decrypt

Responsibilities:
Liveness:

(ReceiveUserRequest . [DecryptRequest] .
ConvertRequest) + (ConvertResult . [EncryptResult] .
SubmitResult) +

Safety: Messages arrived # Null

Figure 7: Role Schema for Message Handler

Role Schema for Repository

This role is used to provide a quick reference to the recent responses sent by the agent
in reply to the discovered services. Repository contains only a subset of the services
registered in UDDI registry. Figure 8 gives the role schema for repository.

Role Schema: Repository

Description: This role acts as a repository for quick reference.

Protocol and Activities:
ReceiveSelectionRequest

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

ReceiveSelectionResult
ProvideResult
UpdateRepository
QueryRepository

Permissions:
Read Request query, Selection Result
Update Repository contents

Responsibilities:
Liveness:

(ReceiveSelectionRequest . QueryRepository . ProvideResult)
+
(ReceiveSelectionResult . [UpdateRepository] +

Safety: Request for selection query # Null
 Result of the selection # Null

Figure 8: Role Schema for Repository

Role Schema for Security

Security role of the agent helps in providing the services in a secure manner. This role
is also used for encrypting and decrypting the incoming and the outgoing messages.
Figure 9 gives the role schema for security.

Role Schema: Security
Description:

Provides security mechanism by encrypting and decrypting
the outgoing and the incoming messages respectively.

Protocol and Activities:
ProvideSecurityMechanism

Permissions:
Read Request query, Result, Securitypolicy

Responsibilities:
Liveness: (ProvideSecurityMechanism)*
Safety: Security Request # Null

Figure 9: Role Schema for Security

Identification of Application Dependent Roles

The application dependent roles of the domain-specific software architecture for
service discovery agent are identified by analyzing the features of the application in
the domain under consideration. The definitions of these roles vary with respect to the
application under development in service discovery domain.

The following are the application dependent roles for the service discovery agent
identified in the domain engineering phase:

• Match Maker
• Context handler
• Domain ontology
• User Profile handler

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 89

Role Schema for Match Maker

This role is used for making the matching process of the request queries. Figure 10
shows the role schema for match maker. The following are the functions identified for
accomplishing the matching processes:

• Domain filteration: For selecting the application domain.
• Similarity calculation: Calculates the percentage of matches among the results

provided by the domain filtration. This process arranges the results of its
processing in the decreasing order of the calculated percentage (Best match
will have high percentage).

• Selection: This function is used for the final selection processes. The final
results are selected with respect to the best matches based on the results
provided by the similarity calculation.

Role Schema: Match Maker
Description:

Gets the input query from message handler and finds the match, updates relevant
entries and sends the result to the user through message handler.

Protocol and Activities:
ReceiveRequest, CheckRepository, SearchUDDI, CalculateSimilarityPercent,
ReferContextualInformation, SelectResult, PassResultToProfileHandler
UpdateRepository , SendResult

Permissions:
Read Customer query, Contextual information
Update Repository
Query Repository, UDDI Registry

Responsibilities:
Liveness:

(ReceiveRequest . CheckRepository . [SearchUDDI] .
CalculateSimilarityPercent . ReferContextualInformation . SelectResult
. PassResultToProfileHandler . [UpdateRepository] . SendResult) +

Safety:
Request query # Null

Figure 10: Role Schema for Match Maker

Role Schema for Context Handler

This role helps in providing a reasoning mechanism for handling the contextual
information needed for the selection process. Context handler role uses the domain
ontology and the user profile handler for its processing. The role schema for context
handler is given in Figure 11.

Role Schema: Context Handler
Description:

Provides contextual information for the selection process with the help of
domain ontology and user’s preferences.

Protocol and Activities:
ReceiveQuery, ReferDomainOntology, ReferUserProfile
MakeDecision, ProvideDecisionResult

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

Permissions:
Read Domain ontology, User Profile, Request

Responsibilities:
Liveness:

(ReceiveQuery . ReferDomainOntology . [ReferUserprofile] .
MakeDecision . ProvideDecisionResult) +

Safety:
Request received # Null

Figure 11: Role Schema for Context Handler

Role Schema for Domain Ontology

This role maintains the inner details of the application domain. The domain
information present in the domain ontology helps the context handler to carry out the
reasoning mechanism. Figure 12 gives the role schema for Domain Ontology.

