
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol.7, No. 4, May-June 2008

Dr. Ali Ebrahim El Desokey, Dr. Amany Sarhan, Eng. Seham Moawed: “Using Multiple
Servers in Concurrent Garbage Collector“, in Journal of Object Technology, vol. 7, no. 4,
May-June 2008, pp. 139-158 http://www.jot.fm/issues/issue_2008_05/article4/

Using Multiple Servers in Concurrent
Garbage Collector

Dr. Ali Ebrahim El Desokey, Full Professor at Computer Systems Dept.,
Faculty of Engineering, Mansoura Univ., Egypt
Dr. Amany Sarhan, Assistance Professor at Computers and Automatic
Control Dept., Faculty of Engineering, Tanta Univ., Egypt
Eng. Seham Moawed, Information System Engineer, East Delta Company
for Electricity, Mansoura, Egypt

Abstract
Object-oriented programming languages are being widely adopted as one of the
most powerful languages due their flexibility and reusability. However, these
languages suffer from memory mismanagement that could be critical especially in
real-time and embedded systems. Automatic memory management through
garbage collector handles this problem. Concurrent garbage collection based on
sporadic or deferrable server is considered the most famous collectors in this area.
In such algorithms, the garbage collection task is assumed to be the single aperiodic
task in the system. When there are other different types of traffic, with short
deadlines and long deadlines, the single server provides poor performance. The
garbage collection task may have to wait till a less urgent or a higher deadline
request finishes its execution that leads to an increase in the system memory
requirement and perhaps a deadline miss of the garbage collection thread.
This paper concentrates on minimizing the system memory requirement when there
are multiple sources of events by introducing a new concurrent garbage collector. In
the proposed collector, the system will have multiple servers; rather than one as in
the available garbage collectors. These servers can either share or not share their
capacities, i.e. a server can use the unused capacity of other servers in case of
sharing. The two schemes give preference to higher priority servers. We also
propose a modification in the copying collector that enhances its performance. The
simulation results show that using multiple servers with capacity sharing in garbage
collection scheduling strategy exhibits a better performance in terms of reducing the
system memory requirement and meeting most of deadlines than using either single
server or multiple servers without capacity sharing collectors. However, the
capacity-sharing scheme gave lower response times for jobs with short deadlines,
like GC task, than without capacity sharing scheme.

USING MULTIPLE SERVERS IN CONCURRENT GARBAGE COLLECTOR

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

1 INTRODUCTION

Memory management in real-time and embedded systems is handled using automatic
memory management (i.e. Garbage Collection or GC for short) which enables the
programmers to overcome the potential danger of manual memory management, such
as memory leaks, dangling pointers, fragmentation, and so on. The garbage collector
distinguishes the memory objects that are no longer in use (garbage) from the live
objects and reclaims the garbage for future use [1, 4]. The advent of garbage
collection to the real-time scene causes serious obstacles as traditional garbage
collection threatens the schedulability and predictability of tasks that demand strict
real-time requirement. So, some effort had been put in order to make it suited to real-
time systems.

Scheduling incremental garbage collection algorithms was the solution to
enhance the position of garbage collection in the real-time scene. The main aim
towards scheduling garbage collection is to achieve low overhead and enough
predictability for hard real-time tasks. Many works in the literature have classified
garbage collection scheduling mechanisms into two categories: sequential and
concurrent garbage collection [4]. Sequential garbage collection failed to achieve the
aims of GC scheduling in real-time systems. Thus, the main trend is towards
concurrent GC techniques.

Concurrent GC is a great step towards truly and efficient real-time garbage
collection algorithms. Some variants of concurrent GC have been developed. Among
them are the background approach [4], Metronome [5], time-triggered GC and its
auto-tuning form [1, 12]. Although all of these approaches remove the obstacles
caused by traditional garbage collection in real-time systems, they rely on a relatively
large amount of redundant system memory. So, some other concurrent GC algorithms
had been put on reducing the system memory requirement and guaranteeing the
schedulability of hard real-time mutators under automatic memory management.

Among these techniques are the sporadic server (SS) based GC [3] and the
deferrable server (DS) based GC [2]. Both of them are based on the resource reserving
mechanism. A garbage collector is treated as a periodic or aperiodic task and is
scheduled concurrently with other tasks in the system. The deferrable server based GC
achieves the most minimum worst-case response time of a garbage collector among
all other concurrent garbage collectors. It also achieves the minimum worst-case
system memory requirement while meeting hard deadlines for all tasks [2].

The two latter GC scheduling strategies are single aperiodic server based garbage
collector. In such algorithms, the GC task is assumed to be the only aperiodic task
overall the system. Although the single server minimizes the number of capacity
exhaustions, it provides poor performance when there are several aperiodic jobs with
different temporal requirement. A single server processes the jobs in a FIFO (First
Input First Output) order that is not a good policy [13]. This can lead to the situation
in which a short (and urgent request) is delayed due to the fact that the server is
processing a long request. The case in which the GC thread may have to wait till a
less urgent or a higher deadline request finishes its execution that leads to an increase
in the system memory requirement and perhaps a deadline miss of the GC thread. To

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 141

alleviate the problem of FIFO, other queuing disciplines were used like the SRO
(Shortest Remaining Time at Overrun) [13]. However, the event at the head of the
queue is still non-preemptive and the rest of the jobs in the queue have to wait until it
finishes which delays the response times of lower deadline threads like the GC task
that may have to wait till a higher deadline ones execute.

