
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 4, May-June 2008

Cite this article as follows: S. Kalaimagal, R. Srinivasan: “A TRUSTAD Component
Nomenclature”, in Journal of Object Technology, vol. 7 no. 4, Issue May-June 2008, pp 159-
173 http://www.jot.fm/issues/issue_2008_05/article5/

A (TRUSTAD) Component
Nomenclature

Sivamuni Kalaimagal and Rengaramanujam Srinivasan
B.S.A. Crescent Engineering College, Chennai,India

Component based engineering is gaining substantial interest in the market today.
This is because software components offer us the advantage of lesser
developmental costs and shorter life cycles. With the continuing rise in the demand
for software component based products, the terms - component, in-house
component, COTS and reusable components have become overloaded and rather
conflicting over the past years. This paper attempts to clearly define the above
terms. We also propose a seven dimension vector (T, R, U, S, T, A, D) that can be
used to specify software components. The seven dimension vector is then used to
provide a set of specifications that distinguish between in-house components, COTS
components , reusable in-house and reusable COTS components. Since, our
nomenclature is based on this seven dimensional TRUSTAD vector; we have
chosen to name the classification as the TRUSTAD nomenclature.

1 INTRODUCTION

Component based software development is increasingly gaining acceptance in the
market today. The terms component, in-house components, COTS, reusable
components have become overloaded and rather conflicting over the past few years
[2]. A search on any internet based search engine gives a wide variety of results.
Many research papers use the term components without explicitly specifying what
kind of component they are talking about. The term components is very broad based
and the demarcation between a component, in-house component, COTS and reusable
component is quite fuzzy [16]. Since, components, in-house components and COTS
components mean different things to different people, first we give alternative
definitions already in vogue. Then we offer our structured definitions for these terms,
using the TRUSTAD specification proposed by us.

The paper is organized as follows: Section 2 provides a definition for a software
component. Section 3 lists out the different types of software components. Section 4
provides the proposed TRUSTAD specification for a software component. Section 5
defines and explains the specification for an in-house component. Section 6 defines
and explains the specification for a COTS component. In section 7, we have attempted
to put forth our definition for reusable in-house and COTS components . Section 8
gives a consolidated view of the TRUSTAD nomenclature.

A TRUSTAD COMPONENT NOMENCLATURE

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

2 SOFTWARE COMPONENTS DEFINITION

Let us consider the different definitions put forth so far, for a software component.
According to C.Szyyperski [9] , “A software component is a unit of composition with
contractually specified interfaces and explicit context dependencies. A software
component can be deployed independently and is subject to composition by third
parties.” Not all software components can be subject to composition by third party
vendors. Hence, the above definition though technically correct, is not complete.
Michael Sparling [2] defines a component, “as a language neutral, independently
implemented package of software services, delivered in an encapsulated and
replaceable container accessed via one or more published interfaces. While a
component may have the ability to modify a database, it cannot be expected to
maintain state information. A component is not platform constrained nor is it
application bound.” Only recently available technologies like JavaBeans and EJB
deploy components in containers and it is not a given rule that all components exist in
containers. So, we tend to disagree with this definition also. Before, we present our
definition for a component; let us try to understand what a software component is.

Let us consider an analogy first. When we purchase a computer, we generally
buy different parts from different vendors and assemble them together. We may get
the hard disk from Seagate, monitor from Samsung, the keyboard from HCL and we
can top it all with a P4 processor from INTEL. The general idea is that we get the
components suited to our specifications and by assembling them all together, the final
product is cost effective as compared to a wholly branded model, that may not snug fit
to our design specifications. Even in the automobile industry, the different parts of a
car are manufactured by different vendor factories, and then assembled together to get
a final product, thus cutting down on production costs.

On the other hand, let us consider a software program for an Airline Reservation
System with separate modules for ticket reservation, ticket cancellation and ticket
availability. A decade ago, it would have been impossible to get each module
developed by a different vendor and then assemble them together to get a fully
integrated product [16]. This is because software can be written in different languages
and different platforms and it was not possible for software written in one platform to
be integrated with software written in another platform [20]. This brought about the
component revolution.

