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Abstract 
We present an enhanced form of untyped object-based inheritance for classless 
languages, as implemented in our Delta language, comparing to the prevalent 
practices of delegation and embedding. Through a case scenario we reveal a 
design flaw of delegation that damages polymorphism and extensibility. Then, we 
show why embedding is impractical for object-based uninheritance (undoing 
inheritance on individual objects) and non-monotonic object evolution (dynamically 
adding or removing object members). We introduce dynamic object trees, adopting 
the metaphoric notions of inheritance from class-based languages, without 
compromising the compositional flexibility of untyped inheritance. We implement 
inherit and uninherit as library functions, discussing how our member lookup 
algorithm preserves monotonicity. Finally, we show that if prototypes are 
prototypical objects they may break their own invariant. To this end, we propose 
class objects as a more precise metaphor, implementing in the Delta language a 
function for dynamic mixin composition of class objects. 

1 INTRODUCTION 

The reported work concerns dynamic untyped object-based inheritance in the domain 
of classless languages. Such languages were quite popular in the past, putting forward 
the notion of prototypes [Lieberman86], [Smith94]  as an untyped dynamic 
counterpart for classes, while they are less preferred today for the practicing of 
medium to large scale object-oriented software development. In contrast to the 
domain of classless languages, in which the reported work falls, dynamic class-based 
languages like Python and Ruby are very popular today, probably more popular than 
in the past. Usually this situation is attributed to both the lack of static type checking 
and to the unconventional inheritance programming models offered in comparison to 
class-based languages. 

We show that the two prevalent practices for dynamic inheritance, being 
delegation and embedding, suffer from key shortcoming as recipes of dynamic 
inheritance – detailed summaries of delegation and embedding are found in 
[Cardelli96] and [Taivalsaari96]. In particular, we demonstrate why delegation harms 
polymorphism, information hiding and extensibility, and why embedding 
implementations become excessively complicated to support uninheritance and non-
monotonic object evolution. We propose a new form of untyped object-based 
inheritance as implemented in a language named Delta [Savidis05], relying on object 
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trees, showing how it overcomes the barriers of delegation and embedding. Finally, 
we discuss about a common misconception, i.e. that prototypes are prototypical 
objects, showing that prototypes should be objects of a separate class compared to the 
objects they generate during runtime. In this context, we propose the concept of class 
objects, providing a generic function to perform dynamic mixin composition on class 
objects, implemented in the Delta language. 

We continue by setting the context of reported work, starting with untyped 
object-based inheritance, then providing a quick account of late binding in an object-
based inheritance context. Finally, we discuss the case scenario that will be used to 
draw our arguments against delegation and embedding. 

Elements of untyped object-based inheritance 

In object-based languages the notion of a class is not mapped to an explicit language 
construct, but is used by convention as a design metaphor, with semantics borrowed 
from class-based languages. In this context, for classless languages, we adopt the 
following definitions: 

 
 object: instantiation of the structure model of a class; 
 base object: an object contributed from a base class; 
 subobject: part of an object due to the members in the class-definition 

scope; 
 derived object: any object that has base objects; 
 most-derived subobject: the subobject of the most-derived class. 

 

An example is provided in Figure 1 clarifying the use of these terms; on the leftmost 
part we illustrate the corresponding class-based structure. The way subobjects are 
internally glued together depends on how inheritance is implemented in a language. 
The dotted lines of Figure 1 only conceptually denote such implementation-dependent 
associations.  
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Figure 1: Sample class-based inheritance and its classless object structure (left part), with the various 
objects, base objects and subobjects (right part) – respective classes are shown in shaded rectangles. 
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In classless languages programmers still think in terms of class-based inheritance to 
design the corresponding object-based structures. Then, at the implementation, they 
should handle the assembly of subobjects via program statements, so as to recreate the 
designed object-based structures (as in Kevo [Taivalsaari93], Omega [Blascheck91], 
SELF [Smith95] and Lua [Ierusalimschy03]). For this purpose, classless languages 
offer varying linking or packing facilities, together with member lookup algorithms 
and suggested deployment patterns (e.g. traits and prototypes in SELF [Agesen00]). 
All the latter essentially constitute the inheritance framework of the language. This 
support of inheritance is radically different from class-based languages where the 
object-based structure (object model) is computed by the language (statically or 
dynamically) and the object assembly process upon instantiation is automated by the 
runtime system. 

Generic ‘inherit’ and ‘uninherit’ operators Overall, classless languages differ 
mainly with respect to the object linking or packing semantics and the member lookup 
approach. The linking or packing of subobjects is supported as a runtime operation 
that we will informally call the inherit function, denoting its opposite as uninherit. 
Today, there are two dominant variations in implementing inherit: (i) delegation, 
linking of base objects via parental associations into acyclic directed graphs 
composed of subobjects; and (ii) embedding, packing base objects by substituting 
overridden methods with the addresses of the most recent versions. Usually, a 
delegation inherit means assigning a base object address to the parent slot of a derived 
subobject, while an embedding inherit means concatenating or merging together a 
base object and a derived subobject. The vast majority of the existing classless 
languages implement inherit as variations of the delegation style. As we will show in 
our discussion, while implementing uninherit is straightforward via delegation, it 
turns to be severely complicated through embedding.

Late binding to most recent member versions

For the purposes of our argumentation we recall the notion of late binding in the 
perspective of untyped object-based inheritance. Late binding is the mechanism 
guaranteeing that in a polymorphic object the most recent version of any inquired 
member is resolved during runtime, independently of the referring subobject. Usually 
the referred subobject is mentioned as the callee or message recipient. Effectively, due 
to late binding, the following holds:  

 
For any object x and reference y to a subobject of x, all member inquiries via y 

dynamically bind to their most recent version within x. 
 

Normally, the most refined version may be located in a subobject other than the one 
through which the inquiry is made. A simple example is provided in Figure 2, 
showing an Animated Button object composed of three subobjects: while the calls to 
Display are made with different subobjects, all should bind to the most recent Display 
version residing at the Animated Button subobject. While this behavior of late binding 
is taken for granted in static or dynamic class-based languages, it is not entirely 
supported in delegation-based implementations of the inherit operator. We show that 
this deficiency is due to the parent-directed member lookup semantics of delegation. 
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Additionally, we demonstrate that in order to bypass this inadequacy one is practically 
led to an anti pattern damaging information hiding and extensibility. To prove these 
arguments we firstly define our subject case scenario. We put particular emphasis on 
this scenario, since it is crucial to convince that on the one hand it reflects common 
real-life programming needs, while on the other hand the existing techniques fail to 
support it. 

