
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 6, July-August 2008

Linda Badri, Mourad Badri and Alioune Gueye: “Revisiting Class Cohesion: An empirical
investigation on several systems”, in Journal of Object Technology, vol. 7, no. 6, July-August
2008, pp. 55-75 http://www.jot.fm/issues/issue_2008_07/article1/

55

Revisiting Class Cohesion: An empirical
investigation on several systems

Linda Badri, Mourad Badri & Alioune Badara Gueye
Software Engineering Research Laboratory, Department of Mathematics and
Computer Science, University of Quebec at Trois-Rivières, Quebec, Canada

Abstract
Class cohesion is considered as one of most important object-oriented software
attributes. Cohesion refers to the degree of relatedness between members in a class.
High cohesion is a desirable property of classes. Several metrics have been proposed
in literature in order to measure class cohesion in object-oriented systems. They
capture class cohesion in terms of connections between members within a class. Most
of these metrics have been experimented and widely discussed. They do not take into
account some characteristics of classes as stated in several papers. We present, in this
paper, an extention of the cohesion metric we proposed in a previous work. We
introduce a new cohesion criterion based on common objects parameters. Our main
goal in this work was: (1) to demonstrate, by analyzing many real systems that the
introduced criterion is statistically significant and, (2) to validate our approach for class
cohesion assessment by exploring empirically the relationship that may exist between
our new cohesion metric and coupling. We developed a cohesion measurement tool for
Java programs and performed an empirical study on several systems. The selected test
systems vary in size and domain. The obtained results demonstrate that: (1) the new
class cohesion metric captures several additional pairs of related methods and (2) there
exists a significant correlation between the new cohesion metric and coupling.

1 INTRODUCTION

Software metrics have become an essential tool in software engineering [Som 04, Pre 05].
In the field of software quality, metrics are used for assessing several software attributes
such as complexity, coupling, cohesion, and size. They provide, therefore, an important
assistance to developers and managers in order to assess and improve software quality
during the development process. Class cohesion is considered as one of most important
object-oriented software attributes. As stated in [Hen 96], internal cohesion can be best
understood as syntactic cohesion evaluated by examining the code of each individual
module. It is argued that the modularization can be accomplished for a variety of reasons.
There is several types of cohesion: functional cohesion, sequential cohesion, coicidental
cohesion, etc. [Hen 96]. We focused, in this work, on functional cohesion. Cohesion

REVISITING CLASS COHESION: AN EMPIRICAL INVESTIGATION ON SEVERAL SYSTEMS

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

refers to the degree of relatedness between members in a component. High cohesion is a
desirable property of components. It is widely recognized that highly cohesive
components tend to have high maintainability and reusability [Li 93, Bie 95, Bri 97, Cha
00]. The cohesion of a component allows the measurement of its structure quality. The
cohesion degree of a component is high, if it implements a single logical function. All the
parts of a component must contribute to this implementation.

Yourdon and Constantine introduced cohesion, in the context of traditional
applications, as a measure of the extent of the functional relationships of the elements in a
module [You 79]. Grady Booch describes high functional cohesion as existing when the
elements of a component (such as a class) all work together to provide some well-
bounded behaviour [Boo 94]. In the object paradigm, a class is cohesive when its parts
are highly correlated. It should be difficult to split a cohesive class. A class with low
cohesion has disparate and non-related members. Cohesion can be used to identify the
poorly designed classes. Class cohesion is considered as one of most important
characteristics in object-oriented design. Cohesion is an underlying goal to continually
consider during the design process [Lar 03]. A large number of metrics have been
proposed in literature in order to measure class cohesion in object-oriented systems.
Major existing cohesion metrics have been presented in detail and are categorized in [Bri
98]. The majority of these metrics are based on attributes usage (sharing) criteria. These
metrics capture class cohesion in terms of connections among members within a class.
They count the number of instance variables used by methods or the number of methods
pairs that share instance variables. Most of these metrics have been experimented and
widely discussed in literature [Hen 96, Bas 96, Cha 98, Chi 98, Ema 99, Bri 00, Bad 03].
Several studies have noted that they fail in many situations to properly reflect the
cohesiveness of classes [Kab 00, Cha 00, Ama 02]. According to many authors, they do
not take into account some characteristics of classes, for example, sizes of cohesive parts
as stated in [Ama 02] and connectivity among members as stated in [Cha 00].

Beyond these aspects, we believe that existing metrics fail to reflect properly the
properties of class cohesion, particularly in terms of functional relationahips that may
exist between methods. They are based on restricted criteria and could lead, as stated in
some papers, to unexpected values of cohesion in many situations. We believe that class
cohesion should not exclusively be based on common instance variables usage as stated
in [Kab 01] and have to go beyond this aspect by considering other relationships between
methods. We note that, in many situations, by analyzing the source code of several parts
of many real systems, that several methods are functionally related together without
sharing any instance variables and can not be separated in different classes. We extend
the existing criteria by considering different ways of capturing class cohesion. In a first
step, we introduced, in [Bad 03, Bad 04], a new criterion, which focused on interactions
between class methods. We performed an experimental study on several Java systems.
The obtained results demonstrated that the introduced criterion was statistically
significant. It allows capturing a significant number of pairs of related methods, which
are not captured by others existing cohesion metrics. Many empirical studies on object-
oriented metrics have been conducted these last years. Among others, [Dag 03] focused

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 57

on the prediction of maintaibility, [Zho 03] and [Agg 06] on the prediction of fautes, and
[Kab 01] on exploring the relationship between cohesion and coupling in the one hand
and the relationship between cohesion and changeability in the other hand. The domain
gains in interest these last years.

