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We are interested in object-oriented programming methodologies that enable
static verification of object-invariants. Reasoning soundly and effectively about
the consistency of objects is still one of the main stumbling blocks to pushing
object-oriented program verification into the mainstream. More precisely, any
sound methodology must be able to guarantee that the invariant of the receiver
object holds at all method call sites. Establishing this proof obligation is tedious,
and instead programmers would like to reason informally as follows: methods
should be able to assume that the object invariant holds on entry, as long as all
constructors establish it, and all methods guarantee that the receiver invariant
holds on exit.
This reasoning is only correct under certain conditions. In this paper we present
sufficient conditions that make reasoning as above sound and show how these
conditions can be checked separately, allowing us to divide the verification prob-
lem into two well-defined parts: 1) reasoning about object consistency of the
receiver within a single method, and 2) reasoning about the absence of inconsis-
tent re-entrant calls. In particular, when reasoning about the object consistency
of the receiver within a method, our approach does not require proving invariants
on other objects whose methods are called.
We present a novel whole program analysis to determine the absence of incon-
sistent re-entrant calls. It warns developers when re-entrant calls are made on
objects whose invariants may not hold. The analysis augments a points-to anal-
ysis to compute potential call chains in order to detect re-entrant calls.

1 INTRODUCTION

In object oriented programming, developers typically reason in a modular fashion. Gen-
erally, they assume certain properties hold on entry to a method—namely the invariant on
the called receiver object, and the called method precondition—, while other properties
must be established prior to calling methods (the called receiver’s invariant and the called
method’s precondition) and prior to exiting from the method (current receiver’s invari-
ant and current method postcondition). Following this design by contract approach [10],
we are interested in providing a programming methodology that allows automatic and
static reasoning about the conformance of programs relative to object-invariants. Reason-
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ing soundly and effectively about the object invariants is still one of the main stumbling
blocks to pushing object-oriented program verification into the mainstream.

To see why, consider the proof obligations associated with object invariants: in order
to assume that the invariant holds on the receiver on entry to a method, every call site must
establish that the invariant of the called object holds. Establishing this proof obligation at
call-sites is tedious.

The Boogie approach [2] is one established way for reasoning soundly about object
invariants, by making explicit at each call-site, the proof-obligation that a receiver’s object
invariant holds. It does so in an abstract way, by requiring the object to be “consistent”—
meaning the object’s invariant holds—without the need for the calling context to under-
stand the internals of the called object’s invariant. The main drawback of the Boogie
approach is that it puts a heavy burden on the programmer, by requiring him/her to be
fully explicit about which objects are consistent at what points in the program. This bur-
den takes the form of adding object consistency assertions for method parameters and
results to pre- and postconditions, as well as including consistency assertions about ob-
jects reachable through fields to an object’s invariant.

Ideally, programmers would like to reason instead as follows: if all constructors es-
tablish the object invariant, and all methods establish the invariant on exit (assuming it on
entry), then object invariants automatically hold at all call sites. This intuitive reasoning
holds true only under certain conditions, which we make precise in this paper. In partic-
ular, it assumes certain restrictions on where invariants can be broken, and the absence of
inconsistent re-entrant calls, i.e., calls to an object, while a method is already active on
this object and its invariant does not hold.

In this paper we use the following terminology. An object o is active in a particular
execution state, if the state contains a stack frame where o is the receiver object of the
method call. An object is consistent, if its invariant holds. A method call is re-entrant on
an object o , if the call stack already contains an method invocation of a method on object
o . A re-entrant call furthermore is inconsistent, if the object o is not consistent at the
re-entrant call site.

Shifting the proof obligation about the receiver consistency at call-sites away from the
call site and into a separate automatic analysis on the whole program, opens up a useful
division of the verification problem into two well-defined parts: 1) reasoning solely about
object consistency of the receiver within a single method, and 2) reasoning about the
absence of inconsistent re-entrant calls. The benefit of this division is that during method
body verification, our approach does not require proving receiver consistency at method
calls, making the specification and proof burden much lighter. The absence of inconsistent
re-entrant calls is shown using a static program analysis, which we describe in Section 4.
This novel whole program analysis determines the absence of inconsistent re-entrant calls.
It warns developers when re-entrant calls are made on objects whose invariants may not
hold. The analysis augments a points-to analysis to compute call chain approximations in
order to detect re-entrant calls.