Role Schema: Domain Ontology
Description:
Provides the application domain ontology.
Protocol and Activities:
ReceiveRequestQuery
ProvideDomainOntology
Permissions:
Read Request Query
Responsibilities:
Liveness: (ReceiveRequestQuery . ProvideDomainOntology)+
Safety: Request received # Null

Figure 12: Role Schema for Domain Ontology

Role Schema for User Profile Handler

This role is used for maintaining the preferences of the user. When the preference of
the user is changed with respect to the query for the selection process, the profile
handler undergoes an updation process. Figure 13 gives the role schema for profile
handler.

Role Schema: Profile Handler
Description:

Contains the updated information of the user and is referred by context
handler.

Protocol and Activities:
UpdateProfile
GetSelectionResult
CheckEntries

Permissions:
Read SelectionResults
Update User Profile

Responsibilities:
Liveness: (GetSelectionResult . CheckEntries . [UpdateProfile])+
Safety: Selection results # Null

Figure 13: Role Schema for Profile Handler

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 91

Identification of Role Interactions

The dependencies and the relationships among the roles identified in the previous
sections for building the domain-specific architecture for service discovery agents are
explained in the interaction model. These interactions are described in terms of the
protocols associated with each role model.

The protocol description for communication handler component is given in figure
14 and 15. Similarly, the protocols for other components (Domain-dependent and
application dependent) were defined which is not given in this paper.

Protocol associated with Communication Handler

The protocols associated with Communication Handler role are ReceiveMessages and
SubmitMessages.

ReceiveMessages: This protocol interacts with the user for receiving their request
and passes these requests to the message handler for parsing them. The protocol
description for ReceiveMessages is given in Figure 14.

Figure 14: Protocol Description for ReceiveMessages

SubmitMessages: This protocol gets the result message from message handler and
submits them to the user. Figure 15 shows the protocol description for
SubmitMessages.

Figure 15: Protocol Description for SubmitMessages

Design Model for Service Discovery Agent

This section transforms the analysis model into sufficiently low level of abstraction in
order to implement agents. This design process involves generating three models:

• Agent Model

Receive Messages

User
Interface

Message
Handler

Receives the user’s request
and passes them to message

handler

Request
Query

Query is
submitted
for parsing

SubmitMessages

Message
Handler

User
Interface

Submits the results given by
message handler to the user.

Receive
Result

Result is
submitted to
the user

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

• Services Model and
• Acquaintance Model

Agent Model: The purpose of agent model is to document the various agent types that
will be used in the system under development and agent instances that will realize
these agent types at run-time.

Figure 16 shows the service discovery agent model. The service discovery agent
plays various roles like communication handler, message handler, security, repository,
match maker, user profile, context handler and domain ontology.

Figure 16: Service Discovery Agent Model

Services Model: The aim of the Gaia services model is to identify the services
(functions) associated with each agent role, and to specify the main properties of these
services. The properties of each service like inputs, outputs, pre-conditions and post-
conditions must be identified. Every activity identified at the analysis stage will
correspond to a service but every service will not correspond to an activity.

Acquaintance Model: Acquaintance models define the communication links that
exist between agent types. These models do not define what messages are sent or
when the messages are sent. It only indicates the communication pathways existing
between the agents. Figure 17 gives the acquaintance model for service discovery
agent.

Figure 17: Acquaintance Model for Service Discovery agent

UDDI

Registry

Service Discovery

Discovery
User

Service Discovery Agent

Communication
Handler

 (D)

Message
Handler

(D)

Security
(D)

Repository
(D)

Match
Maker

(A)

User
Profile

(A)

Context
Handler

(A)

Domain
Ontology

(A)

1

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 93

Reference Architecture

The domain engineering phase identified the domain dependent roles, the application
dependent roles and their interactions. The roles and interactions are well defined in
terms of Role Schemas and the protocol definitions for roles and interactions
respectively. The next phase in domain-specific software architecture for software
agents is the creation of the reference architecture.

Each role of service discovery agent, identified in the domain engineering phase
corresponds to a single component (ie) there is one-to-mapping exists between the
roles and the components of the service discovery agent.

This subsection describes the reference architecture for web service discovery
agent. Figure 18 shows the arrangements of the identified components in the reference
architecture.

External user interacts with the service discovery agent by submitting their
requests through communication component. This component then submits the
request to the message handler, where the request is parsed with respect to the type of
the user. If the user interacting the communication component is an agent, then the
request are parsed with the help of the ACL/KQML handler, if it is other web service
then the SOAP handler takes the responsibility of parsing and if it is a normal user
program, then the NL interaction handler is used for converting the request to the
format used for discovering the service by the match maker component. The message
handler also uses the security component for decrypting the input messages from the
external user. After processing the request it then passes it to the match maker
component.