 

1.call Display 2. call Display 3. call DisplayWindow

Button

Animated Button

Class-based inheritance 
tree of an Animated Button

An Animated Button object for object-based inheritance. It consists of 
three subobjects dynamically associated via inheritance  (dashed lines)

Display(){…}

Window subobject

Display(){…}

Window subobject

Display(){…}

Button subobject

Display(){…}

Button subobject

Display(){…}

Animated Button subobject

Display(){…}

Animated Button subobject

 
 

Figure 2: An Animated Button object in the object-based world (right part) for the class-based scheme 
on the left; calls to Display with different subobjects bind to the most refined Display version. 

2 SUBJECT CASE SCENARIO 

Part I Consider the general case where for a base class, the address of every created 
object needs to be stored in some kind of a holder object. The latter uses such stored 
references to invoke specific base methods during runtime. In particular, let’s assume 
a Window base class, a WindowManager holder object, and a Display method for 
Window objects. The latter concerns typical windowing systems, offering rich 
collections of derived classes called widgets (e.g. buttons, toolbars, text fields, 
scrollbars, etc.), while letting programmers introduce further specialized behaviors 
such as auditory or animated buttons. The general scenario is very common, 
reappearing in numerous situations: symbols / symbol table (compiler), graphic 
elements / display manager (graphic editor), game characters / AI manager (game 
engine), agents / coordinator (agent systems), etc.  
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Figure 3: Part I of our scenario is common in software libraries offering supplier classes (to be 
extended by clients) with comprehensive runtime management mechanisms (like window managers or 

game engines).

As illustrated in Figure 3, this scenario is typical to software libraries combining 
supplier classes and runtime systems that automatically manage all created supplier 
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instances (like the case of windowing systems).Following our scenario, window 
managers keep lists of all created windows for processing purposes. In all known 
systems such bookkeeping is handled upon construction and destruction time through 
calls placed in the Window base-class constructors and destructor. Since references to 
Window objects are stored in the internal lists, the window manager may invoke 
Display only via such Window references. 

Next, we implement such a Window class in a classless language context via a 
prototype. Here we adopt the common practice: a prototype is a prototypical object, 
while to avoid exposing a reference variable we provide a function returning the 
reference of the prototypical object. In our case, we define a function named Window, 
meaning Window() returns the address of the respective prototypical object. A 
Window prototype encompasses a constructor method - we name it New – and various 
data members with default values. Construction via the New method is carried out by 
replication (copy) of the prototypical object, implying the automatic registration to the 
window manager lists. In Figure 4 we sketch the Window prototype implemented in 
the Delta language and the Display() method of the WindowManager object in pseudo 
code (one window manager object exists during runtime, i.e. the analogy of a 
singleton class).  

 
function Window() { 
  static proto; ←Reference to prototypical object hidden as a local static variable 
if (isundefined(proto)) ←Prototype object is initialized only due to first call
  proto = [ 
    {.Display : (method(){ … })}, 
    {.Handle  : (method (event) { … })}, 
    {.New   : (method(){ ←User-defined constructor method

‘objcopy’ lib func performs  shallow copy→ local win = objcopy(self); 
      WindowManager.Register(win); 
      return win; 
     })}, 

          ... Rest of Window data members (with default values) and methods...
  ]; 
return proto; ←The prototype is returned as a factory to make objects via New()

} 

WindowManager.Display() { for each window w do w.Display(); } 

 
Figure 4: (a) The Window prototype in the Delta language with the New constructor performing copy of 

the prototype and registration in WindowManager singleton (b) The Display() method of 
WindowManager.  

 

We briefly explain a few of the syntactic and semantic details of Delta. Objects are 
created by the evaluation of an [ ... ] expression, with initial members enumerated 
inside the square brackets as { key : expr }, key restricted to strings and numbers, 
where .key is syntactic sugar for “key”. For example, {.Display : (method(){ 
… })} introduces a member with key “Display” and value the supplied implemented 
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method. Given an object a, a.x is syntactic sugar for a[“x”]. Finally, objcopy(x) 
performs a shallow copy of the subobject referred by x. 

Part II The second part of our scenario concerns attaching (detaching) a derived 
object on (from) a base object during runtime. Technically, the latter implies the 
support for inherit and uninherit as well. Focusing on inheritance only, in the class-
based world the scenario reflects mixin inheritance with generic derived classes. In 
particular, let’s assume a Button object that during runtime inherits to an Auditory 
Button object (see Figure 5, steps 1 and 2). Apparently, the original Button will 
hereafter behave as an Auditory Button. Latter, this link is undone, meaning we have a 
normal Button again (step 3). We similarly reapply mixin inheritance over the same 
Button object turning it to an Animated Button (step 4) and back to a normal Button 
(step 5). During runtime, in-between such actions, the window manager will normally 
display all windows by calling its Display method, as illustrated under Figure 5 
(bottom-right part, calls to WM.Display). 

Our general scenario is related to all cases where a behavior needs to be 
dynamically added or removed. Its specialization is based on the example of 
[Bracha92], originally with a Window base class and a Bordered mixin class, adapted 
as follows for the object-based world: (i) a Window object may be controlled by the 
user to have a border or not, hence Bordered mixin is applied dynamically on distinct 
instances; and (ii) we use Button in place of Window, and Auditory / Animated Button 
in place of Bordered. 
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1: button = Button().New();      … WM.Display(); 
2: auditory = AuditoryButton().New(button); … WM.Display(); 
3: uninherit(auditory, button);   … WM.Display(); 
4: aninated = AnimatedButton().New(button); … WM.Display(); 
5: uninherit(animated, button);   … WM.Display(); 

 
Figure 5: For the Button object of step (1) we apply a mixin Auditory Button at step (2) which is later 
un-inherited at step (3), applying another mixin Animated Button at step (4), finally un-inheriting back 

to a Button at step (5); WM is an abbreviation for the WindowManager object. 
 

The need for mixin inheritance on individual objects has been already identified in 
class-based languages, like in the Decorator design pattern [Gamma95] prescribing 
the dynamic installation of derived behaviors (decorations) on distinct objects. The 
implementation of the AnimatedButton prototype in the Delta language is outlined in 
Figure 6; AudidoryButton prototype is similar. 
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function AnimatedButton() { ←Mixin proto over Button, derived from Window
 static proto; 
 if (isundefined(proto)) 
  proto = [ 
   {.Display: (method(){ … })}, ←Refines Button.Display

   The ‘button’ argument below is the object on which the mixin is applied
   {.New  : (method(button) { 
      local anim = objcopy(self); 
      inherit(anim, button); 
      return anim; 
     })} 
   ... Rest AnimatedButton data members (with default values) and methods... 
  ]; 
 return proto; ←Prototype returned as with Button class

} 
 

 
Figure 6: The Animated Button mixin prototype over Button in the Delta language; the implementation 

of Auditory Button is similar and is skipped for clarity. 
 