Section 5 discusses avenues for generalizing the simple invariant model, while re-
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taining the proposed division of labor. Section 6 discusses related work, and Section 7
contains our conclusions.

2 METHODOLOGY

In this section, we define the conditions allowing the division of the verification problem
and show that the resulting methodology is sound. We ignore the issue of multi-threading
in this paper and assume all code executes sequentially.

Condition 1 (Object invariant) Given an object o , its invariant is a boolean expression
over the values of its fields.

This condition restricts the class of object invariants that can be written. It can be enforced
syntactically on the form of object invariants.

To simplify the exposition in this paper, we assume that sub-classes override all meth-
ods of the super-class, thereby avoiding the problem of having methods of different types
operate on the same object.

Condition 2 (Local modification) Fields of an object o are only modified within meth-
ods of object o .

The local modification condition together with Condition 1 allows the analysis to infer
where object invariants remain valid and where they might be broken. Section 5 discusses
possible ways to relax these conditions.

Like Condition 1, the local modification condition can be enforced syntactically by
requiring field updates to have the form this.f = e. In the remainder of the paper
we will assume that Conditions 1 and 2 hold without further specifying how they can be
enforced.

Lemma 3 (Invariant modification) The invariant of an object o can only transition
from valid to invalid while object o is currently active (i.e., the current stack frame repre-
sents a call where o is the receiver object). This follows from the fact that o ’s invariant
only depends on its own fields (Condition 1), and only methods of o may modify o ’s fields
(Condition 2).

We now divide the verification problem into a local method verification, and a global
re-entrancy analysis and show how they interact via assume-guarantee reasoning.

Local Method Verification

Assumption 4 (Method entry consistency) On entry to a method, the receiver is con-
sistent.
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The local method verification assumes that on entry to a method (not constructor), the
receiver object’s invariant holds. This is the main condition established by the re-entrancy
analysis. In turn, the local method verification establishes the following guarantee:

Guarantee 5 (Method exit consistency) On exit of a construtor or method m , its re-
ceiver object is consistent.

Typically, the local verification also takes care of establishing ordinary preconditions at
calls, and postconditions on exit of methods. For this paper, we are only concerned with
object invariants though. Implementing a local method verification can be done using well
studied techniques as employed by checkers such as ESC-Java [8], or Boogie [3], that are
based on computing a verification condition expressing the proof-obligations given the
code and the method contract. The proof obligation is then discharged using an automatic
theorem prover such as Simplify [6] or Zap [1].

Note that the local method verification does not need to establish the receiver’s con-
sistency at method calls, thereby simplifying the programmer and theorem prover’s job.

Re-entrancy Verification

Lemma 6 (Inactive objects are consistent) An object o is inactive in an execution state,
if there is no activation on the call stack where o is the receiver. Inactive objects are
always consistent.

Proof: Consider the entry and exit events in an execution trace involving calls with re-
ceiver o . We can consider these entry/exit events parentheses that are properly nested.
Object o is active in any state along this trace that is within such parentheses, and in-
active if outside such parentheses. Now consider any exit event that transitions the state
from active to inactive (outer-most parentheses). The object is consistent at this transi-
tion due to guarantee 5 (the receiver is consistent on method exit and after construction).
During the subsequent execution states prior to the next transition from inactive to active,
object o remains consistent due to Lemma 3 (invariant validity can only be affected when
object o is active).�

From the above proof, we also immediately see that receiver objects are consistent at
all call-sites where the receiver is inactive, thus establishing part of Assumption 4.

The remaining problematic call-sites are re-entrant call sites, where a method on o
is invoked, and o is already active. Proving that the receiver is consistent at re-entrant
calls is the job of the re-entrancy analysis described in the rest of the paper. It uses the
following observation to prove that the receiver at the re-entrant call site is consistent.

Lemma 7 (Re-entrant consistency) Consider the call-stack in an execution at the point
of a re-entrant call m2 on object o . Because the call is re-entrant, there must exist a call
frame of a method m1 lower on the stack where o is the receiver. Let m1 be the closest
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invocation of a method on o , i.e., there are no intervening call frames between m1 and
m2 where o is the receiver. Consider the out-call from m1 to some method n (possibly
m2 ) that starts the stack frame segment from m1 to m2 . This is the last out-call (as no
other stack frame in between m1 and m2 contains o as the receiver).