Component technology allows software modules written in different technologies
to be integrated with one another, with the help of middleware technologies like
COM, DCOM, CORBA, JavaBeans and EJB. These middleware technologies are
simply a set of specifications or rules in the form of functions, which when
incorporated into the code allows the software to be integrated with software
developed using other platforms/languages [1].

To explain further, if the ticket reservation module in an airline reservation
system had been written using VB following the COM/DCOM specifications we
could have integrated it with any other airline reservation application program written
in any other language/platform that needed a ticket reservation module. This saves
development time for the programmers and may also provide cost benefits for the
organization [15] [20].

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 161

Therefore, there are a few things which should be taken into consideration, before
framing a definition for a component. The first important point to remember is that,
once a piece of software has been written, using such a middleware specification, it
can be integrated only if it has already been executed and tested. So, we have a group
of persons who develop software components (component developers) and a group of
persons who use software components (component users).

The second point to remember is that the component user cannot access the
software component directly, but only through a set of well published interfaces for
security reasons [12]. Developers would not like every person to have access to their
source code for obvious reasons. A component‘s interfaces are always independent of
the implementations [13], [4].

The third point to remember is that components created using middleware
technologies like JavaBeans and EJB are encapsulated inside a container[24],[25].

Consolidating the above three points, we present our definition of a component
as: “Any piece of independently executable binary code written to a specification,
which can only be accessed via a set of well published interfaces and which can be
integrated into any kind of software application irrespective of language /platform. A
component always offers a set of services via its interfaces and may be encapsulated
inside a container depending on the kind of middleware technology used to develop
the component.”

Now, that we have formally defined components, let us have a look at the
different types of components.

3 SOFTWARE COMPONENT TYPES

Software components can be broadly classified into two categories: In-house
components that can be developed inside the organization itself and COTS
(commercial off the shelf) components that are purchased from third party vendors.

Figure 1: Software Component Types

Software Components

In-house COTS

A TRUSTAD COMPONENT NOMENCLATURE

162 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

4 SOFTWARE COMPONENT SPECIFICATION

The authors of [11] have put forth a proposal for specifying COTS. Based on that, we
have put forth our specification for a software component, by making modifications to
the features suggested by them and by adding three more features-testing type,
accessibility level and reusability. We have used this specification to attempt to
distinguish between in-house components, COTS components, reusable in-house
components and reusable COTS components.

We suggest, that a software component can be specified using a 7 dimension
vector (T, R, U, S, T, A, D).Each letter represents a component feature and each
feature in turn has a set of attributes. The expansion and explanation of each category
and attribute is shown in Table 1.

S.No Feature Attribute

1. Testing Level Test Type

Locatability 2. Reusability

Extensibility

3. Usage Functionality

4. Source Origin

5. Type of Delivery Packaging Type

6. Accessibility Level Degree of Access

Modification Degree 7. Degree of Customization

Interface Documentation

Table 1- Component Specification

The different features and attributes can be explained as follows:

1) Testing Level

The testing level feature of a component describes how far the component can be
tested. The attribute for this component is:

• Testing Type
This describes what type of tests can be done. The values can either be Black
box testing, White box testing or both.

2) Reusability

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 163

This feature describes how conducive the component is to being reusable. The
attributes for this feature are:

• Locatability
Locality describes the degree of ease with which the correct component can be
made available from a component repository. The values for this are easy to
locate, and difficult to locate.

• Extensibility
Extensibility is whether the component can be extended to suit the need of the
application it is going to be used with. The values for this are higher degree
and lower degree.

3) Usage

The Usage feature is the mode in which the component is made use of. The attribute
for this feature is:

• Functionality
Functionality describes the scope of application of the component. The values
for this can be domain specific or generic.

4) Source

The Source feature describes where the component comes from. The attribute for this
feature is:

• Origin
Origin describes where the product is developed. The possible values for this
can either be internal (developed inside the organization) or external
(developed outside the organization).

5) Type of Delivery

This component feature describes the form in which the component is delivered. The
attribute for this feature is

• Packaging Form
Packaging form describes how the component is packaged. The values are
source code, statically linkable binary library, dynamically linkable binary
library, binary component and stand alone executable program.

6) Level of Accessibility

This feature describes the depth to which the component can be accessed. The feature
for this attribute is:

• Degree of Access
This attribute describes how much of information is hidden to the component
user .The values are lesser degree and greater degree of Information hiding.