The match maker component after receiving the parsed request from the message
handler, checks it with the repository which maintains a subset of the services present
in the UDDI registry (only frequently accessed resources are available in UDDI
registry). If it matches with the entries in the repository then the similarity calculator
is used for calculating the percentage of the matching, for this it requests the
information from the context handler which uses the domain ontology and the user
preferences. The selection component then selects the best matched results and
submits them to message handler. The user preference handler is also updated with
the preferences of the recently accessed request.

If the repository does not contain the request made by the user, then the match
maker component uses its domain filter component for discovering the service from
the UDDI registry. The whole process as described above is repeated.

The message handler after receiving the results of the selection process from the
match maker converts the results into a format as required by the user.

It uses the security component for encrypting the result if necessary and passes
them to the communication component which then sends back to the user.

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

Figure 18: Reference Architecture for Web Service Discovery agent

6 EVALUATION OF THE PROPOSED ARCHITECTURE

The proposed architecture is evaluated by tailoring the Software Architecture
Analysis Method (SAAM). All the scenarios corresponding to each applications of the
service discovery are listed and evaluated. The steps corresponding to SAAM for
evaluating the domain-specific architecture are described as follows:

Scenario Development

The Scenarios chosen for evaluation of the architecture are given below (only the
indirect scenarios are shown here):

• Scenario 1: The response time of the system should be less.
• Scenario 2: Degraded operation mode.

Repository

Se
cu

rit
y

Communication Handler

Context
Handler

Profile
Handler

Domain
Ontology

U
D

D
I

R
eg

is
tr

y

Match Maker

Domain
Filter

Similarity
Calculator

Selection
Component

Message Handler

ACL/KQML
Handler

SOAP
Handler

NL Interaction
Handler

Service Discovery Agent

Agents

Web
Services

Discovery Service Requestor

 R
e q

ue
st

R
es

po
ns

e

User

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 95

• Scenario 3: Language neutral
• Scenario 4: Support for easy up gradation
• Scenario 5: Integrate with new development environment.
• Scenario 6: Support of agent’s properties.
• Scenario 7: Support for other of agent architectures.
• Scenario 8: Ability to discover the agents that provide the required services in

a Multi Agent System environment.
• Scenario 9: Ability to incorporate other functional behaviors that rely on

service discovery.

Scenario Classification

The Scenarios are classified as direct or indirect with respect to the supportability of
the scenario in the Reference architecture shown in Figure 18. As only indirect
scenarios are taken here for evaluation of the architecture, each scenario is evaluated
in the next section.

Scenario Evaluation

Each of indirect scenarios is evaluated as follows:
Scenario 1: This scenario requires that the user should get the responses to their

query in a fast manner. To provide for this the repository component which helps to
store the frequently/recently accessed queries are available instead of contacting to the
UDDI registry with takes some delay.

Scenario 2: This scenario can be achieved by the use of the repository
component. The repository component contains the backup of the frequently / recently
accessed queries. When there is a failure in the UDDI server or in the network, the
user can get the responses to their queries with the help of the repository if the query
requested by the user is available in the repository. This architecture does not degrade
the operation fully; it supports the user to continue their work even when there is
failure in the network or in UDDI registry.

Scenario 3: This scenario requires that the architecture should be implemented in
any language. It can be easily supported as the proposed architecture does not force
any language specifications for the components.

Scenario 4: This scenario aims in the inclusion of any new components in the
architecture. This scenario can be easily achieved as the components in the
architecture communicate only through messages. This helps in the addition of any
new components in the architecture or the addition of any new subcomponents within
a single component. The subcomponents within a component are highly cohesive and
the components have less coupling among them. Hence this helps in the addition or
removal of a new single component or a set of components along with its sub
components easily.

Scenario 5: As the architecture describes the components in domain dependent
manner, any application pertaining to that domain can be implemented easily.

Scenario 6: This scenario requires the architecture to possess the agent’s
properties like autonomy, reactivity, proactivity, social ability and adaptability. The

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

components described in the architecture possess these properties. For example, the
autonomy property of the agent is present in the match maker and the context handler
component for taking the decision in the matching process. The reactivity property is
present in the match maker component. It responds to the users query in a reactive
manner. The social ability property is taken care with the help of the message handler
component. The architecture is adaptable to the user’s service preferences thus it
supports the adaptability property.

Scenario 7: As the architecture gives the roles of the agents, these roles can be
implemented with the help of any agent architecture like BDI, Reactive or Hybrid
architecture.