The receiver o at the re-entrant call to m2 is consistent if object o was consistent at the
last out-call.

Proof: By induction on the number of calls where o is the receiver in the execution trace
from the last out-call m1 to n to the re-entrant call to m2 . For the base-case, assume
that the trace does not contain a call (distinct from the final re-entrant call) where o is the
receiver. Then by Lemma 3 the invariant validity cannot be changed during this trace and
the result holds.

For the induction case, assume the trace contains another call where o is the receiver
(distinct from the final re-entrant call). By the assumption in the lemma that no other
stack frame between m1 and m2 contains o as the receiver, this call must also return
within the trace. By Assumption 5, o was consistent on return of that call. The remaining
trace from that return to the re-entrant call contains one fewer such calls on o , and by
induction, the result holds. � .

The re-entrancy analysis computes call-chain approximations, including receiver ob-
jects and consistency state of the receiver based on the points-to analysis by Salcianu et
al. [12]. For each potential re-entrant chain, if the analysis can show that the receiver
is consistent at the out-call, or that there exists an intervening call-return with the same
receiver, then by Lemma 7, the receiver of the re-entrant call is consistent. Together with
Lemma 7, this guarantees Assumption 4 used by the local method verification.

class Subject {
Observer obs; int state;
invariant state >= 0;
void Update(int i) {

1: this.state = i;
2: obs.Notify();

if (this.state < 0) {
state = 0;

}
}
int Get() {

1: return this.state;
}

}

class Observer {
Subject sub; int cache;
void Notify() {

1: this.cache = sub.Get();
}

}

void testObserver() {
1: Observer o = new Observer();
2: Subject s = new Subject();
3: s.obs = o;
4: o.sub = s;
5: s.Update(10);
}

Figure 1: Subject-Observer sample
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Running Example

Consider the example in Figure 1. It shows a simple instance of the subject-observer pat-
tern. For illustrative purposes, the example contains an invariant on the subject: state
>= 0. Although the Subject.Updatemethod maintains the invariant by means of the
test at the end, the invariant may not hold during the execution of Observer.Notify.
Our approach in rest of the paper does not actually inspect any declared object invariants
(it assumes that all objects have some unknown invariant involving all object fields).

Our analysis correctly discovers an incosistent re-entrant call in this code, namely
the call to Subject.Get, which is called from Observer.Notify during an update
when the invariant does not hold. When analyzing Subject.Update we cannot yet
determine that the object referred to by obs has a reference to the same subject. In fact,
our analysis discovers the re-entrancy in the call to s.Update() in testObserver
where there is enough context to realize that s and o mutually reference each other. The
problem can be fixed by factoring out the state update and check from Update into a
helper method UpdateState.

void Update(int i) {
UpdateState(i);
obs.Notify();

}

void UpdateState(int i) {
if (this.state < 0) {
state = 0;

}
else {
this.state = i;
}

}

For the code above, our analysis will determine that the subject’s invariant holds at the
point of calling Observer.Notify and thus the re-entrant call to Subject.Get is
valid.

The next section provides background on the points-to graphs underpinning our re-
entrancy analysis.

3 BACKGROUND ON POINTER ANALYSIS
This section describes the relevant details of the points-to analysis we rely upon to com-
pute re-entrancy information. We use the analysis presented in [4] which is an extension
of the analysis of Salcianu et al. [12]. For every program point in a method m , the anal-
ysis computes an abstract points-to graph (PTG) which over-approximates the possible
shapes of the heap at that point. It also over-approximates what part of the heap was read
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Figure 2: Points-to information in testObserver before call to s.Update()

since entry to the method and what part of the heap was explicitly written since entry
to the method. This extra information enables the analysis to compute method summary
graphs that can be applied at call-sites to model the effect of the method call on the caller
points-to graph, without having to reanalyze the method body of the called method at each
call-site.

A node in a points-to graph represents either an abstract location or an abstract object.
These locations or objects are abstract in that they may represent many distinct concrete
locations or objects. Edges in the graph represent either address relationships (e.g., from
an object to the location of a particular field of the object), or memory containment rela-
tionships, i.e., from an abstract location to an abstract object. Local variables are modeled
by their abstract location.