The aforementioned problem can be solved using multiple servers at different
priorities [14]. The priority assigned to servers is done at a priority level that
commensurates with the deadline of the jobs it serves. This scheme is truly
preemptive; if the server that handles the long deadline aperiodic request is running
while the urgent or lower deadline request arrives; the processor will be immediately
switched to the high priority server. The servers can use the sharing or non-sharing
protocol.

This paper proposes a new concurrent garbage collector based on multiple
servers. There are two possible schemes when using multiple servers; sharing capacity
and non-sharing capacity [14]. In capacity sharing scheme, a server can use the
unused capacity of other servers, while in non-sharing scheme this sharing is not
allowed between the servers.

2 BACKGROUND AND PREVIOUS WORK

Many literatures have categorized the garbage collection algorithms into two classes:
reference counting and tracing. Reference counting requires an additional reference
count (RC) field for each object [5, 15]. Whenever a pointer has been changed by a
mutator, RC field is also updated. When the RC value drops to zero, the object is
reclaimed immediately. The tracing algorithm is classified again into mark-sweep and
copying. The mark-sweep collector traverses the pointers to find live objects and
marks them. Then, a collector scans the entire heap and reclaims garbage objects that
have not been marked. Typically copying collectors maintain two equal-sized spaces
called fromspace and tospace. When a garbage collector is triggered, it traverses the
pointers and copies the live objects into the new tospace.

The basic tracing garbage collection algorithms are inherently stop-the-world
fashion, and sometimes their pause time is intolerable for the applications that require
short or bounded response time. Incremental garbage collection algorithms [2, 4, 17]
have been proposed to distribute and hide the garbage collection pause time
throughout the execution of mutators. This approach, in effect, reduces the
intermediate pause delay, but it is difficult to guarantee the schedulability of real-time
tasks without cooperation with the scheduling mechanism. The most common
strategies of the GC is the concurrent GC. It is based on the resource reserving
mechanism. The resource here means both CPU and memory. While CPU is reserved
for GC, the memory is reserved for the other tasks. A garbage collector is treated as a
periodic or aperiodic task and is scheduled concurrently with other tasks in the
system. The diversity of this strategy is presented by [1, 11, 14].

Although the concurrent GC solved the problems of traditional GC in real-time
systems, they are not optimized solutions because the amount of the worst-case
system memory requirement can be reduced further. One way for reducing the system
memory requirement problem is the deferrable server based GC scheduling strategy

USING MULTIPLE SERVERS IN CONCURRENT GARBAGE COLLECTOR

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

[26]. It is a concurrent garbage collector that is based on a deferrable server together
with a particular parameter configuration scheme. This parameter configuration
scheme could also be applied into other approaches such as the sporadic server (SS)
based GC and time-based GC. The benefits were to minimize the worst-case response
time of a garbage collector, and so is the worst-case system memory requirement,
with the schedulability of tasks with hard time constraint not jeopardized.

Sporadic Server Based GC

Kim, et al. designed a concurrent GC based on a sporadic server (SS) [14]. It treats
GC as an aperiodic task and utilizes the classic aperiodic server strategy of scheduling
aperiodic tasks in real-time systems. Figure 1 shows the behavior servicing an
aperiodic task using SS. A sporadic server is used to serve the needs of GC, and the
period for the server is equal to that for the highest priority periodic task. Since the
priorities are assigned under the rule of Rate Monotonic (RM) scheme, the period for
the server is the shortest among all tasks.

On the other hand, in order to meet the deadlines of all periodic tasks, the
utilization of the sporadic server (given by the portion of the capacity out of one
period) must be kept in a limited range. The result is that the capacity is very small
and usually not enough for a GC cycle. Thus, a single GC cycle may last several
periods of the server before it completes, which increases the worst-case response
time of GC and there’s a need for a certain amount of available memory during the
long GC cycle. However, this algorithm shows better performance on reducing the
system memory requirement than the background approach.

DS based GC

Yugiang Xian and Gaungze Xiong designed a concurrent GC based on the deferrable
server algorithm [24]. It resembles the sporadic server based GC in treating GC as an
aperiodic activity. It assumes that the GC is the only aperiodic task in the system (this
is only for simplicity). It utilizes the deferrable server strategy of scheduling aperiodic
tasks in real-time systems. Figure 1 shows the behavior servicing an aperiodic task
using DS. The server has the shortest period among all other tasks; consequently, it
will be assigned the highest priority according to the rate monotonic scheduling
strategy. The capacity of the server is selected through a particular parameter
configuration scheme.

This Scheme is addressed using two different approaches, that is, the utilization
based analysis and exact analysis of the selection of parameters. The exact analysis is
better than the utilization one in parameter calculation because it takes into
consideration the individual task set. In this way, DS based GC achieves the worst –
case response time for the GC thread compared with all previous concurrent garbage
collectors. So, it achieves the best results in minimizing the system memory
requirement with the schedulability of tasks with hard time constraint not jeopardized.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 143

0 10 20 30 40

DS

SS

+2 +2

+2 +2 +1

Figure 2. The heap of incremental copying garbage collector B: evacuation
pointer, S: scan pointer, T: allocation pointer

Incremental Copying Collector

This subsection presents the basic idea of operation for incremental copying collectors
[4, 8, 9, 11]. In most copying collectors, the heap is divided into two equally sized
areas denoted tospace and fromspace, as illustrated in Figure 2. New objects are
allocated at the top of tospace, at the position denoted by T. Allocation proceeds in
this way until tospace is filled up. Then, a flip is performed, changing the meaning of
tospace and fromspace. The old tospace now becomes fromspace and vice versa.
Fromspace will contain a mixture of live and dead objects. The live objects must be
moved, evacuated, from fromspace into tospace in order to enable a future flip. The
evacuated objects are placed at the bottom, at the location denoted by B. The
evacuation procedure is performed incrementally as new objects are allocated at the
top of tospace. When no free memory remains in tospace, another flip is performed,
effectively reclaiming the memory occupied by dead objects. Another GC cycle is
now initiated, evacuating the live objects from the new tospace.

