
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 4, May-June 2008

 Anthony Savidis: “An enhanced form of dynamic untyped object-based inheritance”, in
Journal of Object Technology, vol. 7, no. 4, May-June 2008, pp. 101-122
http://www.jot.fm/issues/issue_2008_05/article2/

An enhanced form of dynamic untyped
object-based inheritance

Anthony Savidis, ICS-FORTH, Greece

Abstract
We present an enhanced form of untyped object-based inheritance for classless
languages, as implemented in our Delta language, comparing to the prevalent
practices of delegation and embedding. Through a case scenario we reveal a
design flaw of delegation that damages polymorphism and extensibility. Then, we
show why embedding is impractical for object-based uninheritance (undoing
inheritance on individual objects) and non-monotonic object evolution (dynamically
adding or removing object members). We introduce dynamic object trees, adopting
the metaphoric notions of inheritance from class-based languages, without
compromising the compositional flexibility of untyped inheritance. We implement
inherit and uninherit as library functions, discussing how our member lookup
algorithm preserves monotonicity. Finally, we show that if prototypes are
prototypical objects they may break their own invariant. To this end, we propose
class objects as a more precise metaphor, implementing in the Delta language a
function for dynamic mixin composition of class objects.

1 INTRODUCTION

The reported work concerns dynamic untyped object-based inheritance in the domain
of classless languages. Such languages were quite popular in the past, putting forward
the notion of prototypes [Lieberman86], [Smith94] as an untyped dynamic
counterpart for classes, while they are less preferred today for the practicing of
medium to large scale object-oriented software development. In contrast to the
domain of classless languages, in which the reported work falls, dynamic class-based
languages like Python and Ruby are very popular today, probably more popular than
in the past. Usually this situation is attributed to both the lack of static type checking
and to the unconventional inheritance programming models offered in comparison to
class-based languages.

We show that the two prevalent practices for dynamic inheritance, being
delegation and embedding, suffer from key shortcoming as recipes of dynamic
inheritance – detailed summaries of delegation and embedding are found in
[Cardelli96] and [Taivalsaari96]. In particular, we demonstrate why delegation harms
polymorphism, information hiding and extensibility, and why embedding
implementations become excessively complicated to support uninheritance and non-
monotonic object evolution. We propose a new form of untyped object-based
inheritance as implemented in a language named Delta [Savidis05], relying on object

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

trees, showing how it overcomes the barriers of delegation and embedding. Finally,
we discuss about a common misconception, i.e. that prototypes are prototypical
objects, showing that prototypes should be objects of a separate class compared to the
objects they generate during runtime. In this context, we propose the concept of class
objects, providing a generic function to perform dynamic mixin composition on class
objects, implemented in the Delta language.

We continue by setting the context of reported work, starting with untyped
object-based inheritance, then providing a quick account of late binding in an object-
based inheritance context. Finally, we discuss the case scenario that will be used to
draw our arguments against delegation and embedding.

Elements of untyped object-based inheritance

In object-based languages the notion of a class is not mapped to an explicit language
construct, but is used by convention as a design metaphor, with semantics borrowed
from class-based languages. In this context, for classless languages, we adopt the
following definitions:

 object: instantiation of the structure model of a class;
 base object: an object contributed from a base class;
 subobject: part of an object due to the members in the class-definition

scope;
 derived object: any object that has base objects;
 most-derived subobject: the subobject of the most-derived class.