The reason we use explict location nodes is that our analysis handles the full .NET
intermediate language [7] which contains instructions for taking the address of locals
and object fields and support pass-by-reference in method calls. Without the explicit
representation of locations in points-to graphs, such instructions would not be analyzable.

To illustrate these concepts, Figure 2 shows the points-to graph at the call to Update
in testObserver from our running example (Fig. 1). Oval nodes prefixed with &
represent abstract locations, boxes represent abstract objects. Labeled edges associate ob-
jects with field addresses, and edges labeled with * represent indirection through memory
(dereference of the location). The graph contains two locations for the locals o and s la-
beled &o and &s . The contents of these locations are modeled by nodes IN1 representing
the observer object, and IN2 representing the subject. Furhtermore, the graph shows that
the obs field of the subject refers to a location that contains a pointer to the observer, and
vice-versa, the sub field of the observer refers to a location that contains a pointer to the
subject.

The points-to graphs are always relative to a current method m , and they distinguish
pre-existing nodes (i.e., nodes representing objects that may have existed prior to the
invocation of the method) from nodes created during the method execution. In Figure 2,
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Figure 3: Points-to graph of Subject.Update

the subject and observer are both fresh nodes. The graphs in this paper represent such
nodes using full outlines and we call them inside-nodes (IN for short) in accordance to
the terminology used in the original paper [12]. Pre-existing nodes have dashed outlines
and are called load-nodes (LN for short). Edges are similarly represented as full edges, if
the edge represents a pointer relation established during execution of the current method
(inside-edge), or as a dashed edge, if the edge represents a pre-existing pointer relation
(outside-edge).

Figure 3 shows the points-to graph on exit of method Subject.Update. The ab-
stract object referred to by the this parameter is a pre-existing object (as it is passed
in as a parameter) and labeled PLN5 for parameter-load-node. Similarly, node LN6,
representing the observer obtained by reading the obs field of the subject, is a pre-
existing node. Such pre-existing nodes are shown using dashed outlines in graphs. Ob-
serve that the points-to graph for Subject.Update contains the effect of the call to
Observer.Notify in that is shows a pre-existing field relation (dashed edge) from
the observer object to a node LN4 representing the subject reachable from the observer.
Furthermore, note that during analysis of method Subject.Update, it is not yet known
that nodes PLN5 and LN4 represent the same subject. This fact is discovered only at the
call site to Subject.Update.

Points-to Graphs

More formally, given a method m and a program location pc , a points-to graph Ppc
m

is a tuple 〈N ,E ,L〉 , where N is a set of abstract location and object nodes, E is a
set of edges representing field address relations or memory contents relations, and L the
mapping from locals and parameters to location nodes. The nodes N are further classified
into four different types:
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• Inside nodes: represent objects created during execution of m . There is one such
node per allocation site.

• Load nodes: represent placeholders for pre-existing objects. There is one load node
per field-load instruction in the code when the load occurs on another load node.

• Parameter load nodes: represent the parameter objects passed as arguments to m .
There is one such node per formal parameter.

• Location nodes: represent the location of a local on the stack or the location of a
field within an object.

Edges E are classified into two different types:

• Inside-edges: I is the set of inside edges, representing relationships created by
heap updates during execution of the method.

• Outside-edges: O the set of outside edges, representing pre-existing points-to rela-
tions observed during the execution of the method.

Loosely speaking, inside-edges correspond to writes and outside-edges to reads during
execution of the method.

The distinction between inside and outside nodes is important as outside nodes rep-
resent ”unknown” objects that depend on information not available in the method under
analysis. These outside-nodes are refined at call-sites when method summaries are instan-
tiated inside the caller to model the effect of the call.

Method Summary Graph Application

To model the effect of a method call on the points-to graph of the caller, the analysis uses
a summary of the callee Pcallee —a PTG representing the callee’s effect on the heap—and
computes an inter-procedural mapping that binds the callee’s nodes to the caller’s nodes
by relating formals with actual parameters.

At a method call a0.op(a1, .., an) at location pc in method m , the points-to analysis
considers all possible method implementations op ′ of op that may be invoked by that
call. For each implementation op ′ , it applies the possible effect of the call to the points-
to graph of the caller m , thereby conservatively modeling the fact that any one of the
implementations might be called. More precisely, for each target implementation op ′ , the
points-to-analysis computes an inter-procedural mapping µpc

m,op′ :: Node 7→ P(Node) . It
relates every node n ∈ nodes(Pop′) in the callee to a set of existing or fresh nodes in the
caller (nodes(Ppc

m ) ∪ nodes(Pop′)) which means that some objects represented by a node
n in the callee may be in set of object represented by the nodes µpc

m,op′(n) .