The notion of tri-color marking terminology [15] is useful when discussing
incremental tracing algorithms like the incremental copying collector. Heap objects
can be in one of three different states as seen by the garbage collector. These states are
denoted black, grey and white. Black objects are those objects that have been marked
as being reachable and their contents have been scanned for pointers to other
reachable objects. Grey objects are those objects that have been identified as
reachable but they have not been scanned for pointers to other live objects. While
white objects are those objects that have not been found yet by the garbage collector.

Since the mutator executes interleaved with the collector, we must make sure it
does not introduce pointers to fromspace objects into black objects. Assignments to
pointers are monitored by the write barrier [16] and attempts to violate the consistency
of the GC scheme are caught. It was proposed that instead of evacuating the
fromspace object immediately, the write-barrier reserves an area for the objects for

Figure 1. The behaviors servicing an aperiodic task of DD and SS
(The arrows with a number accompanying means replenishment)

Fromspace Tospace

TB

Old Objects Evacuated
Objects

G

USING MULTIPLE SERVERS IN CONCURRENT GARBAGE COLLECTOR

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

lazy evacuation [4]. A background garbage collector evacuates the object before the
normal evacuation process.

However, in the proposed technique, we will use the incremental copying
collector mentioned in [3] which adds modifications to the original technique. In the
new environment, the garbage collector scans the root-set incrementally while
traditional approaches scan the root-set entirely before normal evacuation. There are
two kinds of tasks that run on the system: periodic and aperiodic tasks. This paper
suggests that the scan and evacuation processes of aperiodic tasks are performed first.
This is performed on each task one after another according to the first coming first
scanned and evacuated principle. Afterwards, the scan and evacuation of periodic
tasks is performed to each task according to the longest-period first stack scanned
principle.

Since the contents of stack may change by each task instance, two factors aid in
reducing the additional evacuation and floating garbage produced by garbage
collector for periodic tasks: 1) the priori scanning and evacuation of aperiodic tasks 2)
longest-period-first stack scanning for periodic mutators since the shorter the period
of a task, the higher the possibility of mutation. The global variables tend to be shared
and modified by multiple mutators. So, lazy scanning can reduce the overhead of
barrier processing.

As in [3], instead of using the lazy evacuation technique presented in [4], the
garbage collector performs the asynchronous evacuation after the normal evacuation
process by maintaining temporary Update Entry. The garbage collector also initializes
the new tospace right after the flip, instead of initializing the heap incrementally. The
initialization time can be reduced with an efficient hardware support denoted in [3].

Scheduling tasks using multiple servers

The idea of using multiple servers to serve distinct streams of aperiodic tasks was
introduced in [10]. There are important reasons why more than one server be desirable
in a particular implementation. One reason is that the system contains separate
functional components each is best handled by a different server. Another reason is
that tasks with different temporal properties are better handled by different servers.
Using a single server to process urgent and non-urgent tasks results in poor
performance as the urgent tasks are unnecessary delayed by the non-urgent ones
specially if the non-urgent is scheduled as high priority tasks [14].

Each server will be assigned a budget, a priority and a replenishment period.
Each server is assumed to serve a distinct stream of aperiodic tasks according to the
given parameters. The main problem with using multiple servers is how to partition
the available capacity among the different servers. When using the non-sharing
scheme, this may cause higher capacity exhaustion which will reduce the performance
of the server. One busy server can exhaust its budget while the other servers are idle
and have capacity.

Alan and Bernat in [4] introduced and evaluated a new scheme called the
capacity sharing protocol, in which multiple servers share their capacity. This scheme
is less sensitive to the specific parameters of the application and hence can be applied
to a variety of systems. Whenever a capacity of a server is exhausted, the unused
capacity from another server is used.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 145

The server to which the server is going to plug is dynamically selected at the time
instant when the capacity is exhausted. This will require each server to have a pointer
to another server from which the accounting is going to be performed. When the
server points to another server, it is called plugged to a host, and the server pointing to
the host is called guest server. When the server is running on its own capacity, it is
said to be unplugged.

There are some rules that govern the sharing protocol [4]:
1. initially all servers are unplugged and running on their own capacity
2. each server uses its available capacity until it is exhausted
3. whenever the capacity of a server is exhausted, it still has further work to do

and it is serving the highest priority task, it can choose another server that has
unused capacity to plug into. The other server runs on the priority of the
exhausted server (not its own priority). If no server is found free, the server is
demoted to background priority.

4. if the server is plugged to another server and it is preempted, or a capacity
replenishment occurs, the server immediately is unplugged from the host

5. whenever a replenishment occurs, all servers of lower or equal priorities that
of the server for which the capacity is replenished are promoted to the normal
priority (if they happen to be running at a low priority)

The capacity sharing protocol is equivalent to the single server mechanism when all
servers run at the same priority. However, it shows a full preemptive behavior when
servers are assigned different priorities. This technique is simple and very easy to
implement and has very low memory and computational overhead.