An example is provided in Figure 1 clarifying the use of these terms; on the leftmost
part we illustrate the corresponding class-based structure. The way subobjects are
internally glued together depends on how inheritance is implemented in a language.
The dotted lines of Figure 1 only conceptually denote such implementation-dependent
associations.

a b

c d

e

A B

C D

E
a b

c

d

a

b

a b

c d

e

a b

c

d

a

b

e

a

c

b

d

5 objects 4 base objects 5 subobjects

A class-based
inheritance tree

The object-based
structure of E

E

C

A

B

D

2 derived
objects 1 most derived

subobject

C A

B

D

B

D

E

a b

c d

e

a b

c d

e

A B

C D

E

A B

C D

E
a b

c

d

a

b

a b

c d

e

a b

c

d

a

b

e

a

c

b

d

5 objects 4 base objects 5 subobjects

A class-based
inheritance tree

The object-based
structure of E

E

C

A

B

D

2 derived
objects 1 most derived

subobject

C A

B

D

B

D

E

Figure 1: Sample class-based inheritance and its classless object structure (left part), with the various
objects, base objects and subobjects (right part) – respective classes are shown in shaded rectangles.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 103

In classless languages programmers still think in terms of class-based inheritance to
design the corresponding object-based structures. Then, at the implementation, they
should handle the assembly of subobjects via program statements, so as to recreate the
designed object-based structures (as in Kevo [Taivalsaari93], Omega [Blascheck91],
SELF [Smith95] and Lua [Ierusalimschy03]). For this purpose, classless languages
offer varying linking or packing facilities, together with member lookup algorithms
and suggested deployment patterns (e.g. traits and prototypes in SELF [Agesen00]).
All the latter essentially constitute the inheritance framework of the language. This
support of inheritance is radically different from class-based languages where the
object-based structure (object model) is computed by the language (statically or
dynamically) and the object assembly process upon instantiation is automated by the
runtime system.

Generic ‘inherit’ and ‘uninherit’ operators Overall, classless languages differ
mainly with respect to the object linking or packing semantics and the member lookup
approach. The linking or packing of subobjects is supported as a runtime operation
that we will informally call the inherit function, denoting its opposite as uninherit.
Today, there are two dominant variations in implementing inherit: (i) delegation,
linking of base objects via parental associations into acyclic directed graphs
composed of subobjects; and (ii) embedding, packing base objects by substituting
overridden methods with the addresses of the most recent versions. Usually, a
delegation inherit means assigning a base object address to the parent slot of a derived
subobject, while an embedding inherit means concatenating or merging together a
base object and a derived subobject. The vast majority of the existing classless
languages implement inherit as variations of the delegation style. As we will show in
our discussion, while implementing uninherit is straightforward via delegation, it
turns to be severely complicated through embedding.

Late binding to most recent member versions

For the purposes of our argumentation we recall the notion of late binding in the
perspective of untyped object-based inheritance. Late binding is the mechanism
guaranteeing that in a polymorphic object the most recent version of any inquired
member is resolved during runtime, independently of the referring subobject. Usually
the referred subobject is mentioned as the callee or message recipient. Effectively, due
to late binding, the following holds:

For any object x and reference y to a subobject of x, all member inquiries via y

dynamically bind to their most recent version within x.

Normally, the most refined version may be located in a subobject other than the one
through which the inquiry is made. A simple example is provided in Figure 2,
showing an Animated Button object composed of three subobjects: while the calls to
Display are made with different subobjects, all should bind to the most recent Display
version residing at the Animated Button subobject. While this behavior of late binding
is taken for granted in static or dynamic class-based languages, it is not entirely
supported in delegation-based implementations of the inherit operator. We show that
this deficiency is due to the parent-directed member lookup semantics of delegation.

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

Additionally, we demonstrate that in order to bypass this inadequacy one is practically
led to an anti pattern damaging information hiding and extensibility. To prove these
arguments we firstly define our subject case scenario. We put particular emphasis on
this scenario, since it is crucial to convince that on the one hand it reflects common
real-life programming needs, while on the other hand the existing techniques fail to
support it.

1.call Display 2. call Display 3. call DisplayWindow

Button

Animated Button

Class-based inheritance
tree of an Animated Button

An Animated Button object for object-based inheritance. It consists of
three subobjects dynamically associated via inheritance (dashed lines)

Display(){…}

Window subobject

Display(){…}

Window subobject

Display(){…}

Button subobject

Display(){…}

Button subobject

Display(){…}

Animated Button subobject

Display(){…}

Animated Button subobject

Figure 2: An Animated Button object in the object-based world (right part) for the class-based scheme
on the left; calls to Display with different subobjects bind to the most refined Display version.