Figure 4 shows the interprocedural mapping when Update is called by testObserver.
The red dotted lines represent µpc

testObserver,Update(n) . Dashed boxes represent load
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nodes. In this example PLN5 is a parameter load node representing the value/s of the
(unknown) argument referred by the variable this. LN6 represents the objects obtained
by reading field obs of this. Similarly LN4 represents the objects obtained by reading
field sub of objects represented by LN6 (this.obs.sub). Notice that PLN5 and LN4
may represent the same object since they are mapped to the same node IN2.

Figure 4: Interprocedural mapping connecting s.Update() and testObserver

The points-to analysis computes conservative information for any program expressible
in .NET (including loops and recursion) in the sense that a points-to graph represents a
set of possible concrete heap graphs (possibly unbounded). The points-to graphs over-
approximate the possible aliasing at each program points such that for any concrete heap
graph realizable at a program point, it is included in the set of heap graphs represented
by the abstract points-to graph computed for that program point. For the purposes of this
paper, we treat the points-to analysis algorithm as a black-box and simply make use of its
results. For full details on how to compute the points-to information we refer the reader
to [12].

Points-to information

For our re-entrancy analysis we need to know which objects may be referred to by an
expression. To do that, the points-to analysis provides the following query function to the
re-entrancy analysis:

H :: PTG× Var 7→ P(Node)

Given a PTG P and a variable x , H(P , x ) obtains the nodes pointed to by the variable.
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4 RE-ENTRANCY ANALYSIS

To discover re-entrant calls we use the points-to information described in the previous
section to obtain conservative information about aliasing between locations holding object
references. Our analysis enriches the points-to graphs with “call edges” that record for
every call to a method m , the current active receiver (the caller), the receiver of m (the
callee), and whether the invariants of the caller and the callee are known to hold just
before invocation.

More formally, a call edge ce is a tuple 〈t , c, r〉 ∈ Cm = P(Node × bool × Node)
representing a call made in the dynamic execution trace of a method m , where

• t : is the caller, i.e., the object pointed to by ’this’ at the state before the call.

• c : is true, if t is consistent at the state before the call in all contexts.

• r : is the callee, the receiver of the call

The analysis uses call edges to discover re-entrant calls. The basic idea is that an invalid
re-entrant call will exhibit a sequence of call-edges 〈x0, a, x1〉, 〈x1, , x2〉, . . . 〈xn−1, , xn〉 ,
such that xn = x0 , and a is false. In words, this means that there is a potential sequence of
stack frames where the receivers are x0 , x1 , etc.., leading ultimately to a re-entrant call on
xn . The boolean a indicates that the invariant of the object represented by x0 = xn may
not hold at the moment the call sequence starts (the out-call). Recall that by Lemma 7,
knowing that x0 is consistent at the out-call is enough to rule out that particular call-chain
as an inconsistent re-entrant call.

A comment on the use of Lemma 7 is in order here. The Lemma applies only to the
last out-call prior to a re-entrant call, whereas our call edges are approximate and we can-
not determine if an out-call is indeed the last one. However, we check a stronger property:
instead of merely guaranteeing that for every re-entrant call, the object is consistent that
the last out-call, we check that the object is consistent at all potential out-calls (not just
the last one). This is conservative as our call chains capture all potential re-entrant chains.

The next section describes the details of the call-edge analysis within a method m .
It assumes the existence of a function this inv :: PC 7→ bool , providing “must-hold
information” for invariants of objects at particular program points. If this inv(pc) is
true, then the currently active object this is consistent at the given pc . On the other
hand, if this inv(pc) is false, then, there the invariant of this may not hold at pc .
This information is used to capture whether the invariant on this holds at potential out-
calls in order to later decide if a re-entrant call is valid. The function this inv is easily
provided by the local method verification, as it must reason about the consistency of this
at all program points.