Since our last papers [Bad 03, Bad 04] on the cohesion of object-oriented systems,
we continued experimenting on cohesion metrics on several other systems. The analysis
of the obtained results combined with code analysis of certain applications that we
noticed allowed us to determine that there are certain particular situations where class’
methods could be functionally connected without sharing instance variables or calling
methods in common. This lead us to introduce a complementary criterion for cohesion
and experiment on it. In this paper, we propose, on the first hand, an extension of the two
metrics DCD and DCI that we proposed in [Bad 03, Bad 04]. This extension corresponds
to the introduction of a new criterion related to common objects parameters (methods
having a same objet as parameter). In fact, two methods of a given class can very well
share a same object passed in parameter without being connected by sharing a method or
an instance variable. In fact, if we consider existing cohesion metrics, the majority is
based on shared instance variables. From the nature of object-oriented systems, these
instance variables can be of a primitive type (basic Java types, for example) or be of
object type. Furthermore, in the object context, objects collaborate to accomplish a given
task. The collaboration between a group of objects, to accomplish a given task, is based
on certain design principles (design patterns, among others) and implies the assignment
of responsibilities to classes [Lar 03]. This collaboration can be located on two levels: a
collaboration between a group of objects belonging to different classes, and a
collaboration between a group of methods within a unique given class. This last type of
collaboration can be seen, among other things, as the use of objects under the form of
instance variables or passed as arguments, at the method level, public in particular.
Cohesion may allow, in this context, to insure that assignment of responsibilities to
classes is done in a cohesive manner. In this context, and starting from the conclusions
we drew in our experiments since 2003, the introduction of the new criterion seemed
relevant to us. The obtained results, from the experiment we conducted, confirm our
hypotheses. They clearly demonstrate that the extended cohesion metrics, based on the
addition of the proposed criterion, capture more pairs of connected methods that the old
metrics DCD and DCI did. The statistical test we performed was positive for several
systems.

On the second hand, we explored, as a first attempt to validate our approach, the
relationship that may exist between the extended cohesion metrics and coupling. A well
established belief in the software engineering community states that a high cohesion is
related to a low coupling, and vice-versa (the yin-yang principle) [Lar 03, Som 04, Pre
05]. However, and to the best of our knowledge, no empirical validation was done on
this. A few papers, however, such as [Kab 01], attempted to validate the relationship
between coupling and cohesion, but without any success. One of their conclusions called
for a refinement of existing cohesion metrics. The experimental study we have performed
uses our previous cohesion metrics as well as the new extended ones. The obtained
results demonstrate that there exists a significant correlation between our cohesion

REVISITING CLASS COHESION: AN EMPIRICAL INVESTIGATION ON SEVERAL SYSTEMS

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

metrics and the considered coupling metric (CBO, Coupling Between Objects) of
Chidamber et al. [Chi 91, Chi 94]. The considered cohesion metrics present, however,
different correlation degrees. The empirical investigation as well as the obtained results
are discussed in Section 7. Our ultimate objective, which will be the subject of futur
work, is to validate the proposed cohesion metrics as, for example, good indicators for
changeability and testability.

The rest of the paper is structured as follows: Section 2 provides an overview of
major class cohesion metrics. Section 3 presents the concept of coupling between objects
and some well known coupling metrics. Section 4 presents some related work addressing
the relationships which may exist between object-oriented metrics and some quality
characteristics. Section 5 presents the new definition of class cohesion that we propose
based on the new criterion that we introduce in this paper. Section 6 presents the first step
of the experiment that we conducted (statistic test). Section 7 presents the empirical
investigation that we conducted to explore the relationship between cohesion and
coupling. Finally, conclusions and future work directions are given in section 8.

2 CLASS COHESION METRICS

Classes are considered as the basic units of object-oriented software. Classes should then
be designed to have a good quality. However, improper modeling in the design phase can
produce classes with low cohesion. In order to assess class cohesion in object-oriented
systems, several metrics have been proposed in literature. Many authors have defined
class cohesion by proposing their cohesion metrics. Most of the proposed cohesion
metrics are inspired from the LCOM (Lack of COhesion in Methods) metric defined by
Chidamber and Kemerer [Chi 91, Chi 94, Chi 98]. Many authors have redefined the
LCOM metric. Many cohesion metrics have been presented in detail and are categorized
in [Bri 98]. A class is more cohesive, as stated in [Cha 00], when a larger number of its
instance variables are referenced by a method (LCOM5 [Hen 96], Coh [Bri 98]), or a
larger number of methods pairs share instance variables (LCOM1 [Chi 91], LCOM2 [Chi
94], LCOM3 [Li 93], LCOM4 [Hit 95], Co [Hit 95], TCC and LCC [Bie 95], DC [Bad
95]). Some of these metrics take into account the interactions (at different levels) between
methods.

3 COUPLING BETWEEN CLASSES

Coupling between classes allows evaluating in which proportion an entity uses other
entities. Stevens & al. [Ste 74] define coupling as a measure of the strenght of the
association established by a connection between two modules. According to [Pre 05],
coupling is a measure of interconnection between modules forming the structure of the
software. A module presenting a high coupling is a complex module. This complexity
makes, among other things, the module difficult to understand, difficult to detect and
correct errors, and to change that module. The complexity of a system can be reduced to

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 59

the design of modules with low coupling. Well known practices in software engineering
tend to promote low coupling between components to minimize interdependencies and
facilitate evolution [Lar 03, Som 04, Pre 05]. In literature, several studies demonstrate
that coupling metrics are good predictive indicators of OO systems maintainability.
However, there exist empirical insufficiencies that clarify their significance for the
prevision in maintainability [Dag 03]. Among coupling metrics, we cite CBO (Coupling
Between Objects) of Chidamber and Kemerer [Chi 94], MPC (Message-Passing
Coupling) and DAC (Data Abstraction Coupling) of Li and Henry [Li 93, Li 95] or OLC
(Object Level Coupling) and CLC (Class Level Coupling) of Hitz and Montazeri [Hit
95]. Brian & al. counted 23 coupling metrics [Bri 97]. In the context that we are
interesting in, we used the CBO metric proposed by [Chi 94], largely known as a good
coupling metric between classes. In our future work, we plan on extending our study to
integrate other coupling metrics.

4 RELATED WORK

During the three last decades, a large number of software metrics were proposed, among
others, coupling, cohesion, and complexity metrics. But there is a little understanding of
the empirical hypotheses of many of these measures [Agg 06]. It is often hard to
determine which metric is the most useful and the one that predicts the most efficiently
certain aspects relative to quality such as maintainability, testability, changeability, or
other characteristics. Dag & al. mention in [Dag 03] the fact that there exists empirical
insufficiencies clarifying their siginificance for the prediction of certain quality factors, in
particular maintainability. Among papers addressing this question, the paper of Dagpinar
& al. [Dag 03] is particularly interesting. The results obtained in their case demonstrate
that metrics of size and direct coupling importation are significant indicators of class
maintainability, opposed to inheritance, cohesion and indirect exportation coupling.