What these scenarios essentially test The first part of our scenario tests late binding. 
The window manager stores references of Window subobjects, invoking their Display 
method. Each Window subobject may be part of a derived object, like a Button or 
Menu, further refining Display. Hence, while the window manager uses references to 
Window subobjects for Display invocations, resolution to the most recent Display 
method should be guaranteed. We will show that a delegation-based inherit fails in 
this respect. 

The second part of our scenario tests the support for object-based uninheritance. 
In general, object-based mixin inheritance or uninheritance is required in all cases that 
adding or removing mixins during runtime makes sense. In this context, the Decorator 
design pattern demonstrates that such a need does emerge in real practice. Apart of 
uninheritance, implying ‘cutting’ inheritance links on-the-fly, we additionally require 
the support to dynamically add or remove members on individual subobjects. In class-
based languages, if the latter is supported on individual classes, it leads to non-
monotonic class evolution [Kniesel00]. In untyped object-based inheritance where 
inheritance is not subtyping the analogy is dynamic object evolution. We will see that 
embedding-based implementations for uninherit and dynamic object evolution are 
excessively complicated.

3 RELATED WORK 

Currently, there are numerous languages supporting untyped object-based inheritance, 
relying on variations of either the delegation or embedding style. The differences 
among languages adopting the same style concern various enhancements, like lookup 
extensions, introspection support, multi-threading capabilities, dynamic compilation, 
built-in support for prototypes, etc., just to name a few. Despite the existing 
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variations, all different implementations comply with the following: (a) delegation is 
built around dynamically-managed parental associations that are taken during runtime 
to recursively resolve invocations of methods within parent objects; and (b) 
embedding applies a non-reversible concatenation of subobjects, changing the 
addresses of refined methods in base objects to reflect the most recent versions, while 
also saving the previous addresses. 

We consider SELF [Smith95] and Kevo [Taivalsaari93] to be the most 
representative cases of object-based languages regarding delegation and embedding, 
with the exception that Kevo is also a statically-typed language. SELF supports 
assignment of values to parent slots, so that delegation graphs can be constructed, 
offering alternative versions of the basic lookup algorithm supporting detection of 
cyclic delegation paths. A more recent untyped language is Lua [Ierusalimschy03]. In 
Lua parent objects are called ‘meta-tables’, following the Lua approach where objects 
are associative tables. 

Apart of implemented languages, δ [Anderson02] is an imperative typed object-
based calculus supporting inheritance by delegate editing. It enables non-monotonic 
object evolution by supporting a built-in operation for adding or removing methods. 
Clearly, since the δ calculus focuses on typed inheritance, emphasizing type safety 
and type inference, it is not related to the reported work. However, we refer to δ for 
two reasons. Firstly, because delegation in the δ calculus still relies on traversal over 
parental links, as denoted by the semantics of the Look′ operation of the δ calculus, 
meaning typed delegation inheritance reflects similar lookup mechanics to untyped 
inheritance. Secondly, to clarify that our Delta language - acronym for ‘Dynamic 
embeddable language for extending applications’ -  is not related to the δ calculus, 
since they happen to be pronounced the same. 

Embedding was introduced in the context of the Kevo typed language 
[Taivalsaari93] as an alternative to delegation, proposing inheritance via copying and 
composition. Currently, all known embedding languages are typed. Obliq [Cardelli95] 
is an embedding language designed to primarily advance the support for programming 
of distributed computations rather than embedding inheritance itself. Besides Kevo, 
Obliq and Omega [Blascheck91], no other embedding-oriented languages are known.  

4 SHORTCOMINGS OF DELEGATION 

As shown in Figure 7 (left part – adapted from [Kniesel00]) lookup follows parental 
links: once an owner of the referred method is found (step 3), the method is invoked 
binding self to the original method recipient subobject (step 4). The lookup is always 
initiated at the recipient subobject (step 1), applied recursively upwards (step 2); some 
languages support alternative termination conditions, besides the default that is to stop 
once they match the inquired method name. 
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Figure 7: Delegation-based binding (left), restricted lookup if not using the most-derived subobject 

(right). 
 

Following Figure 7 (right part), let’s consider method f refined by the most-derived 
subobject, invoked using another subobject of the delegation tree. Since delegation 
performs lookup over parental links, the search space is narrowed down to the sub-
graph reachable from the message recipient (method invocation) subobject (see Figure 
7, shaded sub-tree). Clearly, the most recent version of f is not locatable in the 
restricted lookup space, meaning late binding fails to resolve to the most refined 
method version.  

Now we map the example of Figure 7 to our specific scenario: in place of f we 
have the Display method, invoked through a Window subobject, whose address is 
stored in a WindowManager list, while the most-derived subobject is an 
AnimatedButton or AuditoryButton refining Display. Then, in a way similar to Figure 
7, none of x.Display() calls performed in WindowManager.Display, x being a Window 
subobject, binds to the Display refined by the AnimatedButton or AuditoryButton 
subobjects. The reason is that, since delegation-lookup follows parental links (i.e. 
base objects) a lookup initiated at a Window subobject never reaches a derived 
AnimatedButton or AuditoryButton subobject. In conclusion, delegation-based inherit 
fails to support late binding in our scenario. 

Trying a covariant self The support of covariant self is discussed in [Abadi96] 
in a typed-inheritance context, proposing to explicitly qualify as Self the return type of 
methods that aim to return self. Such a language feature can be used to resolve the 
delegation problem, but only for class-based languages, as follows: adopting the 
notation of [Abadi96], we introduce method most_derived(): Self is self in a common 
super-class, which due to self covariance, guarantees to return the most derived 
subobject independently of the caller. Then, in the WM.Display, we change the style 
of the call to x.most_derived().Display(). This ensures method invocations are always 
made with the most-derived subobject, so the call binds by definition to the most 
recent Display version.  

Since the previous wrap-around is applicable only to class-based languages we 
investigate the possibility to implement it in an untyped delegation context. 
Technically, the covariant self is a late binding mechanism for the self construct. The 
only way of emulation in untyped inheritance is via a method most_derived() {  return 
self; }, adopting the same modified call style as before. However, 
x.most_derived().Display() is equivalent to x.Display() for the following reason: The 
call to x.most_derived() by the WindowManager, having x a first message recipient, 
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implies most_derived() is invoked binding self to x, thus returning x. In other words, 
this implementation of most_derived() suffers from the same problem, that is 
restricting lookup to the sub-graph reachable by the message recipient, failing to 
return the most-derived subobject. 

Overall, there is no appropriate wrap-around in untyped delegation to resolve the 
issue of lookup dependency on the first message recipient. So, as a last option, we 
investigate the possibility to impose as a programming discipline that all method 
invocations are made only with the most-derived subobject in a delegation graph, i.e. 
forcing a most-derived first message recipient rule. 