To compute global the call-edge information, the program is analyzed bottom-up
based on an approximate call-graph, and fix-points are computed for strongly connected
components in the call-graph. This mirrors the computation of the points-to graphs as
described in [12].
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Figure 5: Extended method summaries for Notify and Update showing their call
edges

Computing call edges

For every method m , and program point pc within m , we compute the set of call edges
C pc

m , representing an over-approximation of the set of calls made during the execution of
m prior to reaching pc . This set is updated at calls within m , by adding the call edges for
the call itself, as well as propagating call edges representing calls made from the callee.

Given a call a0.op(a1, . . . , an) at location pc within method m , an extended points-
to graph R�pc

m = 〈P�pc
m ,C �pc

m 〉 , we apply the following operations to update the set of call
edges1:

1. Register current call.

CE ⊇ {〈t , c, r〉 | t ∈ H(P�pc
m , this) ∧ r ∈ H(P�pc

m , a0) ∧ c ≡ this inv(pc)}

2. Propagate callee’s edges to caller. For each possible method implementation op ′

of op , the points-to analysis provides us with a caller-callee mapping µpc
m,op′ . The

final call edges include call edges from each target method op ′ as follows:

CE ⊇ {〈q , c, p〉 | 〈t , c, r〉 ∈ Cop′ ∧ q ∈ µpc
m,op′(t) ∧ p ∈ µpc

m,op′(r)}

Finally, the new edges CE are added to the existing call edges: C pc�
m = C �pc

m ∪ CE .

Figure 5 shows the computed call edges for methods Notify and Update. The
propagation of call edges from callees to callers can be seen in the graph on the right,
where the edge labeled Get results from the call to Notify within Update.

Computing the call-edge summary Cm for a method m requires dealing with nodes
appearing in call edges that do not appear in the points-to summary of the method. The
points-to summary for a method removes inside nodes and load-nodes that are not reach-
able from outside the method after the method returns. To make sure call edges in Cm

1 �pc refers to the state before the location pc and pc� , the state after.
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mention only nodes appearing in the points-to graph, we close the call-edges transitively
over nodes not appearing in the points-to summary. After that, call-edges with nodes not
appearing in the points-to graph can be removed, thus

Cm = {〈p, c, r〉 ∈ Cl(C exit �
m ) | p, r ∈ nodes(Pm)}

where the closure is defined as follows:

1. Cl(C ) ⊇ C

2. 〈p, bp , q〉 ∈ Cl(C ) ∧ 〈q , , r〉 ∈ Cl(C ) ∧ q /∈ nodes(Pm)⇒ 〈p, c, r〉 ∈ Cl(C )

Call-edge summaries may be further simplified by removing self-loop edges 〈q , , q〉 , as
these edges cannot lead to further re-entrancy detection.

Checking Re-entrancy

Using points-to information and call-edges, we are able to detect all potential re-entrant
calls and whether the receiver of the re-entrant call may be inconsistent. The analysis is
conservative (over-approximates re-entrancy) as it is based on may-alias information.

Re-entrancy is detected at method calls. Given a call a0.op(a1, . . . , an) at location pc
inside a method m , an extended points-to graph R�pc

m = 〈P�pc
m ,C �pc

m 〉 , and a caller-callee
mapping µpc

m,op′ for each possible implementation op ′ of op , there are three possible
cases of re-entrancy:

1. Direct call. The new receiver a0 and the current receiver this might be the same
object, and the invariant of the current receiver this is not known to hold:

∃n.n ∈ H(P�pc
m , this) ∩ H(P�pc

m , a0) ∧ ¬this inv(pc)

2. Indirect call. During the execution of op ′ , there will be a call on an object that
might be the same as the current receiver, and the invariant of the current receiver
this is not known to hold:

∃n.(〈 , , n〉 ∈ Cop′ ∧ ∃o.o ∈ µpc
m,op′(n) ∩ H(P�pc

m , this) ∧ ¬this inv(pc)

3. Latent re-entrancy. When instantiating method summaries, more aliasing may be
detected by the points-to analysis. Such additional aliasing may create cycles in
call-edges present in the callee Cop′ , which indicate a possible re-entrancy during
execution of op ′ that was not visible when op ′ was analyzed.