3 SYSTEM MODEL AND ASSUMPTIONS

The proposed system model is assumed to be a real-time system composing of four
periodic tasks with hard time constraint τ = {τ1 , τ2 , τ3 , τ4} and one aperiodic task (for
simplicity) with soft time constraint (τap). The tasks are called mutators, with respect
to the GC. The task set (TS1) used is shown in Table 1. Any nomenclature denoted in
the paper is provided in Table 2. Each task is characterized by a five-element tuple
defined as: (C, T, D, A, α)

The underlying assumptions under which the system will operate are as follows:
A1 There is only one aperiodic task in the system. It is assumed to arrive at

certain time instants: 22ms, 110ms, and 200ms respectively.
A2 There is no blocking factor among the tasks.
A3 The context switching and scheduling overhead is negligible.
A4 C, T, D, A and α for any task (periodic or aperiodic) are known a priori, and

the deadline of each periodic task is equal to its period (D = T)
A5 Lmax , Fmax , υς are known a priori.

USING MULTIPLE SERVERS IN CONCURRENT GARBAGE COLLECTOR

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

Table 1: The task set (TS1) details

Symbol Description
τ Periodic mutator task

τap Aperiodic mutator task
Cς , υς Worst-case execution time ,Collection speed for garbage collector

Cap, Rap, Dap Worst-case execution time, response time, deadline for τap

A Maximum amount of memory allocated by the mutator task during
T (periodic), during Rap (aperiodic)

α Portion of live memory out of A
C , T , D Worst-case execution time , period , deadline for τ

R , Rς Worst-case response time of τ and GC
Lmax Maximum amount of live memory
Fmax Maximum amount of the uncollected garbage

Tss , Css Period and capacity for a sporadic server
Tds , Cds Period and capacity for a deferrable server

Table 2: The nomenclature used

A6 The execution time of GC and that of any periodic mutator task τ are in the
worst case all along, that is, are always equal to Cς , C . So, is the amount of memory
allocated by τ during T.

A7 The execution time of any aperiodic task τap is in its worst case all along, that
is, is always equal to Cap. So, the amount of memory allocated by τap during Rap since
Rap may exceed the deadline.

A8 Not until the end of one GC cycle can the memory reclaimed in that cycle be
available to mutators.

A9 For each periodic mutator task τ , the memory consumption behavior repeats
periodically, and the consumed memory during one period becomes 'dead' when that
period completes.

A10 For the aperiodic mutator τap , the memory consumption behavior repeats at
each invocation during Rap , and the consumed memory becomes 'dead' at the end of
the execution or at the worst-case response time of the aperiodic mutator task.

A11 The amount of floating garbage arising during a GC cycle is equal to the
amount of garbage generated by mutators during the cycle.

A12 For each task (periodic or aperiodic), the amount of memory consumed by it
in each time grain is equal to A/C.

A13 The GC task arrives at threshold = 3000
The periodic mutators are scheduled by the Rate-Monotonic (RM) scheduling

policy described in [11]. This scheduling strategy assigns fixed priorities to tasks

Task C T D A α

τ1 2 10 10 488 0.53
τ2 4 30 30 528 0.46
τ3 10 50 50 800 0.38
τ4 15 100 100 1296 0.57

GC 4 - 20 - -
τap 10 - 100 400 0.5

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 147

according to their periods. The task period is equal to its deadline. The task with the
shortest period is given the highest priority in order to minimize the response time of
the task to meet its deadline.

According to this strategy, if a low priority process is executing and a high
priority one is invoked, then the low priority process is preempted and has to wait till
the high priority process finishes its execution. When the high priority process
finishes, the low priority process can continue its execution unless there is no other
high priority task ready to execute.

The aperiodic tasks in the system, including the GC thread, are scheduled by
distinct real-time scheduling strategies. In all these strategies, only one aperiodic task
is assumed to be invoked at selected time instants: 22 ms, 110 ms, and 200 ms
respectively during the hyperperiod. They are chosen such that the aperiodic task
arrives before one of the GC invocation. This is the worst-case situation that can delay
the response time of the GC task upon invocation (i.e. a less urgent or higher deadline
aperiodic task arrives before the invocation of the GC task). This may cause the GC to
miss its deadline. Accordingly, the system memory requirement increases and hence
large areas of memory are required to be able to meet the worst-case situation.

GC Scheduling Based On Single Server

Using one single server to process urgent and less urgent jobs may result in poor
performance as the urgent jobs are unnecessary delayed by the non-urgent ones, and
the non-urgent ones are scheduled at a high priority [4]. Hence, the GC task may be
delayed by a non-urgent task. In this part of work, we aim to explore the behavior of
the GC under the given system model which contains an additional aperiodic task.

There are two possible types of scheduling. The first one is based on the
deferrable server (DS) [19, 20] and the other is based on the sporadic server (SS) [11,
18]. Both techniques have been tested and validated in [11, 18, 19, 20] with a task set
containing only periodic tasks while the GC was the only aperiodic task in the system.
In the following subsections, we will investigate the performance of DS and SS GC
under the proposed system model which its task set contains: a number of periodic
tasks, the GC and one aperiodic task.