In [Agg 06], an empirical study regarding the majority of OO coupling metrics was
realised. The objective of this study was to identify the most significant metrics in terms
of provided information. The theoretical analysis of these metrics suggests that only 6 of
them (NOA, NOM, MPC, DAC, LCOM and LCC) give enough information to be used,
and the other metrics correspond to subsets of the retained metrics or give the same
information but in another format. Aggarwal & al. [Agg 06] addressed the correlation
between existing coupling metrics and their relationship to fault proneness. The
prediction model proposed in [Agg 06b] shows that coupling metrics are highly
correlated to fault proneness. Zhou & al. [Zho 06] focused on the relationship between
design metrics (CBO, WMC, RFC, LCOM, etc.) and fault-proneness when taking fault
severity into account. In this context, the fact of determining if there exists a relationship
between cohesion and coupling could lead us to believe that there also exist a relationship
between cohesion and, for example, maintainability, testability, as well as fault
proneness. This needs, however, more investigations on the direct relationship that may
exist between cohesion and those characteristics to draw strong conclusions. This last
aspect will be the subject of our future work, and is out of the scope of this paper.

REVISITING CLASS COHESION: AN EMPIRICAL INVESTIGATION ON SEVERAL SYSTEMS

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

5 CLASS COHESION ASSESSMENT: A NEW MEASURE

Class cohesion in our approach, as stated initially in [Bad 95], is defined in terms of the
relative number of related methods in a class. It is comparable to the approach adopted by
Bieman and Kang in [Bie 95]. We have revised our initial definition of class cohesion
[Bad 95] by extending the methods invocation criterion in the one hand and introducing
the concept of indirect usage of attributes defined by Bieman & al. in [Bie 95] in the
other hand. We have also extended this concept to the methods invocation criterion. The
new definition of class cohesion and corresponding metrics have been experimented [Bad
03, Bad 04]. The obtained results have shown that the introduced criterion and the
extension of the original criteria allow capturing more pairs of related methods than the
others class cohesion metrics proposed in literature. The difference between the values
obtained using the original and the extended metrics was statistically significant [Bad 04].
As stated previously, we conducted after that several experiments on various systems.
The obtained results and particularly the analysis of the code of some programs allowed
us to observe, in several situations, that methods of a class may be functionally connected
in other ways. Our experiments also allowed us to observe the following. For several of
the studied systems, a significant part of class attributes were, in fact, reference attributes.
Those attributes were shared by methods and were the basic criterion (connection
between methods) that was used by all existing class cohesion metrics. Among several
analyzed systems, we observed that in some of them more than 20% of the attributes
were, in fact, reference attributes. This is a natural thing in OO systems knowing that
classes collaborate, according to their respective responsibilities, to implement a given
task. Reference attributes are used to insure the necessary visibility between objects [Lar
03]. Then, a question arises: why use all the attributes of a class (common usage of
attributes criterion) knowing that part of them can be reference attributes and not use the
objects passed as parameter (non primitive) also as cohesion criteria ? It is in this context
that we explored the introduction of a new criterion : Common Objects Parameters. We
give, in what follows, the cohesion criteria used in our approach and the resulting
cohesion metrics. The two first criteria have been used and extended in [Bad 03, Bad 04].
The third creterion is the new criterion that we introduce and experiment in this paper.

Two methods can be connected, in fact, in many ways. The adopted approach for the
estimation of class cohesion is based on different relationships that may exist between its
methods. It takes into account different ways of capturing the functional cohesion in a
class, by focusing on the proposed cohesion criteria: Attributes Usage Criterion, Methods
Invocation Criterion, and Common Objects Parameters. Class cohesion refers essentially
the relatedness of public methods of a class, which represent the functionalities used by
its clients. The others methods of the class are included indirectly through the public
methods.

Attributes Usage Criterion (UA)

Let us consider a class C. Let A = {A1, A2,…, Aa} be the set of its attributes and PUM =
{M1, M2, …, Mn} be the set of its public methods. Let UAMi be the set of all the

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 61

attributes used directly or indirectly by the public method Mi. An attribute is used directly
by a method Mi, if the attribute appears in the body of the method Mi. The attribute is
indirectly used by the method Mi, if it is used directly by another method of the class that
is invoked directly or indirectly by Mi. There are n sets UAM1, UAM2, …, UAMn. Two
public methods Mi and Mj are directly related by the UA relation if UAMi ∩ UAMj # Φ. It
means that there is at least one attribute shared (directly or indirectly) by the two
methods.

Methods Invocation Criterion (IM)

Let us consider a class C. Let PUM = {M1, M2, …, Mn} be the set of its public methods
and PRM = {I1, I2, …, Ik} be the set of its other (private and protected) methods. Let
PUMMi be the set of all the public methods of the class C, which are invoked directly or
indirectly by the public method Mi. A public method Mj is called directly by a public
method Mi, if Mj appears in the body of Mi. A public method Mj is indirectly called by a
public method Mi, if it is called directly by another method of the class C that is invoked
directly or indirectly by Mi. There are n sets PUMM1, PUMM2, …, PUMMn. Let PRMMi be
the set of all the other methods (private and protected) of the class C, which are invoked
directly or indirectly by the public method Mi. There are n sets PRMM1, PRMM2, …,
PRMMn. Let IMMi = PRMMi U PUMMi be the set of all the methods of the class C, which
are invoked by the public method Mi. There are n sets IMM1, IMM2, …, IMMn. Two public
methods Mi and Mj are directly related by the IM relation if IMMi ∩IMMj # Φ. We also
consider that Mi and Mj are directly related if Mj Є IMMi or Mi Є IMMj.

Common Objects Parameters (CO)

Ler us consider a class C. Let PUM = {M1, M2, …, Mn} be the set of its public methods.
Let UCOMi be the set of all the parameters (of object type) of the method Mi. There are n
sets UCOM1, UCOM2, …, UCOMn. Two public methods Mi and Mj are directly related by
the UCO relation if UCOMi ∩ UCOMj # Φ. It means that there is at least one parameter of
object type used by the two methods.