Let 〈x0, c0, y0〉, 〈x1, c1, y1〉, . . . , 〈xn , cn , yn〉 be a sequence of edges in Cop′ , such
that they form a cycle given the instantiation µpc

m,op′ at the call:

µpc
m,op′(yi) ∩ µpc

m,op′(xi+1) 6= ∅ i = 0..n − 1

∃o.o ∈ µpc
m,op′(x0) ∩ µpc

m,op′(yn)
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Figure 6: Re-entrant call detected when analyzing s.Update() in testObserver

The cycle may exhibits a potentially re-entrant call on an object represented by node
o . The re-entrant call is invalid if additionally this object is not known to be valid
at the start of the call sequence (¬c0 ).

Figure 6 illustrates the need to consider latent re-entrancy. It shows the call edges for
method Notify and Update. In the case of Update there is a potential cycle if PLN 5
and LN 4 ever refer to the same object. While analyzing Update, no re-entrancy is
detected however, as no cycle exists yet. During analysis of testObserver, the call to
s.Update instantiates nodes PLN 5 and LN 4 to the same object, as IN 2 ∈ µ(PLN 5)∩
µ(LN 4) . This forms a cycle of call edges involving IN 1 and IN 2 . The subject (IN 2) is
not known to be valid at the call to Notify (Sc2 = false ) due to the update of subject
field this.state, which might break the subject’s invariant in method Update. Thus,
the analysis reports a possible invalid re-entrancy.

Treating the state of the subject as invalid after the update to state is of course
conservative. If the programmer’s intention was that this update establishes the subject
invariant, then he/she can factor out the update into a separate method as described in
Section 2. Since that method would establish the invariant on exit, the subject would be
consistent at the call to Notify (Sc2 = true ) and the re-entrancy analysis classify this
re-entrant call as valid.

5 EXTENSIONS

The simple invariant approach described so far has many limitations. In this section we
sketch how some of these limitations may be lifted.
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Static Methods

Up to now, we have only described how to handle instance methods. To keep track of call
edges in the presence of static methods, we pretend that static methods have a dummy
receiver parameter. At calls to static methods, we make up a fresh dummy node that acts
as the receiver. These dummy nodes are obviously always consistent. They are needed
solely to avoid interrupting the call-chains. The rest of the approach requires no change.

Subclassing and Invariants

To keep the exposition in this paper simple, we assumed that sub-classing involves over-
riding all methods. In practice, such an approach is often sufficient as it can be followed
without having the programmer explicitly override all methods. Instead, the same effect
is achieved by having the local method verification simply re-verify every non-overridden
method in the new sub-class against the possibly stronger invariant of the sub-class.

Deep Invariants

Often, invariants involve properties of multiple objects, not just fields of a single object as
we have supported thus far. A standard example is a list of positive numbers, implemented
using an internal array holding the numbers. The array may contain unused space above
the last number in the list. A reasonable invariant for such a list is:

this .nextFree ≤ this .array .Length ∧ ∀i .0 ≤ i < this .nextFree • this .array [i ] > 0

There are two complicating aspects of such an extension with respect to the methodology
proposed in this paper.

1. Given that the invariant of the list depends on the array, updates to this array have
to be controlled, otherwise, if code—not in the scope of a list method—writes a 0
into this array within the used element range, the list invariant would be broken.

In general, such sub-objects are thought to be part of the representation of the parent
object whenever the parent object’s invariant depends on the sub-object state.

2. Our analysis depends on the fact that between the last out-call and the re-entrant
call, the object invariant is not modified. This property no longer holds when in-
variants may depend on the state of representation objects, as the owner’s state may
be consistent, but a call to a representation object may change that object’s state and
thus invalidate the parent object’s invariant in between the out-call and a re-entrant
call.

We can extend our methodology to address these problems as follows: For the first prob-
lem (controlling where invariants can be modified), we can use some form of ownership
system (e.g., [5]) to control representation object exposure and modification. The property
we require of such a system is a slightly weaker form of Lemma 3:

VOL 7, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 19



A STATIC ANALYSIS TO DETECT RE-ENTRANCY IN OBJECT ORIENTED PROGRAMS

Lemma 8 (Invariant modification 2) Whenever an update to a representation object of
o occurs (and thus a potential change in the consistency of object o ), o must be active,
and the stack frame above the last out-call from o must be on a representation object of
o .

This is typically referred to as the “owner-as-modifier” property of such systems. We
require a slightly stronger form that let’s us distinguish out-calls that potentially modify
an object’s invariant from those that won’t.