Scenario 8: This scenario requires the architecture to be used in MAS
environment. Since the architecture can be used to find any agents in DF which
provides the required service in MAS, this request is also fulfilled.

Scenario 9: The interfaces provided between the components are more flexible
and hence this architecture requires only minimal changes for the support of this
scenario. The concrete agent architecture developed can also be integrated or
extended into any applications like brokery agent, buying agent or any other e-
commerce applications that need service discovery as part of their functionality
without much changes in the existing components.

Scenario Interaction

Agent’s properties are mainly supported with the help of the match maker, context
handler, user profile handler, message handler and communication components.

Table: 2 gives the list of scenarios which affects the component description.
Figure 19 gives the scenario interaction chart corresponding to Table 2. The vertical
axis of figure 19, depicts the number of scenarios affected by each component in the
horizontal axis.

Components Scenario affecting the component

Communication Handler Scenario 6, Scenario 9
Message Handler Scenario 6
Security -
Repository Scenario 1, Scenario 2
Match Maker Scenario 6
Context Handler Scenario 6
User Profile -
Domain Ontology -

Table 2: Scenarios affecting the components

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 97

Figure 19: Scenarios Interaction

Scenario Evaluation

The scenario interaction reveals that the number of components affected by each
scenario is not more than two. This shows that the applicability of the proposed
architecture to various applications does not need much change. Hence the proposed
architecture is more flexible. The maintainability of the architecture is also high. All
these qualities prove that the proposed architecture is having high quality.

7 CONCLUSION

Agents are widely used in many domains. Hence in order to reduce the development
time of agents pertaining to a domain, reusability of architecture becomes an absolute
necessity. DSSA is a field of study which focuses upon developing domain-specific
architecture which could be reused. Developing DSSA for agents has not received
enough focus in the agent research. And the available works are of preliminary in
nature. Hence neither a methodology nor a complete DSSA for agents is available.

In this paper, a new methodology for developing a DSSA for agents has been
proposed. Using this methodology the development of DSSA for agents pertaining to
service discovery domain has been described. The evaluation of the methodology as
well the resulting architecture gives promising results in that a complete methodology
and a well defined DSSA for software agents have been obtained as an outcome.

REFERENCES

0 1 2 3 4 5

No. of Scenarios affected

Communication Handler

Message Handler

Security

Repository

Match Maker

Context Handler

User profile

Domain Ontology

A
rc

hi
te

ct
ur

al
 c

om
po

ne
nt

s
Scenario Interaction Chart

No. of Senarios Affected

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

[Ahmed 00] Ahmed E. Hassan and Richard C. Holt, “A Reference Architecture for
Web Servers, IEEE, 2000

[Alfanet 01] ALFANET, “Deliverable D31 –Existing Standards Analysis”, Active
Learning for Adaptive Internet, 2001

[Baojin 99] Baojin Li Guagzhou Zeng Zongkai Lin, “A Domain Specific Software
Architecture”, ACM, 1999.

[Chia-En 07] Chia-En Lin, Krishna M.Kavi, Pokahr and Winfried Lamersdorf,
Frederick
T. Sheldon, Kris M. Daley and Robert K. Abercrombie, “A Methodology to Evaluate
Agent-Oriented Software Engineering Techniques”, Proceedings of the 40th Hawaii
International Conference on System Sciences, 2007

[Craig-1] Craig Thompson, Strawman, “Agent Reference Architecture”,
http://www.objs.com/agility/tech-reports/9808-agent-ref-arch-draft3.ppt.

[Craig-2] Craig Thompson, “Agent Technology White Paper and RFP Roadmap”,
OMG Agent Working Group, 2000

[Craig-3] Craig Thompson, Tom Bannon, Paul Pazandak, Venu Vasudevan, “Agents
for the Masses”, Object Services and Consulting, Inc. http://www.objs.com

[Davide 00] Davide Brugali, Politecnico di tirino Katia Sycara, “Towards Agent
Oriented Application Frameworks”, ACM, 2000.

[FIPA] Foundation for Intelligent Physical Agents, “Fipa Abstract Architecture
Specification”, 1993 http://www.fipa.org/

[Jeffrey 97] Jeffrey M. Bradshaw, Stewart Dutfield, Pete Benoit and John D. Wolley,
“KAoS: Toward An Industrial-Strength Open Agent Architecture”, AAAI Press, 1997

[Joaq-1 06] Joaquin Pena, Michael G. Hinchey and Antonio Ruiz Cortes, “Building
the Core Architecture of a Multiagent System Product Line: With an example from a
future NASA Mission”, 2006.