2 SUBJECT CASE SCENARIO

Part I Consider the general case where for a base class, the address of every created
object needs to be stored in some kind of a holder object. The latter uses such stored
references to invoke specific base methods during runtime. In particular, let’s assume
a Window base class, a WindowManager holder object, and a Display method for
Window objects. The latter concerns typical windowing systems, offering rich
collections of derived classes called widgets (e.g. buttons, toolbars, text fields,
scrollbars, etc.), while letting programmers introduce further specialized behaviors
such as auditory or animated buttons. The general scenario is very common,
reappearing in numerous situations: symbols / symbol table (compiler), graphic
elements / display manager (graphic editor), game characters / AI manager (game
engine), agents / coordinator (agent systems), etc.

Client runtimeSupplier base classes

Supplier runtime Client derived classes

supplier object lists, management algorithms,
callbacks, construction-time registration

isa

software library

application

Client runtimeSupplier base classes

Supplier runtime Client derived classes

supplier object lists, management algorithms,
callbacks, construction-time registration

isa

software library

application

Figure 3: Part I of our scenario is common in software libraries offering supplier classes (to be
extended by clients) with comprehensive runtime management mechanisms (like window managers or

game engines).

As illustrated in Figure 3, this scenario is typical to software libraries combining
supplier classes and runtime systems that automatically manage all created supplier

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 105

instances (like the case of windowing systems).Following our scenario, window
managers keep lists of all created windows for processing purposes. In all known
systems such bookkeeping is handled upon construction and destruction time through
calls placed in the Window base-class constructors and destructor. Since references to
Window objects are stored in the internal lists, the window manager may invoke
Display only via such Window references.

Next, we implement such a Window class in a classless language context via a
prototype. Here we adopt the common practice: a prototype is a prototypical object,
while to avoid exposing a reference variable we provide a function returning the
reference of the prototypical object. In our case, we define a function named Window,
meaning Window() returns the address of the respective prototypical object. A
Window prototype encompasses a constructor method - we name it New – and various
data members with default values. Construction via the New method is carried out by
replication (copy) of the prototypical object, implying the automatic registration to the
window manager lists. In Figure 4 we sketch the Window prototype implemented in
the Delta language and the Display() method of the WindowManager object in pseudo
code (one window manager object exists during runtime, i.e. the analogy of a
singleton class).

function Window() {
 static proto; ←Reference to prototypical object hidden as a local static variable
if (isundefined(proto)) ←Prototype object is initialized only due to first call
 proto = [
 {.Display : (method(){ … })},
 {.Handle : (method (event) { … })},
 {.New : (method(){ ←User-defined constructor method

‘objcopy’ lib func performs shallow copy→ local win = objcopy(self);
 WindowManager.Register(win);
 return win;
 })},

 ... Rest of Window data members (with default values) and methods...
];
return proto; ←The prototype is returned as a factory to make objects via New()

}

WindowManager.Display() { for each window w do w.Display(); }

Figure 4: (a) The Window prototype in the Delta language with the New constructor performing copy of

the prototype and registration in WindowManager singleton (b) The Display() method of
WindowManager.

We briefly explain a few of the syntactic and semantic details of Delta. Objects are
created by the evaluation of an [...] expression, with initial members enumerated
inside the square brackets as { key : expr }, key restricted to strings and numbers,
where .key is syntactic sugar for “key”. For example, {.Display : (method(){
… })} introduces a member with key “Display” and value the supplied implemented

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

method. Given an object a, a.x is syntactic sugar for a[“x”]. Finally, objcopy(x)
performs a shallow copy of the subobject referred by x.