7) Degree of Customization

A TRUSTAD COMPONENT NOMENCLATURE

164 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

The above component feature describes how flexible the component is with regard to
customization. The two attributes for this are degree of modification and interface
documentation.

• Degree of Modification:
This is about the level of modification that can be done to the component. The
values for this attribute are Extensive Reworking, Internal Code Revision,
Programming, Customization and Parameterization where parameterization is
on the lowest level of the scale and Extensive reworking is on the highest
level.

• Interface Documentation:
Interface documentation is whether the interface is provided with good
documentation or not. The values can either be mandatory or optional.

We use the above specification for a software component, to formally present our
definition of an in-house, COTS, reusable in-house and reusable COTS components
based on the values they have for the attributes in the seven dimensional vector
specified above.

5 IN-HOUSE COMPONENT SPECIFICATION

An In-house component can be defined as “Any software component that has been
developed for a particular application, either by the team that requires the
components or any other alternate team, but within the same organization itself”.

This definition leads to the following conclusions namely that
1. Since in-house components, are developed within the organization itself,

testing is easier because resource people will be easily available.
2. Also, the source code for in-house components can also be made

available to the component users since they are all from the same
organization itself.

3. Maintenance of the component will also not be much of a problem,
because there is no fear of going to a third party vendor for maintenance.
Any problem during component integration can be handled within the
organization itself.

4. A full description of the component’s behavior can be made available to
the component user at any time.

Based on the above facts, the specification for an in-house component is given in table
2 below. As seen in the Table 2, In-House components are developed inside the
organization itself. This means that the developers of the component are at a close
proximity and hence the source code of the code can be made available if the situation
arises.White box testing as well as black box testing can be done because access to the
source code is possible. The degree of customization is greater. Maintenance and
access to the source code is also possible because it will be easier to contact the
component developers.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 165

Category Attribute Value

Testing Level Testing Type 1) Black Box Testing
2) White Box Testing

Locatability 1) Easy to locate Reusability

Extensibility 2) Higher degree of extensibility.

Usage Functionality Domain Specific

Source Origin Internal

Type of Delivery Packaging Type 1) Source code
2)Statically linkable binary
library
3) Dynamic linkable binary
library
4)Binary Component
5) Stand Alone Executable
Program

Accessibility Level Degree of Access 1)Lesser degree of information
hiding

Modification Degree 1) Extensive Reworking
2)Internal code Revision
3)Programming
4) Customization
5) Parameterization

Degree of
Customization

Interface
Documentation

1) Optional

Table 2- In-House Component Specification

The definition and specification of Commercial-off-the-shelf (COTS) components is
given in the next section.

6 COTS SPECIFICATION

COTS components are defined by Vigder and Dean as “components which are bought
from third party vendors and integrated into the system” [4].However, according to
[5] a more detailed and expanded view of COTS components should be taken. A

A TRUSTAD COMPONENT NOMENCLATURE

166 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

COTS component could be as small as a routine that computes the square root of a
number or as large as an entire library of functions. The important thing is that a
COTS component already exists and was created by people outside the software
development organization that will actually use it [5].

A commercial – off-the-shelf component can therefore be defined as,” any
software component that already exists, that was created by people outside the
organization that will be using it, and that was purchased from a third party vendor.”
A COTS component can be as small as a function to calculate the exponential of a
number or it can be as large as credit card validation software.

The above definition leads to the following conclusions:
1. The source code can never be made available to the component user,

unlike an in-house component. A COTS component is like a black box.
The user can view the component only through its interfaces and outputs.

2. There are possibilities that a complete description of the component’s
behavior may not be given by the vendor to the user. This may result in
problems during component integration.

3. Maintenance can become an issue because the vendor may not correct
defects or add enhancements according to the component’s specification.

4. Sometimes the vendors can provide updated components that do not
integrate with the earlier version of the application. A classical example is
the Ariane V that is usually quoted in component literature [7].