Imposing most-derived first-message recipients Through this rule we force 
method invocations to be made only with the most-derived subobjects. This way, the 
delegation lookup space is by definition the entire graph.  So, it is guaranteed that the 
most-recent versions of called methods are always resolved. While the rule seems to 
sort things out, we show that it harms extensibility, information hiding and 
abstraction. 

To comply with this rule we should ensure that the Window Manager stores 
references to most-derived subobjects – e.g. AnimatedButton subobjects. But the latter 
requires refactoring of the implementation to transfer Register calls outside the 
Window constructor, at every point that AnimatedButton or AuditoryButton objects are 
created. Apparently, we may not hook such calls inside the AnimatedButton or 
AuditoryButton constructors as we will be faced with the same issue if we similarly 
derive from such objects. Practically, the above modifications, besides the apparent 
code replication, introduce forward dependencies on inheritance: every time object-
based inheritance is applied, the original source code must be modified.  For instance, 
if we aim to add / remove a dynamic mixin to an object, like applying an 
AnimatedButton subobject over a Button object, we should substitute in all registries 
the base object with its mixin subobject, and vice versa. Additionally, the rule 
imposes to reveal intrinsic APIs, such as the WindowManager object, not necessarily 
designed to be available to client programmers. This damages information hiding, 
reducing extensibility and modifiability of the underlying window manager system. 
Overall, the rule itself is evidently problematic, since, besides extensibility and 
information hiding that are damaged, abstraction and polymorphism are broken. 

Closing remarks Our conclusion may seem surprising, not only because many 
delegation-based classless languages exist, but also due to the proof of equivalence 
between delegation and class-based inheritance reported in [Stein87]. However, in the 
latter it is assumed that member inquiries are always resolved in the entire delegation 
graph, something that for untyped delegation implies a first-message recipient rule. 
The reason that this problem of delegation was not spotted in the past is attributed to 
the role of classless languages in the course of real practice: as discussed in 
[Ousterhout98], dynamic languages were adopted for scripting / gluing purposes, 
rather than for building or extending comprehensive software libraries. The latter was 
primarily done via static class-based languages.  Our scenario and argumentation is 
based on the assumption that library software may be implemented via classless 
languages as well. 
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5 SHORTCOMINGS OF EMBEDDING 

Embedding languages allow programmers to perform unrestricted composition of 
objects from subobjects, internally automating the substitution of method addresses of 
base subobjects by the addresses of refined method versions from derived subobjects. 
In an untyped context, the notion of derived or base is defined by convention, not by 
type semantics, considering constituents to play the role of base objects and the 
composition outcome to be a derived object. Due to method address substitution upon 
composition, method invocations are guaranteed to take place with the most recent 
address. As mentioned before, all known embedding languages are typed. 

The major drawback of embedding is the severe implementation complexity in 
supporting two key features: (i) uninheritance, following our scenario with dynamic 
mixins, supporting also cancellation of inheritance links independently of how they 
are set – e.g., one could cut multiple chained mixins altogether with a single uninherit 
call; (ii) dynamic removal or addition of members on individual subobjects. In 
particular, following the compositional style of embedding, uninheritance requires 
object disassembly support. Assuming that disassembly is applied on the inverse 
ordering of composition, in every subobject a stack may be kept storing the addresses 
of the previous method versions before composition is applied. Then, ‘un-embedding’ 
may restore the previous method addresses simply popping from the stack. Such an 
implementation is simple, but it works only for undo-like uninheritance. Now, let’s 
alter the restriction that dynamic uninheritance occurs only in the inverse order of 
composition. Then, no backup / restore technique will suffice. Additionally, once we 
allow individual methods to be added or removed, things get even more complicated. 
Overall, the focus on method address substitution on concatenation, rather than on 
storing explicit inheritance links, does not allow to compute the most-recent method 
addresses of methods when uninheritance in freely applied. It comes by no surprise 
that we entirely miss models or implementations of uninheritance via embedding. 

6 DYNAMIC SUBOBJECT TREES 

Definitions 

Our inheritance model relies on dynamic associations of the form α  β, with the 
metaphoric interpretation α derived from β and β inherits to α. The symbolism a β 
denotes that β is a base object of α, representing direct or indirect derivation of α from 
β. The establishment of an inheritance association α β is permitted if and only if the 
following precondition holds: 

α ≠ β  ∧ ¬ β α   ∧  ¬ (∃ γ :  γ≠ β ∧ γ  β) 
We adopt the metaphors of class-based languages, like ‘inherits’, ‘derived’ and ‘base’, 
rather than the ones of delegation languages, i.e. ‘delegation’, ‘delegated’ and 
‘delegator’. The three conjunctions formalize the fact that an object: (a) cannot inherit 
from itself, i.e. no trivial cycles; (b) cannot inherit from any of its directly or 
indirectly derived objects, i.e. no cycles; and (c) can inherit to at most one object, i.e. 
the relationship results into trees. From the three rules, the third one, restricting to a 
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single descendant object, may seem rather unnatural. We explain later that this rule 
puts no restrictions on inheritance, while simplifying the internal implementation and 
the external programming model. 

Inheritance control functions 

The management of inheritance object trees is facilitated through a compact set of 
library functions. Instead of a procedural API, a parent-slot editing model could be 
provided, as in the SELF language. In our case we decided to adopt an API style, 
since we consider the slot model to be more close to the underlying implementation. 
The following functions are provided for controlling inheritance associations, α and β 
being subobjects: 

 

 inherit(α, β):   Introduces α β adding β as the leftmost parent of α. 
 uninherit(α, β):  It cancels the inheritance association α β. 
 isderived(α, β):  Returns whether α β. 

 
Since inherit(α,β) inserts β as the leftmost parent of α, inherit is not cumulative, i.e. 
inherit(α,β) inherit(α,γ) ≠ inherit(α,γ) inherit(α,β). This property is made explicit in 
the programming model, since, as we discuss next, the tree structure affects the 
outcome of the lookup process. The implementation of inherit and uninherit in the 
Delta language, together with the basic data-structure for subobjects, are provided in  
Figure 8; the simplicity of the implementation is apparent. 
 