To address the second problem, we distinguish two distinct kinds of out-calls from
within a method with current receiver o :

• An out-call where the target receiver is not part of o ’s representation: by the above
modified Lemma, we can show that Lemma 7 still holds, namely that if o is consis-
tent at the last out-call, then it is still consistent at a re-entrant call. The re-entrancy
analysis would thus compute re-entrancy exactly as described in this paper for such
calls.

• An out-call where the target receiver is part of o ’s representation: in this case, the
call may lead to invalidation of o ’s invariant, even if o ’s invariant holds at the
out-call. To conservatively anticipate that methods on representation object may
invalidate o ’s invariant and guard against inconsistent re-entrancy, the analysis can
use an edge 〈t , false, r〉 to represent such a call, where we mark the current receiver
t as possibly being inconsistent (false ). If the re-entrancy analysis detects any re-
entrancy involving this edge as the starting point, then it will conservatively expose
it as a possibly inconsistent re-entrant call.

As a result, re-entrant calls are only allowed if the call chain starts with an out-call not
involving representation objects.

Expose blocks

Our methodology assumes that the boundary where invariants are assumed and estab-
lished coincide with method boundaries. Generalizing where code can rely on invariants
or modify them is possible. For example, Spec# [2] uses expose-blocks to delineate
scopes where invariants may be violated. We can extend our re-entrancy analysis to han-
dle expose blocks by treating them akin to method calls, adding a call-edge from the
current receiver to the exposed object, then making the exposed object be the current re-
ceiver. In that way, re-entrant expose blocks on the same object would be caught by the
re-entrancy analysis.

Dealing with non-analyzable calls

In order to find all re-entrant calls, our analysis requires the entire program. In practice,
an analysis has to be able to deal with non-analyzable calls: calls to methods for which
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no summary is available, or whose code is not analyzable.

It is tricky to come up with good assumptions that allow conservative checking of calls
on one side, and implementations on the other side. One possibility is to fix the interface
to unknown methods by assuming that all objects reachable from parameters (and globals)
are consistent. This puts the burden on callers to prove that each object reachable by the
unknown method is consistent.

In prior work on purity, we extended the points-to analysis to deal with non-analyzable
calls using either worst case assumptions or through programmer provided annotations on
the effects of a method [4]. As non-analyzable calls may have an effect on every node
reachable from the parameters, it is important that summaries can represent this set of
reachable objects. Thus, in that work, we introduced a new kind of node, called an ω
node, to model not just a single node, but an entire sub-graph of reachable nodes. At
binding time, instead of mapping a load node to only the corresponding node in the caller,
ω nodes are mapped to every node reachable from the corresponding starting node in the
caller (for instance, an ω node for a parameter in the callee will be mapped to every node
reachable from the corresponding caller argument).

The reachability aspect of ω -nodes allows us to model the assumption that all reach-
able nodes must be consistent by adding call edges from the current receiver of the un-
known method to all reachable nodes.

To conservatively deal with non-analyzable calls, we need to consider latent re-entrant
calls due to aliasing. The interface to an unknown method sketched above makes the
additional assumption that each parameter is the root of a tree, and that the trees are
disjoint. This may be too restrictive in practice.

6 RELATED WORK

We are not aware of other work to determine re-entrancy in object call graphs via program
analysis for the purpose of validating object invariants. Numerous papers refer to the re-
entrancy problem and state that they assume no re-entrancy, or rely on other means to
prevent it, e.g., [9, 11].

We have already mentioned the Boogie methodology [2] in the introduction. This
methodology guards against re-entrancy by requiring the programmer to reason about
object states (consistent or mutable) via explicit pre-conditions. In our running example,
this approach is rather difficult and would break encapsulation, as the Subject would have
to know the consistency state of all observers during a call to Update, prior to being
able to call Notify. This is unrealistic, as the pattern ties observers losely to subjects.
Additionally, the Notifymethod would require a pre-condition stating that the subject is
consistent (alternatively, the Getmethod could be annotated as not requiring the invariant
to hold).
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7 CONCLUSIONS

We presented a re-entrancy analysis to mitigate the burden on programmers when reason-
ing about object invariants. We consider that the approach is promising and hope to use it
in conjunction with the Boogie methodology and Spec#.

Much work remains to generalize the approach to encompass the full generality of
invariants supported in Spec#, as well as to find a suitable annotation language for de-
scribing the re-entrancy behavior of non-analyzable methods, thereby avoiding worst-case
assumptions.
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