GC scheduling based on single deferrable server

In this scheduling strategy, the deferrable server task (DS) is used to serve the GC
needs like any other aperiodic task in the system. The DS can service an aperiodic
task anytime during its period provided that the system still has some unused
execution time. This is called bandwidth preserving algorithm. At the end of the DS
period, if any portion of the execution time is not used, it is discarded. Figure 3
depicts the operation of the DS GC for the task set arrivals.

The DS server’s period is taken to be 4ms and the capacity (Cds) is 1ms as
derived in [2]. It is the maximum value that satisfies the schedulability condition for
all hard tasks from the exact analysis in [20]. The figure illustrates the worst-case
situation that may meet the GC task. We assume that the aperiodic task (τap), which is
less urgent and has longer execution and deadline time, arrives before the GC task. At

USING MULTIPLE SERVERS IN CONCURRENT GARBAGE COLLECTOR

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

t=22ms, the request for task τap arrives demanding 10ms. However, just a little bit
later, at t = 23ms, a request for the GC task arrives, which only requires 4ms.

The single server has the problem of effectively scheduling the jobs in FIFO order and
it is non- preemptive, making an adequate use of the available capacity. Due to the
fact that the server is busy servicing task τap, GC task will have to wait until τap
finishes its execution. As the requested execution time for task τap is very long,
compared to GC, several replenishments are required to finish its execution. From the
figure, we find that τap had a response time of 35ms while its deadline was 100ms.
However, the response time of GC was 50ms while its deadline was 20ms despite that
it is more urgent and has a shorter requested execution time. Thus, the GC task misses
its deadline which will effectively increase the system memory requirement.

From the analysis of the given system, it was found that having another aperiodic
task in the system beside the GC task could cause the GC to miss its deadline. This
can cause serious problems to the system by increasing the system memory
requirement. Thus, the performance of the DS GC under this system is under question
specially, as we have seen, if the aperiodic task arrived before the GC task.

GC scheduling based on single sporadic server

This scheduling strategy is based on the sporadic server (SS). As in the DS, SS
preserves its server execution time at its high-priority level until an aperiodic request
occurs. It differs from the DS algorithm in the way it replenishes its server execution
time. The DS algorithm
 periodically replenishes its server execution time to full capacity. The SS algorithm
replenishes its capacity one SS period after the arrival of any aperiodic request, and
the amount replenished is equal to that consumed by the aperiodic request. SS has the
same problem of DS. SS GC also uses FIFO order or SRO queuing policy for
scheduling the arriving aperiodic tasks. Figure 4 depicts the operation of the SS GC
for the task set arrivals.

GC

τap

C
ap

ac
ity

 22 24 28 32 56 60 64 68 72

1

τap GC

Figure 3. GC Scheduling strategy operation based on single deferrable server
for the given task set arrivals (server parameters T=4, C=1)

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 149

Figure 4. GC Scheduling strategy based on single sporadic server (server parameters T=4, C=1)

GC

 22 24 28 32 36 56 60 64 68 72 76

τapτap GC

1

C
ap

ac
ity

The SS server’s period is 4ms and the capacity (Css) is 1 ms. It is the maximum
capacity of the SS server that guarantees that all hard tasks meet their deadlines from
[3]. From the figure, it is observed that τap had a response time of 37ms while the GC
task had a response time of 52ms which exceeds its deadline (D=20). This will also
increase the system memory requirement as in the DS GC.

4 THE PROPOSED GC SCHEDULING BASED ON MULTIPLE
SERVERS

As stated in [4], jobs with different temporal properties are better handled by different
servers. It seems more adequate to use two servers for GC and τap as they both have
different properties. The priority of the server is set up in relation to the urgency of the
request; therefore the short and urgent aperiodic request will have a higher priority
than the long and less urgent one. Hence, GC task will have higher priority than τap.
This scheme is truly preemptive; if the server that handles the long aperiodic request
τap is running while GC task arrives; the processor will be immediately switched to
GC (the higher priority thread). GC scheduling based on multiple servers is divided
into two protocols: without capacity sharing and with capacity sharing.

GC scheduling based on multiple servers without capacity sharing

Figure 5 depicts the scenario of scheduling the two aperiodic tasks (GC & τap) with
two servers. Each task is scheduled by a separate server. The capacity used previously
in the single server has been divided into two budgets (capacities): 0.8ms, 0.2ms.
Server1 will have a capacity of 0.8ms and it is assigned to handle GC task while
server2 will have a capacity of 0.2ms and it is assigned to handle τap. This assignment
was proposed according to the importance of each task.

USING MULTIPLE SERVERS IN CONCURRENT GARBAGE COLLECTOR

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

C
ap

ac
ity

Figure 5. GC Scheduling strategy based on multiple servers without capacity sharing

 22 24 28 32 36 40 44 212 216

Server1

Server2

 GC

τap

0.8

0.2

GC

τap

0.6

GC

 22 24 28 32 36 40 44 212 216

22.6

C
ap

ac
ity

Both servers are DS and will have the same replenishment period of 4ms. According
to the scheduling technique without capacity sharing, once the GC task arrives at
t=23.6, server2, which was currently running, is preempted. This allows GC task to be
served directly upon its arrival without delay. However, server2 now suffers a much
longer delay because it has a smaller capacity (0.2ms) than before in single server and
therefore will need more replenishment periods to finish its computation. According
to this, the response time for τap was 194.2ms which diverges greatly from its deadline
while the response time of GC was 14.2ms. Note that if there are other aperiodic
tasks, besides the GC task, and are more urgent than the GC, then the server assigned
to the GC will have a smaller capacity. This in effect will increase the response time
of the GC task. Consequently, the system memory requirement may reach a limit that
exceeds the required threshold at the ends of the GC cycles.