Cohesion based on the direct relation

Two public methods Mi and Mj may be directly connected in many ways: they share at
least one instance variable in common (UA relation), or interact at least with another
method of the same class (IM relation), or share at least one object passed as argument
(CO relation). In this context, the two methods may be directly connected by one or more
creteria. It means that the two methods are directly connected if: UAMi ∩ UAMj # Φ or
IMMi ∩ IMMj # Φ or UCOMi ∩ UCOMj # Φ.

Let us consider a class C with PUM = {M1, M2, …, Mn} the set of its public methods.
The maximum number of public methods pairs, is n * (n – 1) / 2. Consider an undirected
graph GD, where the vertices are the public methods of the class C, and there is an edge
between two vertices if the corresponding methods are directly related. Let ED be the
number of edges in the graph GD. The degree of cohesion in the class C based on the

REVISITING CLASS COHESION: AN EMPIRICAL INVESTIGATION ON SEVERAL SYSTEMS

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

direct relation between its public methods is defined as: DCDE = |ED| / [n * (n – 1) / 2] Є
[0,1]. DCDE (as an extention of DCD [Bad 03, Bad 04]) gives the percentage of public
methods pairs, which are directly (as defined below) related. The Lack of Cohesion in the
Class (LCCDE) is than given by : LCCDE = 1- DCDE € [0,1].

Cohesion based on the indirect relation

Two public methods Mi and Mj can be indirectly related if they are directly or indirectly
related to a method Mk. The indirect relation, introduced by Bieman and Kang in [Bie
95], is the transitive closure of the direct relation. We use this concept in our approach for
identifying the indirect related methods. Consider now an undirected graph GI, where the
vertices are the public methods of the class C, and there is an edge between two vertices
if the corresponding methods are directly or indirectly related (transitive closure of the
graph GD). Let EI be the number of edges in the graph GI. The degree of cohesion in the
class C in this case (direct and indirect relations) is defined as: DCIE = |EI| / [n * (n – 1) /
2] Є [0,1]. DCIE (as an extention of DCI [Bad 03, Bad 04]) gives the percentage of public
methods pairs, which are directly or indirectly related. The Lack of Cohesion in the Class
(LCCIE) is than given by: LCCIE = 1- DCIE Є [0,1].

6 EXPERIMENTAL STUDY

As a first experimentation of the new criterion and to achieve significant and general
results, we have chosen several systems, which can be freely downloaded from the web.
Our goal was to analyze a maximum number of Java classes from different systems in
order to collect significant data for the experiment. The considered systems vary in size
and domain. The following section gives some of their characteristics. The goal, at this
step, was essentially to explore if the new criterion is statistically significant before more
investigations. We extended the cohesion measurement tool (in Java) for Java programs,
that we developed for [Bad 04], to automate the computation of our metrics (DCD, DCDE,
DCI and DCIE).

Several classes in the considered systems have only one method or do not have any
methods. These classes were considered as special classes and have been excluded from
our measurements. We also excluded all abstract classes. Overloaded methods within the
same class were treated as one method. Moreover, all special methods (constructors,
destructors) were removed. We collected the values for all the selected metrics from the
test systems. For each metric, we calculated some descriptive statistics (minimum,
maximum, mean, median, and standard deviation).

Selected systems

The experiment concerned more than 800 classes. The followed methodology and the
obtained results are presented in the following sections. The selected systems are :

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 63

• System1: JIU0.10 (Java Imaging Utilities) is a library in Java for the change, the
edition, the analysis and the backup of pixels of image files
(http://sourceforge.net/projects/jiu). This system contains 180 classes.

• System2: JIU0.11 (Java Imaging Utilities) is an evolution of the first system
(http://sourceforge.net/projects/jiu) and contains 191 classes.

• System3: FujabaUML is a software development tool allowing the easy extention
of UML and the development with Java with the addition of plug-ins
(http://www.fujaba.de). This system contains 186 classes.

• System4: Wbemservices is a Java open source implementation of Web Based
Enterprise Management (WBEM) for commercial and non commercial
applications. It is composed of API, of servers, client applications and tools
(http://wbemservices.sourceforge.net/). It contains 463 classes.

Table 1: Average values of cohesion.

Results

We measured class cohesion values for the 4 selected systems. Table 1 shows the mean
values of the metrics for the selected systems. The obtained results for DCDE et DCIE
show clairly that they capture more pairs of connected methods than DCD et DCI. Figures
1 and 2, for example, give the mean values of the metrics for systems 3 and 4. The two
metrics DCDE and DCIE seem capturing an additional aspect of characteristics of classes
that the other do not. The main goal of this work is to demonstrate the relevance of the
new criterion. For this raison, we will not discuss the cohesion values of the selected
systems. The results given in table 1 show however that these systems are not cohesive.

 Systems Des. Stat DCD DCDE DCI DCIE
Jiu1 Moyenne

Sdt.dev

0,16027

0,13686

0,17384

0,1378

0,1922

0,1638

0,2178

0,2178

Jiu2 Moyenne

Sdt.dev

0,2497

0,16466

0,2635

0,1714

0,3102

0,2292

0,3350

0,2246

Fujaba Moyenne

Sdt.dev

0,01597

0,01479

0,05244

0,05861

0,0207

0,0201

0,0656

0,0739

Wbemservices Moyenne

Sdt.dev

0,08138

0,14164

0,2286

0,2051

0,1013

0,1678

0,2747

0,2332

REVISITING CLASS COHESION: AN EMPIRICAL INVESTIGATION ON SEVERAL SYSTEMS

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

FujabaUml

0,01597

0,05244

0,0207

0,0656

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

FujabaUml 0,01597 0,05244 0,0207 0,0656

1 2 3 4

FujabaUml

DCd

DCd*

DCi

Dci*

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 1: Representation and comparison of the average values for FujabaUml.

Validation of the new criterion

The objective of this section is to compare the results of DCD and DCDE on one side and
the results of DCI and DCIE on the other. The objective is to see if the difference brought
by the introduced criterion is statistically significant. Our goal is then to demonstrate that
DCDE and DCIE are more significant than DCD and DCI and that they allow capturing
more pairs of connected methods. To validate our hypotheses, we use an appropriate
statistical test: the PAIRED t-TEST [Hin 03]:

WbemServices

0,08138

0,2286

0,1013

0,2747

0

0,05

0,1

0,15

0,2

0,25

0,3

WbemServices 0,08138 0,2286 0,1013 0,2747

1 2 3 4

Wbemservices

DCd

DCd*

DCi

Dci*

0

0,05

0,1

0,15

0,2

0,25

0,3

Figure 2 : Representation and comparison of the average values for Wbemservices.