Category Attribute Value

Testing Level Testing Type 1) Black Box Testing

Locatability 1) Easy to locate Reusability

Extensibility 2) Higher degree of extensibility

Usage Functionality Domain Specific

Source Origin External

Type of Delivery Packaging Type 1)Statically linkable binary library
2) Dynamic linkable binary library
3)Binary Component
4) Stand Alone Executable Program

Accessibility Level Degree of Access 1)Greater degree of information
hiding

Modification Degree 1)Programming
2) Customization
3) Parameterization

Degree of
Customization

Interface
Documentation

1) Mandatory

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 167

Table 3 – COTS Specification

All said and done, components are the more economical choice for software
organizations [8]. If developers could purchase 100,000 lines of code they could save
100,000 programmer days, thereby creating less expensive software. Not only that,
according to Voas in T[18], if a world class programmer cost $500 a day, purchasing
100,000 lines of code would result in saving 5 million dollars.

The specification for a Commercial –Off –The Shelf is described in Table 3
above.

7 REUSABLE COMPONENTS

Reusability is an important engineering driver in the development of a component
based system [26].

Before, we take a look at reusable components, let us first define reusability.
According to Roger.S.Pressman [6], ”reusability of software is the extent to which a
program or part of a program can be reused in other applications related to packaging
and scope of the functions that the program can perform”. Jon Hopkins says that in
the context of component based software engineering; reusability can refer to,” the
ability to reuse existing components to create a more complex system” [26].

Category Attribute Value

Testing Level Testing Type 1) Black Box Testing
2) White Box Testing

Locatability 1) Difficult to locate Reusability

Extensibility 2) Lower degree of extensibility

Usage Functionality Generic

Source Origin Internal

Type of Delivery Packaging Type 1) Source code
2)Statically linkable binary
library
3) Dynamic linkable binary
library
4)Binary Component
5) Stand Alone Executable
Program

Accessibility Level Degree of Access 1)Greater degree of information
hiding

A TRUSTAD COMPONENT NOMENCLATURE

168 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

Modification Degree 1)Programming
2) Customization
3) Parameterization

Degree of
Customization

Interface
Documentation

1) Mandatory

Table 4: Reusable In-House Component Specification

Not to forget that a component can also be defined as “a reusable piece of software in
binary form that can be easily integrated with other components with relative effort”
(www.msdn.edu). So, even though the popular assumption is that all components are
supposed to be reusable by virtue of definition, reality is very different. All
components whether they are in-house or COTS may be reusable. However, the
degree of reusability will vary from component to component. The higher the degree
of reusability, the more generic and bulkier the component. The term reusable
components can therefore be used to refer to those components which have a higher
degree of reusability, and are more generic and bulkier in nature.

Using the above premise and Pressman’s definition [6], a reusable software
component can be defined as,” software that already exists and that has been
integrated a number of times in different software programs in the same application
domain, with a high success ratio. Reusable components are more generic, as a result
of which there are bulkier in nature”. Using the above definition, we also infer that

1. An in-house component that adheres to the above definition is a reusable
in-house component.

2. A COTS component that adheres to the above definition is a reusable
COTS component.

Category Attribute Value

Testing Level Testing Type 1) Black Box Testing

Locatability 1) Difficult to locate Reusability

Extensibility 2)Higher Degree of
Extensibility

Usage Functionality Generic

Source Origin External

Type of Delivery Packaging Type 1) Stand Alone Executable
Program

Accessibility Level Degree of Access 1)Greater degree of

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 169

information hiding

Modification Degree 1) Customization
2) Parameterization

Degree of
Customization

Interface
Documentation

1) Mandatory

Table 5 : Reusable COTS Specification

The TRUSTAD specification for reusable in-house and COTS component is given in
Table 4 and Table 5 respectively.

According, to Michael Sparling [2], to ensure that an appropriate reuse occurs, a
component has to be locatable, consumable and extensible.This also means that a
component must have a complete specification, combined with some assurances that
the component complies with the specification.

Again, there is a huge difference between a reusable in-house component and a
reusable COTS component. This can be better explained with an example. Let us
consider a consultancy that is going to develop an examination system say, for XYZ
University. It is easier to design because the domain is static and we already have an
idea of the number of departments, the nature of examination systems etc for XYZ
university.. On the other hand, if the consultancy has to develop software that can be
used for any kind of university, the task is daunting because of the difference in
requirements and therefore the component has to be more generic.