SubObject { 
Members:  dictionary 
MostDerived:  SubObject reference 
Derived:  SubObject reference 
Bases: list of SubObject reference 
MyTree: list of SubObject reference 

} 

 
← Hash table with all members (identifier – value) 
← The most-derived subobject of the tree 
← The single descendant (derived) subobject 
← Base sibling subobjects ordered left-to-right 
← The tree subobjects ordered breadth-first left-to-right;   

this list is shared by all subobjects of the same tree. 

inherit (a, b) {   establish a b 
clear a.MyTree and b.MyTree 
insert b in front of  a.Bases 
b.Derived = a 
t = BFS left-to-right from a.MostDerived 
_link(t, a.MostDerived) 

} 
_link (t, c) { 

for each x in t do 
x.MostDerived = c, x.MyTree = t 

} 

uninherit (a, b) {   cancel a b 
clear a.MyTree and b.MyTree 
remove b from a.Bases 
b.Derived = nil 
b.MostDerived = b 
tb = BFS left-to-right from b.MostDerived 
_link(tb, b.MostDerived) 
ta = BFS left-to-right from a.MostDerived 
_link(ta, a.MostDerived) 

} 

  
 

Figure 8: The inherit / uninherit functions as implemented in the Delta language, together with the data-
structure for subobjects; MyTree is kept up-to-date to store the addresses of tree subobjects ordered 

from the most-derived to the least-derived. 
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Member lookup 

Following our discussion, to resolve the most-recent version of a member in an 
inheritance tree it suffices to locate the first subobject owning the member by 
examining subobjects in a breadth-first left-to-right search, starting from the root 
(most derived). Since for every subobject x, the list x.MyTree holds the subobjects 
ordered this way, we need only scan this list sequentially and return the first found 
subobject that owns the inquired member. The latter is reflected in the lookup 
algorithm of Figure 9 (left part).  
 

lookup (o, m) { 

x

x

x

y

y

z

z

Local 
lookup y

y

y

Lookup y

Lookup z

z

x

x

x

y

y

z

z

x

x

x

y

y

z

z

Local 
lookup y

y

Local 
lookup y

y

y

Lookup y

y

Lookup y

Lookup z

z

Lookup z

zfor each x in o.MyTree do 
if  m is found in x  then  

return x.m 
return nil 

} 

  
 

Figure 9: The simple lookup algorithm of the Delta language with a few examples; local lookup 
concerns member inquiries that are qualified to be resolved only in the caller subobject context. 

 

The lookup algorithm is an untyped counterpart of member resolution ordering, the 
latter produced in class-based languages by preprocessing the hierarchy structure so 
as to identify a monotonic class linearization sequence. In Figure 9 (right part), a few 
examples are provided illustrating the alternative search paths to resolve particular 
members within an object inheritance tree. From the programmer’s point of view, the 
member binding method is very easy to follow, being compliant with the behavior of 
late-binding in class-based languages and the adopted metaphoric notion of 
inheritance associations in object trees (i.e. what ‘base’, ‘derived’ and ‘most derived’ 
essentially imply). Next, we discuss two key properties resulting from the member 
lookup algorithm, namely lookup monotonicity and subobject substitutability. Then, 
we continue by justifying the rule restricting base objects to have a single descendant 
subobject. 

Lookup monotonicity Lookup monotonicity concerns only class-based 
inheritance, requiring member resolution within base and derived classes following 
the inheritance-specific class ordering. In our model, although subobject associations 
represent metaphorically the notions of inheritance, those are directly reflected and 
preserved by the member lookup algorithm in a way similar to class-based languages. 
Although inheritance is untyped, once the notions of inheritance are explicit in the 
programming model, it is critical to prove that lookup monotonicity is guaranteed. In 
this context, it is trivial to prove that the breadth-first left-to-right ordering, for any 
given subobject tree, is monotonic, i.e. order preserving, assuming the ordering 
relationship defined below: 

α < β  : α  β ∨ α left sibling of β 
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Following the previous definition of inheritance associations, the two disjunctive 
conditions have the metaphoric interpretation α derived from β and α most recent 
sibling of β, being equivalent to α < β: α most recent than β. Consequently, the 
member lookup sequence is monotonic, since it preserves by definition the 
inheritance-oriented ordering, visiting subobjects sequentially, from the most recent to 
the least recent. 

Subobject substitutability This is a very important property of the member 
lookup algorithm, regarding all late-bound member inquiries. In particular, given any 
T tree of distinct subobjects α1,…,αΝ, any expression E involving subobject αj∈T, and 
the notation E{αj:ακ} implying substitution in E of every αj by ακ, the following holds: 

 
eval E   =  eval E{αj:α1}  =  eval E{αj:α2} = …  
eval E{αj:αj-1} =  eval E{αj:αj+1} = ... eval E{αj:αN} 

 

In other words, assuming late-bound member inquiries, the subobjects of the same 
tree are referentially equivalent to each other, as we can substitute any subobject with 
another in a program expression and still gain the same evaluation result. The latter is 
a more strict form of LSP [Liskov87]. More specifically, LSP introduces 
substitutability among objects of related derived classes as a desirable class-design 
property to promote polymorphic functions, requiring reasonable behavior of a 
polymorphic function after substitution. In our model, the subobjects of the same tree 
are conceptually related in the same way as the distinct subobjects of a polymorphic 
object in class-based inheritance, meaning they conceptually map to a family of 
related classes. Hence, substitutability should apply. Moreover, due to the previous 
property, after substitution a polymorphic function is guaranteed to have the same 
behavior. From the discussion on the shortcomings of delegation it is clear that this 
type of referential equivalence among subobjects of the same object graph is not 
supported in delegation, since the behavior may vary depending on the first-message 
recipient for successive method invocations. We consider that this is technically the 
‘Achilles heel’ of delegation, regarding support for untyped object-based inheritance. 

Why a single descendant rule 

The rule forcing base objects to donate to at most one derived subobject is of key role 
in our method as it turns the inheritance graph to a tree. It should be noted that this 
rule applies only to objects in untyped inheritance, meaning it is irrelevant to class-
based languages. This clarifying remark is necessary to prevent interpret the rule in a 
class-based context, as restricting base classes to at most one derived class is out of 
discussion. To prove that a single descendant is not restrictive in our inheritance 
model, we review the possible positions of a subobject in an inheritance graph without 
this rule. In any such graph, for a given subobject x one of the following may hold 
(see Figure 10 left part): 

1. x donates to a single subobject (cases O0, O2, O3) 
2. x donates to none, so it is the most-derived subobject (case O4) 
3. x donates to more than one subobjects (cases O1) 
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Figure 10: Sample subobject graph (left), and the two equivalent ‘by definition’ object trees (right), due 
to our lookup algorithm. 

 

We will now transform the subobject graph of Figure 10 to a tree having equivalent 
member resolution behavior in our inheritance model. Following Figure 10 – see Tree 
1, since O1 may donate only to a single subobject, we choose to retain O2 O1 while 
introducing Op and O3 Op, with Op a proxy object merely forwarding all member 
inquiries directly to O1 (dashed arrow). Due to the presence of Op all inquiries not 
resolved in O3 are eventually resolved in O1 as if O1 was also donating to O3. 
Apparently, although the final tree is equivalent to the initial graph, it is impractical to 
require programmers explicitly introduce such a proxy. We show that the latter is 
never required. 