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 65

Let μ1 be the mean value of DCDE (or DCIE) and μ2 be the mean value of DCD (or DCI).
We present the following two statistical hypotheses :

• H0 : μ1= μ2 The metrics are equivalent.
• H1 : μ1> μ2 DCDE (or DCIE) is more significant than DCD (or DCI).

Let Diff be the value of (μ1- μ2). The above test is equivalent to:

• H0 : Diff = 0.
• H1 : Diff >0.

The test statistic is: Z =d/ [Sd / sqrt(N)]
With d : the mean value of sample Diff

Sd : the standard deviation of sample Diff and
N : the number of classes in sample Diff.

Tables 2 and 3 present respectively the comparison between DCD and DCDE on one side
and DCI and DCIE on the other.

 Systèmes Des. Stat DCD DCDE Diff Z Zα
Jiu1 Moyenne

Sdt .dev

0,16027

0,13686

0,17384

0,1378

0,01356

0,01685

1,799 1,645

Jiu2 Moyenne

Sdt.dev

0,2497

0,16466

0,2635

0,1714

0,0228

0,0207

2,4635 1,645

Fujaba Moyenne

Sdt.dev

0,01597

0,01479

0,05244

0,05861

0,03646

0,05663

2,6547 1,645

Wbemservices Moyenne

Sdt.dev

0,08138

0,14164

0,2286

0,2051

0,1472

0,1869

4,7917 1,645

Table 2 : Comparison between DCD and DCDE

Systèmes Des. Stat DCI DCIE Diff Z Zα
Jiu1 Moyenne

Sdt.dev

0,1922

0,1638

0,2178

0,2178

0,0255

0,0352

1,620 1,645

Jiu2 Moyenne

Sdt.dev

0,3102

0,2292

0,3350

0,2246

0,02485

0,0358

1,5498 1,645

Fujaba Moyenne

Sdt.dev

0,0207

0,0201

0,0656

0,0739

0,0448

0,0697

2,6494 1,645

Wbemservices Moyenne

Sdt.dev

0,1013

0,1678

0,2747

0,2332

0,1734

0,1819

5,7969 1,645

Table 3 : Comparison between DCI and DCIE

REVISITING CLASS COHESION: AN EMPIRICAL INVESTIGATION ON SEVERAL SYSTEMS

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

The procedure consists on comparing Z, for each system, to a value Zα (the value of α is
0.05). If the value of Z is higher than Zα, we refuse hypothesis H0 : Diff = 0 and accept
H1 : Diff > 0. In this case, the statistical test is significant and we can conclude that
metric DCDE (or DCIE) is more significant than metric DCD (or DCI). This means that the
added criterion is significant and allows capturing an additional aspect of classes’
properties. We collected data on the metrics from the selected systems and calculated
Diff and Z for these systems. These results are presented in tables 2 and 3. They clearly
show that, for the majority of the tested systems, Z is higher thant Zα. The systems for
which Z is lower thant Zα are the systems for which N is low. Globally, the results show
that DCDE (or DCIE) is more significant than DCD (or DCI). This statistical validation
demonstrate the relevance of the new cohesion criterion for capturing new pairs of
connected methods. The obtained results show that the extended cohesion metrics, based
on the introduction of the last proposed criteria, capture more pairs of connected methods
than metrics DCD and DCI.

7 EXPLORING EMPIRICALLY THE RELATIONSHIP BETWEEN
COHESION AND COUPLING

Introduction

A widely known belief in the software engineering community states that, intuitively, a
high cohesion is related to low coupling, and vice-versa [Lar 03, Som 04, Pre 05].
However, to the best of our knowledge, no validation of this principle was proposed to
this day. It is in this context that we explore in this section the relationship that may exist
between our cohesion metrics and coupling. This appears to us as a first lead for the
validation of our metrics if the relationship is really confirmed. Of course, to draw a final
conclusion on this relationship, complementary and deeper investigations should be
performed. These studies could eventually consider the exploration of the relationship
that our metrics could have directly with high level quality characteristics such as
testability, changeability and maintainability.

Selected Systems

The experiment we performed considered six systems that vary in size (number of
classes) and domain. The selected systems are (more than 500 classes):

• System 1 : Gnujsp 1.0.1, GNUJSP is a free implementation of Java Server Pages
of Sun (http://klomp.org/gnujsp). This system contains 56 classes.

• System 2 : JIU 0.12, JIU (Java Imaging Utilities) is a library in Java for loading,
editing, analyzing and saving pixels in image files
(http://sourceforge.net/projects/jiu). This system has 77 classes.

• Systeme 3 : fujabaUml.4, FujabaUML is a software development tool allowing
the easy extension of UML and Java development with the use of plug-ins
(http://www.fujaba.de). This system contains 60 classes.

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 67

• System 4 : jexcelapi 2.6, JExcelApi is a Java library that grants the possibility of
reading, writing and modifying Microsoft Excel Worksheets
(http://sourceforge.net/projects/jexcelapi). It contains 110 classes.

• System 5 : moneyjar 0.8, Moneyjar is a Java library for financial applications. It
simplifies treasury management, currency exchange, tax calculations and invoice
management (http://sourceforge.net/projects/moneyjar). It contains 20 classes.

• System 6 : wbemservices 1.0.0, Wbemservices is an open source Java
implementation of Web Based Enterprise Management (WBEM) for commercial
and non commercial applications. It is a project composed of APIs, of servers, of
client applications and of tools (http://wbemservices.sourceforge.net/). This
system contains 180 classes.

Experimental Process: First phase

We collected, from the set of considered systems, 6 in all, the data corresponding to our
four cohesion metrics, as well as data corresponding to CBO metric. We used the
Together tool to calculate CBO. The study of the obtained results, in a visual form first,
lead us to believe that there could be a link between cohesion and coupling according to
the considered metrics. The graphs of figures 6, 7 and 8 show the distribution of the
values of cohesion and of coupling for, for example, five of the analyzed systems,
allowing us to observe what seems to be a negative link between cohesion and coupling.
We can clearly observe, in a global manner, that when cohesion increases, coupling
decreases. The inverse is also true.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

cohesion

couplage

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

cohesion

Couplage

Figure 6: Distribution graphs for Coupling – Cohesion in Gnujsp and Fujaba.