Part II The second part of our scenario concerns attaching (detaching) a derived
object on (from) a base object during runtime. Technically, the latter implies the
support for inherit and uninherit as well. Focusing on inheritance only, in the class-
based world the scenario reflects mixin inheritance with generic derived classes. In
particular, let’s assume a Button object that during runtime inherits to an Auditory
Button object (see Figure 5, steps 1 and 2). Apparently, the original Button will
hereafter behave as an Auditory Button. Latter, this link is undone, meaning we have a
normal Button again (step 3). We similarly reapply mixin inheritance over the same
Button object turning it to an Animated Button (step 4) and back to a normal Button
(step 5). During runtime, in-between such actions, the window manager will normally
display all windows by calling its Display method, as illustrated under Figure 5
(bottom-right part, calls to WM.Display).

Our general scenario is related to all cases where a behavior needs to be
dynamically added or removed. Its specialization is based on the example of
[Bracha92], originally with a Window base class and a Bordered mixin class, adapted
as follows for the object-based world: (i) a Window object may be controlled by the
user to have a border or not, hence Bordered mixin is applied dynamically on distinct
instances; and (ii) we use Button in place of Window, and Auditory / Animated Button
in place of Bordered.

Button Button

Auditory
Button

Button

1. construct 3. uninherit2. mixin inherit

Button

Animated
Button

4. mixin inherit

Button

5. uninherit

Auditory
Button

Animated
Button

Button Button

Auditory
Button

Button

1. construct 3. uninherit2. mixin inherit

Button

Animated
Button

4. mixin inherit

Button

5. uninherit

Auditory
Button

Animated
Button

1: button = Button().New(); … WM.Display();
2: auditory = AuditoryButton().New(button); … WM.Display();
3: uninherit(auditory, button); … WM.Display();
4: aninated = AnimatedButton().New(button); … WM.Display();
5: uninherit(animated, button); … WM.Display();

Figure 5: For the Button object of step (1) we apply a mixin Auditory Button at step (2) which is later
un-inherited at step (3), applying another mixin Animated Button at step (4), finally un-inheriting back

to a Button at step (5); WM is an abbreviation for the WindowManager object.

The need for mixin inheritance on individual objects has been already identified in
class-based languages, like in the Decorator design pattern [Gamma95] prescribing
the dynamic installation of derived behaviors (decorations) on distinct objects. The
implementation of the AnimatedButton prototype in the Delta language is outlined in
Figure 6; AudidoryButton prototype is similar.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 107

function AnimatedButton() { ←Mixin proto over Button, derived from Window
 static proto;
 if (isundefined(proto))
 proto = [
 {.Display: (method(){ … })}, ←Refines Button.Display

 The ‘button’ argument below is the object on which the mixin is applied
 {.New : (method(button) {
 local anim = objcopy(self);
 inherit(anim, button);
 return anim;
 })}
 ... Rest AnimatedButton data members (with default values) and methods...
];
 return proto; ←Prototype returned as with Button class

}

Figure 6: The Animated Button mixin prototype over Button in the Delta language; the implementation

of Auditory Button is similar and is skipped for clarity.

What these scenarios essentially test The first part of our scenario tests late binding.
The window manager stores references of Window subobjects, invoking their Display
method. Each Window subobject may be part of a derived object, like a Button or
Menu, further refining Display. Hence, while the window manager uses references to
Window subobjects for Display invocations, resolution to the most recent Display
method should be guaranteed. We will show that a delegation-based inherit fails in
this respect.

The second part of our scenario tests the support for object-based uninheritance.
In general, object-based mixin inheritance or uninheritance is required in all cases that
adding or removing mixins during runtime makes sense. In this context, the Decorator
design pattern demonstrates that such a need does emerge in real practice. Apart of
uninheritance, implying ‘cutting’ inheritance links on-the-fly, we additionally require
the support to dynamically add or remove members on individual subobjects. In class-
based languages, if the latter is supported on individual classes, it leads to non-
monotonic class evolution [Kniesel00]. In untyped object-based inheritance where
inheritance is not subtyping the analogy is dynamic object evolution. We will see that
embedding-based implementations for uninherit and dynamic object evolution are
excessively complicated.