[Joaq-2 06] Joaquin Pena, Michael G. Hinchey and Antonio Ruiz Cortes, “Multi-
Agent System Product Lines: Challenges and Benefits”, ACM, 2006.

[Joaq-3 06] Joaquin Pena, Michael G. Hinchey, Manuel Resinas, Roy Sterritt and
James L. Rash, “Managing the Evolution of an Enterprise Architecture using a MAS-
Product-Line Approach”, 2006

[Jose 02] Jose M. Vidal, Paul Buhler, “A Generic Agent Architecture for Multiagent
Systems”, USC CSCE, 2002

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 99

[Josh 05] Josh Dehlinger, Robyn R. Lutz, “A Product-Line Requirements Approach
to Safe Reuse in Multi-Agent Systems”, ACM, 2005

[Klaus 05] Klaus Bergner, Andreas Rausch, Marc Sihling, Thomas Ternite, “DoSAM
– Domain-Specific Software Architecture Comparison Model”, 2005

[Marius 05] Marius, Lucian-lonel, “Multi-criterion Analysis of Reference
Architectures and Modeling Languages used in Production Systems Modeling, IEEE,
2005

[Mugurel 03] Mugurel T. Ionital, Deiter K. Hammer, Henk Obbink, “Scenario-
Based Software Architecture Evaluation Methods: An Overview”, Technical
University, Eindhoven, 2003

[Pragnesh 06] Pragnesh Jay Modi, Spiros Mancoridis, William M. Mongan, William
Regli, Israel Mayk, “Towards a Reference Model for AgentBased Systems”, ACM,
2006

[Rem 02] Rem William Collier, “Agent Factory: A Framework for the Engineering
of Agent-Oriented Applications”, 2002

[Richard 95] Richard N.Taylor, Will Tracz, Lou Coglianese, “Software Development
Using Domain-Specific Software Architecture”, ACM, 1995

[Roberto] Roberto A. Flores-Mendez, “Towards a Standardization of Multi-Agent
System Frameworks”
[Sankar 95] Sankar Virdhagriswaran, Damian Osisek and Pat O’Connor,
“Standardizing Agent Technology”, OMG 1995.

[Steven 02] Steven P. Fonseca, “An Internal Agent Architecture for Dynamic
Composition of Reusable Agent Subsystems – Part 1: Problem Analysis and
Decomposition Framework”, Hewlett Packard Company, 2002

[Sturm 03] Sturm, A and Shehory O, “A Framework for Evaluating Agent-oriented
Methodologies”, 5th Int'l Bi-Conference Workshop on Agent-Oriented Info Sys
(AOIS), Springer LNCS 3030, 2003

[Sudeikat] Jan Sudeikat, Lars Brauback, Alexander Pokahr and Winfried Lamersdorf,
“Evaluation of Agent-Oriented Software Methodologies – Examinnation of the Gap
Between Modeling and Platform”

[Tracz 95] Will Tracz, “DSSA (Domain-Specific Software Architecture) Pedagogical
Example”, ACM, 1995.

[Wood 01] Wood, MF and DeLoach, SA. "An Overview of the Multiagent Systems
Engineering Methodology in Agentoriented Software Engineering," First Int’l Wkshp
(AOSE 2000) on Agent-oriented Software Engineering, Springer-Verlag New York
(LNCS 1957), 2001, pp. 207-222

ENTERPRISE INTEGRATION IN MEDADATA ENVIRONMENT

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

[Woold 00] Wooldridge, M, Jennings, NR and Kinny, D. "The Gaia Methodology for
Agent-oriented Analysis and Design," Autonomous Agents and Multi-Agent Systems
Jr., Kluwer Academic Publishers., 2000(3): 285-312.

About the authors
Miss A. Suganthy is studying M.Tech in Computer Science and Engineering (2005-
2007 batch) in Department of Computer Science, Pondicherry University,
Pondicherry. Email: asugan@gmail.com

Ms. T. Chithralekha is currently working as a Reader in Dept. of Banking
Technology, Pondicherry University. She has completed her M.Tech(Computer
Science & Engg.) from Dept. of Computer Science, Pondicherry University. Her area
of research pertains to Software Agents and Multilingual systems. She has published
about 15 papers in Conferences and Journals. Her area of specialization includes
Distributed Systems, Agent Technology, Information Security and Data Warehousing.
Email: tchitu@yahoo.com