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66

Cohesion

Couplage

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12

Cohesion

couplage

Figure 7 : Distribution graphs for Coupling – Cohesion in Jiu and Moneyjar.

REVISITING CLASS COHESION: AN EMPIRICAL INVESTIGATION ON SEVERAL SYSTEMS

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cohesion

couplage

Figure 8 : Distribution graphs for Coupling – Cohesion in JexcelApi.

Experimental Process: Second phase

The objective of this second step of our experiments consists on an attempt to explain the
observations given previously and, eventually, confirm the hypothesis of a relationship
between coupling and cohesion such as it was introduced in this section. To test the
hypothesis, if cohesion is correlated with coupling, we consider the four cohesion
metrics: DCI, DCD, DCDE, and DCIE, as well as CBO coupling metric.

In our experiments, we collected data on the selected metrics from each of the
considered systems, and then we used the Spearman coefficient (rank statistics) to test the
correlation. This test is appropriate since the dependence seems to be non linear
according to the previous graphs. Analysis of the data sets are done by calculating the
Spearman dependence coefficients for each pair of metrics (a metric of cohesion, CBO).
The Spearman statistic is based on ranks of the observations. The value of the Spearman
statistic is a number between -1 and 1, -1 being a perfect negative dependence and +1 a
perfect positive dependence.

Results

Regression Study
First comes a regression study between coupling and the different cohesion metrics. Each
cohesion metric was associated to the retained coupling metric to do a regression analysis
between the two variables. The goal of this first statistical analysis is to verify if there
exists a linear relationship between the cohesion metrics and coupling. Here are a few
terms used in this part of paper:

• Regression model: It is the regression model used. The independent variables are
the cohesion metrics DCDE, DCIE, DCD, DCI and the dependant variable is the
coupling metric CBO;

• Dependant variable: A random variable to predict;
• Independant variable: A predictive variable;
• R2 (r-square): The percentage of variance of the dependent variable explained by

the independent variables in the regression model for the given sample of the
population.

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 69

• Population : The set of classes taken into consideration at the test level;
• Adjusted R-square: The percentage of variance of the dependent variable

explained by the independent variables in a regression model of the population;
• Sum of squares of regression: The variance of the dependent variable explained

by the regression model;
• Sum of squares of residual: The variance not explained by the dependent variable;
• Mean squares of residual: The sum of squared residues divised by the number of

freedom degrees of the residues;

Table 4 shows the values of R2 obtained.

System Cohesion Metric R2 vs Coupling
DCDE 0.0118
DCIE 0.0081
DCD 0.0081

FujabaUml

DCI 0.0054
System Cohesion Metric R2 vs Coupling

DCDE 0.2835
DCIE 0.2676
DCD 0.4657

Gnujsp

DCI 0.4506
System Cohesion Metric R2 vs Coupling

DCDE 0.0228
DCIE 0.0267
DCD 0.0186

JIU

DCI 0.0221
System Cohesion Metric R2 vs Coupling

DCDE 0.0226
DCIE 0.0237
DCD 0.032

Moneyjar

DCI 0.0331

Table 4 : Values of R2 in the different systems.

To study another variant of this relation between the metrics of cohesion and the coupling
metric, the logarithm of the coupling value was defined. A regression between this
logarithm and the cohesion value is done. The results obtained are shown in table 5.

REVISITING CLASS COHESION: AN EMPIRICAL INVESTIGATION ON SEVERAL SYSTEMS

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

System Cohesion Metric R2 vs logCouplage
DCDE 0.0027
DCIE 0.0012
DCD 0.0019

FujabaUml

DCI 0.0008
System Cohesion Metric R2 vs logCouplage

Gnujsp DCDE 0.0032
 DCIE 0.0066
 DCD 0.0628
 DCI 0.0504

System Cohesion Metric R2 vs logCouplage
DCDE 0.0341
DCIE 0.043
DCD 0.0459

JIU

DCI 0.0545
System Cohesion Metric R2 vs logCouplage

DCDE 0.015
DCIE 0.0148
DCD 0.0168

Moneyjar

DCI 0.0162

Table 5 : R2 obtained with the log of a coupling value.

Concerning this first experiment, we based our study on the values of the R2 statistic to
interpret the relation that eventually links coupling and cohesion. For example, for system
JIO in table 4, values 0.0228 and 0.0267 of metrics DCDE and DCIE respectively actually
represent percentages of the variance of coupling explained by the cohesion metrics.
Therefore, 2.28% and 2.67% of the variance of coupling, respectively, is explained by the
cohesion metrics DCDE and DCIE. Concerning table 5, for the same JIU system, values
0.0341 and 0.0430, respectively for cohesion metrics DCDE and DCIE, represent the
percentages of the logarithm of the variance explained by the cohesion metrics.
Therefore, 3.41% and 4.3% of the logarithm of variance is explained respectively by
cohesion metrics DCDE and DCIE. Given the obtained values in this experiment and
taking into account the noted observations in previous section (the relationship seems to
be non linear), we conducted a second experiment using the Spearman correlation.

Spearman Correlation study (rank statistic)
As a second step, we calculated the correlation degree (according to Spearman) between
the cohesion metrics and coupling in the selected systems. Table 6 presents the obtained
results.