If the reusable component was in-house, the organization could probably at least
immediately tell the developers to make the required changes. On the other hand, if
the reusable component was a COTS component, it would be difficult to upgrade it
because of the difficulties mentioned in section 6.Not only that, from the developers
point, writing software for reusable COTS component is the most difficult of all
because the component has to be very generic.

Reusable software components can be simple like familiar push buttons, text
fields, list boxes and scrollbars. ORACLE and Microsoft Office are example of more
popular reusable COTS components.To summarize, all components may not be
reusable; reusable components are reusable to varying degrees. In general, a reusable
component will be more complex and will carry a bulkier code as compared to non
reusable components. Full reusability, though may be a designer’s ideal goal, can
rarely, be achieved.

8 THE TRUSTAD NOMENCLATURE

We considered the specifications for In-house, COTS, reusable in-house and COTS
components using the seven dimensional vector (T, R, U, S, T, A, D) vector in the
previous sector.Fig 2 provides a consolidated view. It can be seen that the TRUSTAD
nomenclature enables us to clearly demarcate between various components.
From a perusal of the figure,

1. All software components satisfy criteria 1, 21 and 22

A TRUSTAD COMPONENT NOMENCLATURE

170 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

1. .2. While In-house components satisfy criteria
2. 1, 2, 3, 5, 7, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22 and 23.
3. COTS components satisfy criteria 2, 3, 5, 7, 10, 12, 13, 14, 15, 17, 20,

21, 22 and 24.
4. Similarly, Reusable In-house components satisfy criteria
5. 1, 2, 4, 6, 8, 9, 11, 12, 13, 14, 15, 17, 20, 21, 22 and 24
6. Reusable COTS components satisfy
7. criteria 2,4,6,8,10,15,17,21,22,and 24.

Figure 2 : The TRUSTAD Nomenclatur

9. CONCLUSIONS

Industry and the open market have had a significant impact on the development of
component technology. A consequence of this situation is that component based
software engineering uses concepts that are still not fully formalized and terms that
are not clearly distinguished. This paper has made an attempt to define and clarify the
differences between the terms software components, in-house components, COTS
components and reusable in-house and COTS components.

We proposed that a software component can be represented by a seven dimension
vector (T, R, U, S,T, A , D). Using the above proposal, specifications were written for
in-house components, COTS components, reusable in-house and reusable COTS
components. It could be seen that the values differ when it came to source, degree of
customization, type of delivery, and the kind of testing possible. We attempted to

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 171

define software components, in-house components, COTS components and reusable
in-house and COTS components.

Further we tried to provide an answer for the question,” What is a reusable
component?” We found that all components are not reusable. In fact, the degree of
reusability varies from component to component and reusable components are more
generic and bulkier in nature. We also concluded that the above seven dimension
vector is sufficient to distinguish between in-house and COTS components. Finally,
we consolidated the four specifications to arrive at our TRUSTAD component
nomenclature classification.

Thus, this paper is just a small step in the direction of trying to distinguish
between various component types - in-house, COTS and reusable. We invite the
readers to offer their comments.

9 ACKNOWLEDGEMENTS

The authors record grateful thanks to late Dr.Peer .S. Mohammed, the Correspondent,
Dr.V.M.Periasamy, the Principal and Dr.T.S .Rangasamy, the Dean Academic for the
facilities provided. They would also like to express their thanks to Professor Manu
Natarajan, Head of the Department of CSE for useful discussions.

REFERENCES

[1] Sparling M.: “Is there a Component Market”, www.cbd_hq.com/articles/2000

[2] Sparling M.: ”Lessons learned through six years of Component Based
Development”, Communications of the ACM, 2002.

[3] J. Gao, K. Gupta, S. Gupta and S. Shim: “On building testable Software
Components”, COTS based Software Systems, volume 2255 of LNCS,
pages 108-121, Springer-Verlag, 2002

[4] M. Haddox, M. Kapfhammer, C. Michael: “An Approach to Understanding and
Testing Third Party Software Components“, 2002 Proceedings of IEEE
Reliability and Maintainability Symposium

[5] J. Offutt, S. Kamsokeat and W. S. Rivepiboon: ”Increasing Class Component
Testability”, Research Project submitted to the Centre of Excellence in
Software Engineering, Chulalongkorn University, 2003.