In this scheme, each server works on its own capacity. The capacity of server1
assigned to handle GC is wasted when the GC task finishes its execution. The
scheduling technique without capacity sharing suffers from having missed deadlines
for both GC and the aperiodic tasks.

GC scheduling based on multiple servers with capacity sharing

To overcome the problems that face the system when the scheduling is based on a
single server or multiple servers without capacity sharing, this research proposes to
use multiple servers with capacity sharing to schedule the aperiodic tasks. Whenever
capacity exhaustion occurs in the servers, the unused capacity from another server is
exploited, effectively sharing or stealing it. The capacity sharing protocol considers
the partitioned capacity as a common resource that can be shared between the servers.

The type of servers used can either be a DS or SS, which yields four possible
combinations of both. Figures 6-9 shows the aperiodic tasks scheduling using capacity
sharing protocol for the four combinations of server types. The principles discussed in

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 151

section 2 are applied during the scheduling. From [4], the worst-case response time of
all hard tasks is unaffected under a host selection policy that always selects a server
with equal or higher priority than the guest server. This means that if there are distinct
priorities of the servers in the system and the priorities of hard tasks lie between them
then the dynamic selection of the host has to be directed towards a higher priority
server than the guest priority in order to maintain the schedulability of hard tasks. In
our task set, there are only two servers with the highest consecutive priorities in the
system (they have the same configuration as in the protocol without capacity sharing).
They can be plugged to each other without any fear on hard tasks schedulability.

Sever running plugged to host

 22 24 28 32 36 40 44 48 120

 22 24 28 32 36 40 44 48 120

Figure 6: GC Scheduling strategy based on multiple servers with capacity sharing
(server1: DS, parameters: T=4, C=0.8, server2: DS, parameters: T=4, C=0.2)

C
ap

ac
ity

Sever2

GC 47.6

Sever1

C
ap

ac
ity

0.

0.2

τap

GC

 0.8

C
ap

ac
ity

 22 24 28 32 36 40 44 48 52 118 120 124

Sever1

Sever2

 22 24 28 32 36 40 44 48 52 118 120 124

GC

49.4

 0.2

GC

τap

C
ap

ac
ity

Figure 7. GC Scheduling strategy based on multiple servers with capacity sharing
(server1: SS, parameters: T=4, C=0.8, server2: DS, parameters: T=4, C=0.2)

USING MULTIPLE SERVERS IN CONCURRENT GARBAGE COLLECTOR

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

In all figures, due to the immediate serving of GC thread upon arrival, it meets its
deadline in all situations. Moreover, the response times of τap were 99,101,100.2,101
ms in Figures 6-9 respectively. The results are very near to the aperiodic task
deadline. This means that the scheduling of both GC and the other aperiodic task is
better with capacity sharing protocol than with any other method.

In the current system, we have two servers at different priorities with no other
hard tasks between them. So, we can assign the whole capacity (1ms) to the highest
priority server (server1 which is assigned handle to GC task) and none to the other
server. With this configuration, GC scheduling based on multiple servers with

Figure 9. GC Scheduling strategy based on multiple servers with capacity sharing
(server1: SS, parameters: T=4, C=0.8, server2: SS, parameters: T=4, C=0.2)

 22 24 28 32 36 40 44 48 52 120 124 C
ap

ac
ity

Server1

Server2

C
ap

ac
ity

0.8

GC

0.2

49.8
GC

τap

 22 24 28 32 36 40 44 48 52 120 124

 22 24 28 32 36 40 44 48 52 120 124

 22 24 28 32 36 40 44 48 52 120 124

0.8

0.2

49.4

C
ap

ac
ity

C

ap
ac

ity

GC

τap

Sever1

GC

Figure 8. GC Scheduling strategy based on multiple servers with capacity sharing
(server1: DS, parameters: T=4, C=0.8, server2: SS, parameters: T=4, C=0.2)

Sever2

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 153

capacity sharing is equivalent to GC scheduling based on single server but with full
preemption as disscused in [4].

5 SIMULATION RESULTS

This section presents the simulation results of the system memory requirement of the
multiple servers with capacity sharing based GC in all its variations against the single
server based GC including deferrable and sporadic server. We used the task set (TS1)
given in Table 1 and the incremental GC is of the type copying collector. For TS1, C�
is 4ms. The GC thread is invoked when the system memory requirement reach the
threshold 3000 and the last GC has safely completed.

Figure 10 illustrates the contrast of multiple servers without capacity sharing
garbage collector (we will call it the multiple servers) and the single server based
garbage collector using deferrable and sporadic servers. From the figure, it can be
seen that the system memory requirement is reduced when basing the scheduling on
multiple servers without capacity sharing. This is using the given capacities of the
servers. However, in this task set, there are only two aperiodic tasks; GC which has
the higher priority, and τap. The server devoted to serve the GC needs is assigned a
capacity of value 0.8 in order to enable the GC thread to meet its deadline at every
invocation. However, if there are other aperiodic tasks that are more urgent than GC
task then the server responsible for serving the GC needs may be assigned insufficient
capacity to enable the GC to meet its deadline. This will increase the system memory
requirement since several replenishments occur. Sometimes, at the end of the GC
cycle, the system memory requirement may exceed the required threshold and
consequently the whole system is crashed.