The removal of Op results in the Tree 2 of Figure 10. Then, due to the lookup 
algorithm, ∀ x∉{O0, O2, O3, O4} ∧ x∈O1 ⇒ O3.x ≡ O1.x, i.e. inquiries to O3 for 
members found only in O1 are automatically resolved in O1. Since the proxy is 
redundant, the Tree 2 of Figure 10 is equivalent to the initial graph. If we alternatively 
choose to retain O3 O1 we gain another equivalent tree, Tree 4 of Figure 10. Hence, 
for the example graph, programmers have two plausible alternatives, linking the 
donor object O1 to either O2 or O3. The reason that the single descendant rule puts no 
restrictions in our model is that the lookup algorithm guarantees to resolve inquiries to 
subobjects for members actually owned by other subobjects of the same tree. 
Consequently, there is no need to link multiple subobjects of the same tree to a single 
base once the latter is already linked to any of these subobjects. 

7 FROM PROTOTYPES TO CLASS OBJECTS  

Prototypes should not be prototypical objects 

Prototypes are used to emulate classes in untyped object-based languages 
[Leiberman86], being normal prototypical objects differentiated only due to their 
distinctive design role: to produce other objects via replication. We will show that 
once prototypes are designed to comply with Design by Contract [Meyer97] their 
traditional treatment as prototypical objects turns their use to totally impractical.  

Prototypes should exist during runtime prior to the production of any respective 
object. Intuitively, this is an exceptional privilege that may cause prototypes to 
possess state that is not plausible for the objects produced from it. While this issue 
was identified very early, the incorrect deployment of prototypes as normal objects 
was treated as a cause of failure that programmers had to simply avoid [Smith94], not 
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as a fundamental design flaw. Theoretically, turning prototypes to prototypical objects 
implies that prototypes are of the same class as the objects they produce. Then, 
putting also Design by Contract into the game, the following should hold: prototypes 
satisfy the class invariant of the produced objects. We demonstrate that this rule 
makes the use of prototypes impractical; we build our argument incrementally:  

 If there is a single object of a class C then this should be the prototype. 
 Therefore, a prototype C cannot be used when there is no C object. 
 Therefore, to use a set of prototypes C1,..,Cn there should be at least one 

object per Ci prototype. 
 Therefore, inheritance can be applied on prototypes C1,..,Cn only when at least 

one object per Ci prototype. 
 Therefore, inheritance is applicable at runtime only when at least one object 

per involved prototype exists. 
However, to keep an object of every class alive during the whole execution lifetime is 
generally wrong: the creation of objects depends on the application semantics 
defining when and why respective objects should be available. An object of a class 
cannot exist unless the application state reaches a point implying that it should come 
to construction. In this context, we assume that the invariant of every supplier class 
includes the following condition: the object exists as a result of correct application 
execution. Such a rule constitutes a generic global criterion for object correctness that 
can be easily asserted (e.g., using application-level object bookkeeping) to be 
included in class invariants. This rule implies that given any object satisfying the class 
invariant, an exact copy is not directly guaranteed to also satisfy the invariant. The 
reason is that object copying and generation should be governed by the application 
semantics. Consequently, to unconditionally force that for all classes at least one fully 
functional object should be retained during execution may contradict to the 
application design, and inherently to the respective class invariant. Following the 
previous discussion, instead of prototypes being technically a wrong metaphor, we 
propose the term class objects, capturing more precisely their design role. Through 
this differentiation, in the design domain, we now distinguish two different classes: 

 The class concerning the produced objects, say A 
 The class concerning the class object itself, say A_IMPL 

The previous differentiation makes sense only in an object-based world where classes 
are implemented as objects. In this context, our remark reveals that the behavior of a 
class object is different from the behavior of the produced objects, meaning they 
semantically map to different classes. Moreover, while the A class never exists as an 
explicit object, i.e. it is only an artifact of the design domain, it is explicitly reflected 
in the contractual obligations of objects produced by A_IMPL objects. More 
specifically, when an A_IMPL class object creates A objects during runtime, it has to 
install on them all Design by Contract members implied by class A. Finally, reflecting 
our remark, given any class A and object O the following holds: 

O produces objects compliant to A ⇔ O is an A_IMPL class object 
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We continue our discussion on class objects by presenting the implementation (in the 
Delta language) of a generic function, which accepts a set of base class objects and a 
derived mixin class object, and performs mixin composition returning the new 
composite class object. 

Dynamic mixin composition of class objects 

Mixin inheritance [Bracha90] concerns base class parameterization resulting in 
generic derived classes. It is also called inheritance on demand or genericity 
[Meyer97], since for mixin class B, the base class T is a parameter to the compile-time 
composition operator B[T], without strong coupling among B and the classes 
“similar” to T. Following our previous discussion, the mixin composition operator on 
class objects should return a class object producing instances compliant to the mixin 
composition of the respective classes.  

function mixin_comp() { 
  local n = tablength(arguments); 
  comp = [  
    {.B  : arguments[0] }, ←The B class object 
    {.n  : n - 1 }, ←Stores number of base A  class objectsi

    {.new : (method(){ ←Object constructor for the composite class object
args = []; 
argNo = 0; 

  if (arguments[0] == self.B.class) 
       { args = arguments[1]; argNo = 2; } 

B_obj  = self.B.new(|args|); ←Construct a B object
  B_obj.n = self.n; ←Store the number of total base objects
  for (i=1; i <= self.n; ++i) { ←Instatiate all base objects

args = []; 
Ai = self["A" + i];  ←Get the A  class objecti

if (arguments[argNo] == Ai.class) 
    { args = arguments[++argNo]; ++argNo; } 
   Ai_obj = Ai.new(|args|); ←Construct an A  objecti

   inherit(B_obj, Ai_obj);  ←Establish inheritance B  A   i

   B_obj[Ai.class] = Ai_obj; ←Store the produced base object
  } 
  return B_obj; ←Return the B (most-derived) object
    })} 
  ]; 

  for (i = 1; i <= n - 1; ++i) 
       comp["A"+i]=arguments[i]; ←Store base class objects as keys “Ai”
  return comp; ←This is the class object pertaining to the composition of mixins.