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 71

System Statistic DCIE‐CBO DCDE‐CBO DCI‐CBO DCD‐CBO
Spearman Coeff. ‐0.354545 ‐0.35892 ‐0.35455 ‐0.35892
Test statistic ‐2.786373 ‐2.8258 ‐2.78637 ‐2.8258

Gnujsp

P‐value 0.0036697 0.003299 0.00367 0.003299
Spearman Coeff. ‐0.50857 ‐0.47888 ‐0.50337 ‐0.47584
Test statistic ‐5.11527 ‐4.72409 ‐5.04502 ‐4.68533

jiu

P‐value 1.17E‐06 5.27E‐06 1.53E‐06 6.11E‐06
Spearman Coeff. ‐0.425590442 ‐0.43809 ‐0.29225 ‐0.31195
Test statistic ‐3.5817696 ‐3.71155 ‐2.3273 ‐2.5005

fujabaUml

P‐value 0.000349459 0.000232 0.011731 0.007625
Spearman Coeff. ‐0.18723 ‐0.22039 ‐0.19318 ‐0.21987
Test statistic ‐1.98076 ‐2.34805 ‐2.04612 ‐2.3423

jexcelapi

P‐value 0.02508 0.010346 0.021587 0.010499
Spearman Coeff. ‐0.00602 ‐0.01955 ‐0.02105 ‐0.03459
Test statistic ‐0.02552 ‐0.08295 ‐0.08934 ‐0.14683

moneyjar

P‐value 0.48996 0.467402 0.4649 0.442451
Spearman Coeff. ‐0.242732 ‐0.295322901 ‐0.26708 ‐0.3055
Test statistic ‐3.338282 ‐4.124041493 ‐3.69767 ‐4.28049

wbemservices

P‐value 0.0005133 2.85E‐05 0.000145 1.52E‐05

Table 6 : Results of the Spearman rank statistic method.

The goal of this experiment was to find a correlation (negative) between the cohesion
metrics and coupling metric we selected. The experiment consisted on verifying if the
correlation is significatively lower than 0 (in the statistical sense) for a negative
dependence. A statistical test was executed. The statistical test must then be compared to
a Student variable calculated with n-2 freedom degrees, and where n is the size of the
sample.

The P-value indicates the probability of obtaining such a value under the null
hypothesis of absence of dependence. In general, if P-value < 0.05 (error margin), we
conclude that a negative dependence is significant. Therefore, for the set of tested
systems and according to the values of table 6, only the moneyjar system has P-values >
0.05 for all combinations (cohesion metric – coupling metric). We observe values of
0.48996, 0.46740, 0.4649, and 0.442451 for, respectively, cohesion metrics DCIE, DCDE,
DCI, DCD compared to the coupling metric CBO. For the rest of the studied systems, the
P-values are all < 0.05 for the entire set of combinations (cohesion metric – coupling
metric). Therefore, all systems, according to table 6, present a significative negative
dependence between cohesion and coupling, with the exception of the moneyjar system.
One possible explanation is that only that system actually has a relatively low number of
classes (20) compared to the other systems. Therefore, to observe a significant negative
dependence, it would be interesting to consider systems having a high number of classes.

The obtained results demonstrate that there is a relationship between the cohesion
metrics and the coupling metric. It seems also possible that the more the number of
classes of a system is high, the more the dependence relation between cohesion and

REVISITING CLASS COHESION: AN EMPIRICAL INVESTIGATION ON SEVERAL SYSTEMS

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

coupling is visible (non linear dependence relations). Even if the obtained results,
considering the different systems selected for our study, clearly confirm that the relation
that exists between coupling and cohesion (when one increases, the other decreases), it is
however necessary to continue the exploration of this relation for other systems before
drawing any global conclusions.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have revised our definition of class cohesion [Bad 03, Bad 04] and
proposed a new cohesion criterion. Our main goal in this work was to validate the
introduced criterion (Common Objects Parameters) and our approach for class cohesion
assessment. We developed a cohesion measurement tool for Java programs to automate
the computation of the class cohesion metrics that we propose. In order to demonstrate
the effectiveness of the new criterion and the proposed metrics for class cohesion, we
performed an empirical study on several systems. In our experiments, several hundred of
classes were analysed. The selected systems vary in size and domain. The obtained
results show that the extented metrics, based on the introduced criterion, capture more
pairs of connected methods. Furthermore, and with the goal of validating our new
metrics, we explored the eventual relationship that theses metrics could have with
coupling. The experiment we conducted in this second step allowed us to analyse several
hundreds of classes The obtained results demonstrated that there is in fact a significative
negative correlation between cohesion and coupling for the studied systems. The results
also seem to indicate that the more the number of classes in a system is high, the more the
dependence relation between cohesion and coupling is confirmed.

We believe that the present work constitutes an improvement of class cohesion
measurement. During our experiment, we collected several data on the analyzed classes.
An important part of the collected data has been treated during this work. Actually, we
are analyzing the rest of the collected data. As future work we plan to: (1) study in detail
the weakly cohesive classes; (2) study the proposed metrics by including other aspects of
object-oriented design such as inheritance between classes; (3) continue to explore the
cohesion-coupling relation by integrating in the experiment other coupling metrics as
well as other cohesion metrics to refine our study and draw more global conclusions; and
finally (4) explore the relationship (without going through coupling) between our
cohesion metrics and some high level quality characteristics such as testability,
changeability and maintainability.

ACKNOWLEDGEMENTS

This work was supported by a NSERC (Natural Sciences and Engineering Research
Council of Canada) grant.

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 73

REFERENCES

[Agg 06] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, RuchikaMalhotra,
Empirical study of object-oriented metrics, In Journal of Object
Technology, vol. 5. no. 8, November-December 2006, pp. 149-173.

[Agg 06] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, RuchikaMalhotra,
Investigating the effect of coupling metrics on fault proneness in object-
oriented systems, SQP, vol. 8 no. 4, 2006.

[Ama 02] H. Aman, K. Yamasaki, H. Yamada and MT. Noda, A proposal of class
cohesion metrics using sizes of cohesive parts, Knowledge-Based Software
Engineering, T. Welzer et al. (Eds), pp. 102-107, IOS Press, September
2002.

[Bad 95] L. Badri, M. Badri and S. Ferdenache, Towards Quality Control Metrics
for Object-Oriented Systems Analysis, Proceedings of TOOLS
(Technology of Object-Oriented Languages and Systems) Europe'95,
Versailles, France, Prentice-Hall, March 1995.

[Bad 03] L. Badri and M. Badri, A New Class Cohesion Criterion: An empirical
study on several systems, Proceedings of QAOOSE’03, 2003.

[Bad 04] L. Badri and M. Badri, A proposal of a new class cohesion criterion: An
empirical Study, In Journal of Object Technology, 2004.

[Bas 96] V.R. Basili, L.C. Briand and W. Melo, A validation of object-oriented
design metrics as quality indicators, IEEE Transactions on Software
Engineering, 22 (10), pp. 751-761, October 1996.