Figures 11-14 compares the proposed strategy that uses the capacity sharing
protocol in all its variations to the single deferrable server and single sporadic server
based GC. The results show that the scheduling based on the proposed strategy in all
its variations outperforms the single server based garbage collectors in minimizing the
system memory requirement.

USING MULTIPLE SERVERS IN CONCURRENT GARBAGE COLLECTOR

154 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

 Error!Time(ms)

Figure 12. System memory requirement of TS1 with
the single aperiodic server (DS & SS) and Multiple

server with capacity sharing (DS,SS) DS for GC and
SS for τap

 Time(ms)

Figure 13. System memory requirement of TS1 with
the single aperiodic server (DS & SS) and Multiple
server with capacity sharing (SS,DS) SS for GC and

DS for τap

Sy
st

em
 M

em
or

y
R

eq
ui

re
m

en
t

Sy
st

em
 M

em
or

y
R

eq
ui

re
m

en
t

0 100 200 30050 150 250
0

4000

8000

12000

2000

6000

10000

Capacity Sharing (SS&DS)
Single Server (SS)
Single Server(DS)

0 100 200 30050 150 250
0

4000

8000

12000

2000

6000

10000

DS Server
SS Server
Capacity Sharing(DS&SS)

0 100 200 30050 150 250
0

4000

8000

12000

2000

6000

10000

Multiple Servers (DS)
Single DS
Single SS

Sy
st

em
 M

em
or

y
R

eq
ui

re
m

en
t

Figure 10. System memory requirement of TS1 with
the single aperiodic server (DS & SS) and Multiple

server without capacity sharing (all servers DS)

Time(ms)
0 100 200 30050 150 250

0

4000

8000

12000

2000

6000

10000

Capacity Sharing (DS)
Single Server (DS)
Single Server (SS)

Time(ms)

Figure11. System memory requirement of TS1
with the single aperiodic server (DS & SS) and

Multiple server with capacity sharing (all servers

Sy
st

em
 M

em
or

y
R

eq
ui

re
m

en
t

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 155

Figure 15 shows the average response times of GC task and τap for the different types
of scheduling. The type of server is denoted by a number where 1: Single DS, 2:
Single SS, 3: MS without capacity sharing, 4: MS with capacity sharing (DS), 5: MS
with capacity sharing (DS, SS), 6: MS with capacity sharing (SS, DS), 7: MS with
capacity sharing (SS). From the figure, it is observed that GC scheduling based on
multiple servers with capacity sharing in all its variations aids the GC thread to meet
its deadline at every invocation for the task set. The average response time of τap is
also very close to its deadline.

GC scheduling based on multiple servers without capacity sharing also inssures that
the GC task meet its deadline but for this task set only. However, the average response
time of the other aperiodic task (τap) diverges greatly from its deadline. Thus, the GC
scheduling based on single server leads to a very large average response time of the
GC task. This occurs as it has to wait till τap finishes its execution to begin.

6 CONCLUSIONS

This paper concentrates on finding a better GC scheduling strategy for embedded real-
time systems that contain limited memory size, in the case of having another periodic
task in the system. Previous work considered the GC to be the only aperiodic task in
the system. Using a single server to serve both GC task and the aperiodic task is not a
good policy as both of them have different temporal requirement. The GC task may
have to wait till a less urgent request finishes which leads to an increase in the system
memory requirement.

This research proposes a new concurrent garbage collector based on multiple
servers. Two variations of the multiple servers can be used: without capacity sharing
and with capacity sharing. The first protocol (without capacity sharing) has a serious
problem. The server devoted to GC thread may be assigned a small capacity and since
the server works on its own capacity, this may lead to a long response time of GC task

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8

GC

aperiodic task

Servers

Figure 15: Average response time of GC and τap for
different types of scheduling

A
ve

ra
ge

 r
es

po
ns

e
tim

e

0 100 200 30050 150 250
0

4000

8000

12000

2000

6000

10000

Capacity Sharing (SS)
Single Server (DS)
Single Server(SS)

Time(ms)

Sy
st

em
 M

em
or

y
R

eq
ui

re
m

en
t

Figure 14. System memory requirement of TS1 with
the single aperiodic server (DS & SS) and Multiple

server with capacity sharing (all servers SS)

USING MULTIPLE SERVERS IN CONCURRENT GARBAGE COLLECTOR

156 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

as more replenishment occurs. Consequently, this may lead to an overflow in the
system memory requirement than the required threshold at GC cycles ends.

Thus the second variation is suggested to schedule the GC work via multiple
servers with capacity sharing. In this scheme, the partitioned capacity is a shared
resource between servers. It is proven through results that scheduling GC based on
multiple servers with capacity sharing, whatever the type of the servers used,
surpasses single server and multiple servers based garbage collectors in minimizing
both the response time of the GC task and the system memory requirement. This is
very critical issue for embedded real-time systems.

REFERENCES

[1] D.F. Bacon, P. Cheng, and V.T. Rajan, A Real-time Garbage Collector with Low
Overhead and Consistent Utilization, 30th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (2003)
285–298.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan, A Unified Theory of Garbage Collection,
ACM Conf. Object-Oriented Programming, Systems, Languages, and
Applications (2004) 50–68.

[3] R. A. Brooks, Trading Data Space for Reduced Time and Code Space in Real-time
Collection on Stock hardware, Conf. Record ACM Symposium on LISP
and Functional Programming (1984) 256– 262.