} 
 

 
Figure 11: Mixin composition among class objects in Delta; the key point is the implementation of the 

new function of the composite class object producing objects compliant to B[A1...Ak]. 
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For example, let’s assume the class objects A_IMPL for class A, and B_IMPL for 
mixin class B. Then, the mixin composition among A_IMPL and B_IMPL is any class 
object producing objects compliant to B[A]. We consider the general form of an N-ary 
mixin composition operator among a mixin class B and a sequence of base classes 
A1,…,Ak K≥1 evaluating as B[A1,…,Ak]. We implement this operator in the Delta 
language, as a function over B and Ai class objects, returning a new class object 
producing objects compliant to B[A1,…,Ak]. The implementation is provided in Figure 
11. The expression arguments is a read-only table carrying all actual arguments as 
arguments[i] i:0...N-1 while tablength is a library function returning table size N. Also, 
for a table P with N+1 elements indexed as P[0],…,P[N], the expression |P| as an 
actual argument evaluates by pushing onto the stack P[0],…,P[N] as if they those 
were explicitly supplied arguments. Following Figure 11, the function mixin_comp 
returns an object comp with a method named new producing objects reflecting the 
mixin class inheritance scheme – see also Figure 12. Inside new, two basic steps are 
taken: (i) an object B_obj complying to B class is constructed; and (ii) for each Ai a 
base object Ai_obj is constructed, set as the base of B_obj via an inherit call. 

Actual argument propagation There is one remaining issue to be explained. For 
any C returned class object with C.new constructor for creating composite objects, 
graceful initialization of the B and Ai constituent objects should be facilitated. In 
general, there is no information regarding the B and Ai constructor signatures, 
meaning we should accommodate all construction possibilities for the involved class 
objects. An impractical solution is to rely on default constructors, requiring 
programmers to explicitly bring composite objects, after construction with no 
parameters, to the desirable state.  In our implementation, the new method of the 
returned class object adopts a parameter passing pattern for propagating actual 
arguments to the corresponding constituent-object constructor. 
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Figure 12: Mixin class structure (left) and object structure produced by the comp class object (right). 
 

We give two examples before generalizing on the call pattern. Consider the 
composition among classes B and A1,…,Ak as before, returning the class object C. Lets 
assume that the call C.new(x,y,z) should construct a composite object with (x, y, z) 
passed for construction of the B object, having every Ai created with its default 
constructor. Then, instead of C.new(x,y,z), the call should be made as C.new(“B”, 
[x,y,z])  - see Example 1 of Figure 13.  Similarly, C.new(10, x,y,z, f(a)), with 10 for B, 
(x,y,z) for A1 and f(a) for A7, should be made as C.new(“B”, [10], “A1”, [x,y,z] “A7”, 
[f(a)]) - see Example 2 of Figure 13.In general, the call to new is made following the 
pattern at the bottom left of Figure 13. The prerequisite is that involved class objects 
encompass a member “class” with a unique string value among them. The [] means 
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optional while [] is array construction. Following this pattern, assuming A0 equivalent 
to B, the list of actual arguments is made of optional ordered pairs <Namei, Arrayi>, 
i:0...K, where if Namei=Ai.class then Arrayi holds the arguments for constructing Ai 
via Ai.new(|Arrayi|). The latter relates to the calls self.B.new(|args|) and 
Ai.new(|args|) of Figure 13. 

 
Example 1: 
C.new(“B”, [x,y,z]) ⇒  
  B.new(x, y,z) 

 A1.new()   
 … 

 AN.new() 
 
With Ai equivalent to B the generic call pattern is: 
C.new( [ “Ai”, [ Ai args ]  ] i:0...K ) 

Example 2: 
C.new(“B”, [10], “A1”, [x,y,z] “A7”, [f(a)]) ⇒ 
  B.new(10)  
  A1.new(x, y, z) 

 A2.new()   
 … 

 A7.new(f(a))  
 … 

 AN.new() 
 

 
Figure 13: The call pattern for the new method of the class object resulting from mixin composition. 

8 SUMMARY AND CONCLUSIONS 

We presented a new form of dynamic untyped object-based inheritance, as 
implemented in the context of a language named Delta, relying on object trees and a 
member resolution algorithm guaranteeing late-binding of inquired members to their 
most-recent version. The proposed programming model emphasizes inheritance 
associations adopting the metaphoric notions of ‘base’ and ‘derived’, offering a small 
set of inheritance control functions for dynamic inheritance and un-inheritance. 
Through a case scenario we show how the proposed inheritance model is: (a) 
practically superior to embedding, as the latter is an excessively complicated 
programming model for uninheritance and non-monotonic evolution of objects; and 
(b) more appropriate than delegation, since, for certain generic scenarios, delegation 
fails to support polymorphism due its parental lookup policy. Our approach of 
explicitly introducing metaphoric notions of inheritance in an untyped inheritance 
context, via a lookup algorithm preserving monotonicity at the metaphoric semantic 
domain, reflects a programming model resembling that of class-based inheritance, 
however, without compromising the compositional flexibility of untyped object-based 
inheritance.  

We consider the latter design decision as particularly advantageous. By adopting 
standard notions of typed inheritance we offer a programming model relatively 
familiar to programmers of class-based languages. Although such metaphoric notions 
are not mapped to a type system, they are ‘semantically explicit’, since they are 
reflected in the inheritance control functions and the member lookup algorithm. This 
feature makes transitions among class-based and classless languages more natural, 
even straightforward, in comparison to delegation and embedding languages. 

We argue that untyped object-based inheritance deserves more attention, 
primarily due to the increased possibilities for compositional schemes through 
inheritance. Classes and inheritance always remain the primary design concepts, 
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usually implemented in most languages around prototype frameworks. As early 
identified [Smith94], overemphasis on technical issues has led to numerous solutions 
reflecting diverse programming models. Till today, little progress has been made 
towards modeling and composition patterns over prototypes, while the impression that 
prototypes are prototypical objects is still around. We have discussed why the latter is 
a serious design misconception, demonstrating how dynamic mixin composition on 
class objects is easily implemented through the proposed inheritance framework. 

REFERENCES 

[Abadi96]  Martin Abadi, Luca Cardelli: ‘Object Protocols’, Chapter 3.5, ‘A Theory of 
Objects’, Springer-Verlag, pp. 32-33, 1996. 

[Agesen00] Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Hölzle, 
John Maloney, Randall Smith, David Ungar, Mario Wolczko: ‘The SELF 
4.1 Programmers Reference Manual’, 2000. 

[Anderson02] Chris Anderson, Sophia Drossopoulou: ‘δ: an imperative object based 
calculus with delegation’, Technical report available on-line from:  
http://www.cee.hw.ac.uk/DART/publications/auto/And+Dro:delta-
2002.html, 2002.  

[Blaschek91] Gunter Blaschek: ‘Type-Safe Object-Oriented Programming with 
Prototypes - The Concepts of Omega’, Structured Programming Journal, 
Vol. 12, No 1, pp. 217-226, 1991. 

[Bracha90] Gillad Bracha, William Cook: ‘Mixin-based inheritance’. In proceedings 
of the ACM ECOOP/OOPSLA’90 conference, 1990, pp 303 - 311. 