[Bie 95] J.M. Bieman and B.K. Kang, Cohesion and reuse in an object-oriented
system, Proceedings of the Symposium on Software Reusability (SSR’95),
Seattle, WA, pp. 259-262, April 1995.

[Boo 94] G. Booch, Object-Oriented Analysis and Design With Applications,
Second edition, Benjamin/Cummings, 1994.

[Bri 97] L. C. Briand, J. Daly, V. Porter, and J. Wuest, The Dimensions of
Coupling in Object-Oriented Design, OOPSLA’97,1997.

[Bri 98] L.C. Briand, J. Daly and J. Wusr, A unified framework for cohesion
measurement in object-oriented systems, Empirical Software Engineering,
3 (1), pp. 67-117, 1998.

[Bri 00] L. Briand, J. Wuest, J. Daly and V. Porter, Exploring the relationships
between Design Measures and software quality in object-oriented
Systems, Journal of Systems and Software, No. 51, pp. 245-273, 2000.

[Cha 98] H. S. Chae and Y.R. Kwon, A cohesion measure for classes in object-
oriented systems, Proceedings of the fifth International Software Metrics
Symposium, Bethesda, MD, pp. 158-166, November 1998.

REVISITING CLASS COHESION: AN EMPIRICAL INVESTIGATION ON SEVERAL SYSTEMS

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 6

[Cha 00] H. S. Chae, Y. R. Kwon and D H. Bae, A cohesion measure for object-
oriented classes, Software Practice and Experience, No. 30, pp. 1405-
1431, 2000.

[Chi 91] S.R. Chidamber and C.F. Kemerer, Towards a Metrics Suite for Object-
Oriented Design, Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), Special Issue of SIGPLAN Notices, Vol. 26, No.
10, pp. 197-211, October 1991.

[Chi 94] S.R. Chidamber and C.F. Kemerer, A Metrics suite for object Oriented
Design, IEEE Transactions on Software Engineering, Vol. 20, No. 6, pp.
476-493, June 1994.

[Chi 98] S.R. Chidamber, David P. Darcy, and C.F. Kemerer, Mangerial use of
metrics for object-oriented sofytware : An exploratory analysis, IEEE
Transactions on Software Engineering, Vol. 24, No. 8, pp. 629-639,
August 1998.

[Dag 03] Melis Dagpinar and Jens H. Jahnke, Predicting maintenability with object-
oriented metrics – An empirical comparaison, Proceedings of the 10th
working conference on reverse engineering (WCRE’03), IEEE computer
society, 2003.

[Ema 99] K. El Emam and W. Melo, The prediction of faulty class using object-
oriented design metrics, National Research Council of Canada NRC/ERB
1064, 1999.

[Hen 96] B. Henderson-sellers, Object-Oriented Metrics Measures of Complexity,
Prentice-Hall, 1996.

[Hin 03] W. W. Hines, D. C. Montgomery, D. M. Goldsman and C. M. Borror,
Probability and statistics in engineering, Fourth edition, John Wiley &
Sons, Inc., 2003.

[Hit 95] M. Hitz and B. Montazeri, Measuring coupling and cohesion in object
oriented systems, Proceedings of the Int. Symposium on Applied
Corporate Computing, pp. 25-27, October 1995.

[Kab 00] H. Kabaili, R.K. Keller, F. Lustman and G. Saint-Denis, Class Cohesion
Revisited: An Empirical Study on Industrial Systems, Proceeding of the
Workshop on Quantitative Approaches Object-Oriented Software
Engineering, QAOOSE'2000, France, June 2000.

[Kab 01] H. Kabaili, R.K. Keller and F. Lustman, Cohesion as Changeability
Indicator in Object-Oriented Systems, Proceedings of the Fifth European
Conference on Software Maintenance and Reengineering (CSMR 2001),
Estoril Coast (Lisbon), Portugal, March 2001.

[Lar 03] G. Larman, Applying UML and Design Patterns, An introduction to
object-oriented analysis and design and the unified process, Second
edition, Prentice Hall, 2003.

VOL. 7, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 75

[Li 93] W. Li and S. Henry, Object oriented metrics that predict maintainability,
Journal of Systems and Software, Vol. 23, pp. 111-122, February 1993.

[Li 95] W. Li, S. Henry, D. Kafura and R. Schulman. Measuring Object-Oriented
Design. In Journal of Object-Oriented Programming, Vol. 8, No. 4, pages
48-55, July/August 1995.

[Pre 05] R. S. Pressman, Software Engineering, A practitioner's approach, Fifth
edition, Mc Graw Hill, 2005.

[Som 04] I. Sommervile, Software Engineering, 2004.
[Ste 74] W.P. Stevens, G.J. Myers and L.L. Constantine. Structured Design. In

IBM Systems Journal, Vol. 13, No. 2, pages 115-139, May 1974.
[You 79] E. Yourdon and L. Constantine, Structured Design, Prentice Hall,

Englewood Cliffs, N.J., 1979.
[Zho 06] Yuming Zhou, Hareton Leung, Empirical analysis of object-oriented

design metrics for predicting high and low severity faults, IEEE
Transactions on software engineering, vol. 32, no. 10, October 2006.

About the authors
Linda Badri (Linda.Badri@uqtr.ca) is professor of computer science at
the Department of Mathematics and Computer Science of the University
of Quebec at Trois-Rivières. She holds a PhD in computer science
(software engineering) from the National Institute of Applied Sciences
in Lyon, France. Her main areas of interest include object and aspect-
oriented software engineering, software quality attributes, maintenance,

and reverse engineering.

Mourad Badri (Mourad.Badri@uqtr.ca) is professor of computer
science at the Department of Mathematics and Computer Science of the
University of Quebec at Trois-Rivières. He holds a PhD in computer
science (software engineering) from the National Institute of Applied
Sciences in Lyon, France. His main areas of interest include object and
aspect-oriented software engineering, software quality attributes, and

formal methods.

Alioune Gueye (Alioune.Gueye@uqtr.ca) is a student of computer
science at the Department of Mathematics and Computer Science of the
University of Quebec at Trois-Rivières. He is currently finishing his
master in computer science from the University of Quebec at Trois-
Rivières. His main areas of interest include object-oriented
programming and metrics as well as various topic of software

engineering.