[4] A. Burns and G. Bernat, Multiple Servers and Capacity Sharing for Implementing
Flexible Scheduling, J. Real-Time Systems (2002) 49-75.

[5] A. Corsaro, and D. C. Schmidt, The Design and Performance of Real-time Java
Middleware. IEEE Transactions on Parallel and Distributed Systems 14
(11) (2003) 1155–1167.

[6] M.K. Gardner, and J.W. Liu, Performance of Algorithms for scheduling Real-
Time Systems with Overrun and Overload, 11th EUROMICRO Conf.
Real-Time Systems (1999) 287-296.

[7] T. M. Ghazalie, and T. P. Barker, Aperiodic servers in a Deadline Scheduling
Environment, J. Real-Time Systems (1995) 31-67.

[8] R. Henriksson, Scheduling Garbage Collection in Embedded Systems, PhD thesis,
Lund University (1998).

[9] M. Hertz and E. D. Berger. Quantifying the Performance of Garbage Collection
Vs. Explicit Memory Management, ACM Conf. Object-Oriented
Programming, Systems, Languages, and Applications (2005) 313–326.

[10] IEEE Std.10031.d D12 (1999). Draft Information Technology- Portable
Operating System Interface POSIX: Part 1: System Application program
interface (API)

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 157

[11] T. Kim, N. Chang, N. Kim, and H. Shin, Scheduling Garbage Collector for
Embedded Real-time Systems, ACM SIGPLAN Notices 34 (7) (1999) 55-
64.

[12] Edward A. Lee, The Problem with Threads, Electrical Engineering and Computer
Sciences, University of California at Berkeley, Technical Report No.
UCB/EECS-2006-1 (2006) http://www.eecs.berkeley.edu/Pubs/TechRpts/
2006/EECS-2006-1.html

[13] C. D. Locke, Real-time Java Moving into the Mainstream, RTC Magazine 13
(2004) 63–65.

[14] Luke K. McDowell, Susan J. Eggers, Steven D. Gribble, Improving Server
Software Support for Simultaneous Multithreaded Processors, ACM
SIGPLAN Notices 9th ACM SIGPLAN symposium on Principles and
practice of parallel programming 38 (10) (2003).

[15] M.A. Rivas and M.G. Harbour, Evaluation of New POSIX Real-Time Operating
Systems Services for Small Embedded Platforms, 15th Euromicro Conf.
Real-Time Systems (2003) 161 - 168.

[16] S.G. Robertz, Flexible Automatic Memory Management for Real-time and
Embedded Systems, Licentiate Thesis, Department of Computer Science,
Lund Institute of Technology, Lund University (2003).

[17] S.G. Robertz and R. Henriksson, Time-Triggered Garbage Collection, ACM
SIGPLAN Conf. Language, Compiler, and Tool for Embedded Systems
(2003) 93-102.

[18] B. Sprunt, L. Sha, and J. P. Lehoczky, Aperiodic Task Scheduling for Hard Real-
time Systems, Real-Time Systems (1998) 27–60.

[19] J. K. Strosnider, J. P. Lehoczky, and L. Sha, The Deferrable Server Algorithm for
Enhanced Aperiodic Responsiveness in Hard Real-time Environments,
IEEE Transactions on Computers 44 (1) (1995) 73–91

[20] Y. Xian and G. Xiong, Minimizing Memory Requirement Of Real-Time Systems
With Concurrent Garbage Collector, ACM SIGPLAN Notices 40 (3)
(2005).

[21] T. Yuasa, Real-time Garbage Collection on General-Purpose Machines, J.
Software and Systems, 11 (3) (1990) 181-198.

[22] B. Zorn, Barrier Methods for Garbage Collection, Tech.Rep.CU-CS-494-90,
University of Colorado, Boulder (1990).

USING MULTIPLE SERVERS IN CONCURRENT GARBAGE COLLECTOR

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

About the authors
Amany Sarhan, received the B. Sc degree in Electronics
engineering, and M.Sc. in Computer Science and Automatic Control
from the Faculty of Engineering, Mansoura University, in 1990, and
1997, respectively. She awarded the PhD degree as a joint research
between Tanta Univ., Egypt and Univ. of Connecticut, USA. She is
working now as an Associated Prof. at Computers and Automatic

Control Dept., Tanta Univ., Egypt. Her interests are in the areas of: Software
restructuring, Object-oriented Database, Fragmentation and allocation of databases,
Parallel and distributed systems, Garbage collection, wireless security and
Computations. She can be reached at amany_m_sarhan@yahoo.com

A.I. El-Dousky is a full-time Professor at the Computer and Control
Department, Mansoura University. He received the B.Sc. degree in
electrical engineering from the Faculty of Engineering, Mansoura
University, Egypt. He received his M.Sc. and Ph.D. degrees in
computer science and control from the Departments of Electronics
and Electrical Engineering, University of Glasgow, Glasgow, UK.

From 1984–2002 he was the Manager of the computer center of Mansoura University.
He has a lot of publications in computer network, software engineering, AI, and
distributed systems. His interests are in the areas of network security, mobile agent,
pattern recognition, databases, and performance analysis.

Seham Moawed, received her B. Sc. in Computers and Systems Engineering, with
general grade Very Good. She got the master Degree in the area of Garbage
Collection. She is currently an Information System Engineer at East Delta Company
for Electricity, Mansoura, Egypt. Her Interests are: Garbage collection Scheduling and
distributed systems.