[Cardelli95] Luca Cardelli: ‘A language with distributed scope’, ACM POPL’95 
proceedings, pp. 286 – 297, 1995. 

[Cardelli96] Luca Cardelli: ‘Object-based vs class-based languages’, ACM PLDI’96 
Tutorial, 1996. 

[Ierusalimschy03] Romeo Ierusalimschy: ‘Programming in Lua’, Book available on 
line from http://www.lua.org/pil/, ISBN 85-903798-1-7, 2003. 

[Kniesel00] Gunter Kniesel: ‘Darwin -- Dynamic Object-Based Inheritance with 
Subtyping’. PhD thesis, CS Dept. III, University of Bonn, Germany, July 
2000. 

[Lieberman86] Henry Lieberman: ‘Using Prototypical Objects to Implement Shared 
Behavior in Object-Oriented Systems’, ACM OOPSLA’86 Proceedings, pp. 
214-223, 1986. 

[Liskov87] Barbara Liskov: ‘Data Abstraction and Hierarchy’, ACM OOPSLA’87, 
keynote, in ACM SIGPLAN Notices, Vol. 23, No. 5 (May 1987), pp. 17-
34, 1987. 

[Meyer97] Bertrand Meyer: ‘Object-Oriented Software Construction’, Second 
Edition, Prentice Hall, Santa Barbara, CA, 1997.  

http://www.cee.hw.ac.uk/DART/publications/auto/And+Dro:delta-2002.html
http://www.cee.hw.ac.uk/DART/publications/auto/And+Dro:delta-2002.html
http://www.lua.org/pil/


 
 
 
 
 
 
 

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 121 
 

[Ousterhout98] John K. Ousterhout: ‘Scripting:Higer-Level Programming for the 21st 
Century’, IEEE Computer, March 1998, pp. 23-30, 1998. 

[Smith94] Randall Smith, Lentczner Mark, Walter R. Smith, Antero Taivalsaari, 
David Ungar: ‘Prototype-based languages: object lessons from class-free 
programming’, Panel in ACM OOPSLA’94 Proceedings, pp. 102-112, 1994. 

[Smith95]  Randall B. Smith, David Ungar: ’Programming as an Experience: The 
Inspiration for Self’, ECOOP’95 Proceedings, Springer LNCS Vol. 952, 
pp. 303-330, 1995. 

[Stein87] Lynn Andrea Stein: ‘Delegation is Inheritance’, ACM OOPSLA’87 
Proceedings, pp. 138-146, 1987. 

[Taivalsaari93] Antero Taivalsaari: ‘A critical view of inheritance and reusability in 
object-oriented programming’, PhD Thesis, Jyvaskyla Studies in Computer 
Science, Economics and Statistics 23, University of Jyvaskyla. Finland, 
ISBN 951-34-0161-8, 1993. 

 

Appendix  

The isderived function 
isderived (a, b) {    Returns if a b 

if b.Derived = a then  Check if a b holds (i.e. directly derived) 
return true 

else { 
for each x in a.Bases do Check if any of the base subobjects is derived from b 

if isderived(x, b) then 
return true 

return false 
} 

} 
 

The Delta language syntax 
code   ::= { [ def ] } 
def   ::= ( [ stmt ] ‘;’ | func ) 
func   ::= ( funcprefix | methodprefix ) funcdef 
funcprefix ::= ‘function’ [ id ] 
methodprefix ::= ‘method’ 
funcdef  ::= ‘(‘ [ id { ‘,’ id } ] ‘)’ block 
block   ::= ‘{’ code ‘}’ 
funcexpr ::= ‘(‘ func ‘)’ 
stmt   ::= ( expr | whilest | forst | ifst | ‘break’ | ‘continue’ |  
   ‘return’ [ expr ] | block | assertion |  

‘const’ id ‘=’ expr | ‘try’ stmt ‘trap’ lval stmt | 
‘throw’ expr ) 

whilest  ::= while ‘(’ expr ‘)’ stmt | ‘do’ stmt ‘while’ ‘(‘ expr ‘)’  
forst   ::= ‘for’ ‘(’ exprlist ‘;’ expr ‘;’ exprlist ‘)’ stmt 
ifst   :: ‘if’ ‘(’ expr ‘)’ stmt [ ‘else’ stmt ] 
exprlist  ::= [ expr { ‘,’ expr } ] 
expr   ::= ( assign | primary | boolean | arith ) 
assign  ::= ( lval ‘=  expr | lval ‘+=  expr | lval ‘-=’ expr |  ’ ’
   lval ‘*=’ expr | lval ‘/=’ expr ) 
lval   ::= ( [ ‘local’ | ‘static’ | ‘global’ | ‘::’ ] id | member ) 
member  ::= ( expr get id | expr subscr | expr get string ) 
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get   ::= ( ‘.’ | ‘..’) 
subscr  ::= ( ‘[’ expr ‘]’ | ‘[[’ expr ‘]]’ ) 
primary  ::= ( lval | lval (‘++’|‘--') | (‘++’|‘--') lval | ‘lambda’ |  

const | callable ) 
object | ‘self’ | ‘arguments’ | ‘-’ expr | ‘not’ expr ) 

callable ::= ( lval | ‘(’ expr ‘)’ | funcexpr | call ) 
call   ::= callable ‘(’ [ actual  { ‘,’ actual } ] ‘)’ 
actual  ::= ( pr | | |   ex ‘ ’ expr ‘ ’ )
const   ::= ‘nil’ | ‘true’ | ‘false’ | number | string 
boolean  ::= expr boolop expr 
arith   ::= expr arithop expr 
arithop  ::= ‘+’ | ‘-‘ | ‘*’ | ‘/’ | ‘%’ 
boolop  ::= ‘or’ | ‘and’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ‘!=’ 
object  ::= ‘[’ ,’ slot} ] ‘]’  [ slot { ‘
slot   ::= ( ‘{’ expr {‘,’ expr } ‘:’ slotval ‘}’ | slotval ) 
slotval  ::= ( expr | methoddef ) 
methoddef  ::= ‘(’ ‘method’ funcdef ‘)’ 

assertion  ::= ‘assert’ expr 

Availability information 
The Delta language (compiler, standard libraries, virtual machine), with the full 
examples presented in this paper, are available (Windows only) via anonymous ftp 
from the following address: http://www.ics.forth.gr/hci/files/plang/DELTA.ZIP. The 
Delta IDE named Sparrow is available from http://139.91.186.232/sparrow-setup.exe 
(installer, Windows only). The latter are only an initial packaging to allow 
programmers or language developers have a hands-on experience with the language 
and it’s IDE. Once the site for Delta is built, the Delta ftp address will contain the 
necessary redirection information. 
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