[6] Gao Jerry: “Testing Component Based Software”, Starwest 2000

[7] E. JWeyuker: ”Testing Component Based Software: A Cautionary Tale”, IEEE
Software, 15(5):54-59, 1998

[8] J. Voas: “COTS Software: the Economical Choice”, IEEE Software ,1998

[9] C. Szyzysperski: “Component Software Beyond OO Programming”, Addison
Wesley, 1998.

[10] Roger S. Pressman: “Software Engineering”, Third Edition

A TRUSTAD COMPONENT NOMENCLATURE

172 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

[11] Moriso Moriso and Marco Torchiano: ”Definition and classification of COTS”,
ICCBSS 2004

[12] D. Carney, F. Long: ”What do you mean by COTS”, IEEE Software,
March/April 2006, pp 83-86

[13] Crnkovic, Hnich, Jonsson, Kiziltan: ”Specification, Implementation and
Deployment of Components”, Communications of the ACM, Oct 2002.

[14] Sathit Nakkrasae, Peraphon Sophasthit: “A Formal Approach for Specification
and Classification of Software Components”, SEKE 2002

[15] William T. Councill: ”Third Party Testing and the Quality of Software
Components”, IEEE Software, Vol.16, No 4, pp 55-57, July/August 1999.

[16] G. Heineman and W. Councill: ”Component Based Software Engineering:
Putting the pieces Together”,Addison Wesley,2001

[17] B. Meyer: “The Grand Challenge of trusted Components“, In Proc.ICSE 2003,
pages 660-667, IEEE 2003.

[18] Jeffrey Voas: “Certifying Off –the- shelf Componnets”, IEEE Software Press,
1998

[19] Jeffery Voas: ”Maintaining Component Based Systems”, IEEE Software Press ,
July/August 1998,Pgs 22-27

[20] Miguel Goulao,Fernando Brito: “The Quest for Software Components
Quality”,COMPSAC 2002

[21] Brereton.P, David.B: “Component Based Systems: A Classification of Issues”,
IEEE Software Press 2000, Pages 54-62

[22] “Technical Concepts of Component Based Software Engineering”, 2nd Edition,
Technical Report, Carnegie Mellon University

[23] Kung Kiu Lau, Zheng Wang: ”A Taxonomy of Software Component Models”,
Proceedings of EUROMICRO-SEAA ,2005

[24] Sun Microsystems, The BeanBuilder, http://bean-builder.dev.java.net/

[25] Sun Microsystems, Java 2 Platform,Enterprise Edition, http://java.sun.com/j2ee.

[26] Hopkins Jon:” Component Primer”, Communications of the ACM, Oct 2000/ Vol
43, No.10.

[27] Susan Eisenbach, Chris Sadler: “Reuse and Abuse”, Journal of Object
Technology, vol 6, no 1, January-February 2007, Pages 130-167
http://www.jot.fm/issues/issue_2007_01/article5/

[28] Julia Küster Filipe: "A logic-based formalization for component specification", in
Journal of Object Technology, vol. 1, no. 3, special issue: TOOLS USA
2002 proceedings, pp. 231-248.
http://www.jot.fm/issues/issue_2002_08/article13/

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 173

About the authors
Sivamuni Kalaimagal - received B.E degree from the University of Madras,
Chennai, India in 1997 and M.Tech degree from Pondicherry Central University,
Pondicherry, India in 1998. She is a member of ISTE and has ten years experience in
teaching. She is currently pursuing her doctoral program in computer science and her
area of research is software components. She can be contacted at
kalai1276@gmail.com.

Rengaramanujam Srinivasan - born in 1940 in Alwartirunagari,
Tamilnadu, India, received B.E. degree from the University of
Madras, Chennai, India in 1962, M.E. degree from the Indian
Institute of Science, Bangalore, India in 1964 and Ph.D. degree from
the Indian Institute of Technology, Kharagpur, India in 1971. He is a
member of the ISTE and a Fellow of Institution of Engineers, India.

He has over 40 years of experience in teaching and research. He is currently
supervising doctoral projects in the areas of data mining, wireless networks, Grid
Computing, Information Retreval and Software Engineering.