3 RELATED WORK

Currently, there are numerous languages supporting untyped object-based inheritance,
relying on variations of either the delegation or embedding style. The differences
among languages adopting the same style concern various enhancements, like lookup
extensions, introspection support, multi-threading capabilities, dynamic compilation,
built-in support for prototypes, etc., just to name a few. Despite the existing

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

variations, all different implementations comply with the following: (a) delegation is
built around dynamically-managed parental associations that are taken during runtime
to recursively resolve invocations of methods within parent objects; and (b)
embedding applies a non-reversible concatenation of subobjects, changing the
addresses of refined methods in base objects to reflect the most recent versions, while
also saving the previous addresses.

We consider SELF [Smith95] and Kevo [Taivalsaari93] to be the most
representative cases of object-based languages regarding delegation and embedding,
with the exception that Kevo is also a statically-typed language. SELF supports
assignment of values to parent slots, so that delegation graphs can be constructed,
offering alternative versions of the basic lookup algorithm supporting detection of
cyclic delegation paths. A more recent untyped language is Lua [Ierusalimschy03]. In
Lua parent objects are called ‘meta-tables’, following the Lua approach where objects
are associative tables.

Apart of implemented languages, δ [Anderson02] is an imperative typed object-
based calculus supporting inheritance by delegate editing. It enables non-monotonic
object evolution by supporting a built-in operation for adding or removing methods.
Clearly, since the δ calculus focuses on typed inheritance, emphasizing type safety
and type inference, it is not related to the reported work. However, we refer to δ for
two reasons. Firstly, because delegation in the δ calculus still relies on traversal over
parental links, as denoted by the semantics of the Look′ operation of the δ calculus,
meaning typed delegation inheritance reflects similar lookup mechanics to untyped
inheritance. Secondly, to clarify that our Delta language - acronym for ‘Dynamic
embeddable language for extending applications’ - is not related to the δ calculus,
since they happen to be pronounced the same.

Embedding was introduced in the context of the Kevo typed language
[Taivalsaari93] as an alternative to delegation, proposing inheritance via copying and
composition. Currently, all known embedding languages are typed. Obliq [Cardelli95]
is an embedding language designed to primarily advance the support for programming
of distributed computations rather than embedding inheritance itself. Besides Kevo,
Obliq and Omega [Blascheck91], no other embedding-oriented languages are known.

4 SHORTCOMINGS OF DELEGATION

As shown in Figure 7 (left part – adapted from [Kniesel00]) lookup follows parental
links: once an owner of the referred method is found (step 3), the method is invoked
binding self to the original method recipient subobject (step 4). The lookup is always
initiated at the recipient subobject (step 1), applied recursively upwards (step 2); some
languages support alternative termination conditions, besides the default that is to stop
once they match the inquired method name.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 109

1. Message
received (method
invocation)

3. Method
owner found

4. Method called
binding ‘self’ to
receiver

f() {...}

message ‘invoke f’

lookup
sub-graph

most
derived

f() {...}

f() {...}

2. Delegation
lookup over

parents
1. Message
received (method
invocation)

3. Method
owner found

4. Method called
binding ‘self’ to
receiver

f() {...}

message ‘invoke f’

lookup
sub-graph

most
derived

f() {...}

f() {...}

2. Delegation
lookup over

parents

Figure 7: Delegation-based binding (left), restricted lookup if not using the most-derived subobject

(right).

Following Figure 7 (right part), let’s consider method f refined by the most-derived
subobject, invoked using another subobject of the delegation tree. Since delegation
performs lookup over parental links, the search space is narrowed down to the sub-
graph reachable from the message recipient (method invocation) subobject (see Figure
7, shaded sub-tree). Clearly, the most recent version of f is not locatable in the
restricted lookup space, meaning late binding fails to resolve to the most refined
method version.

Now we map the example of Figure 7 to our specific scenario: in place of f we
have the Display method, invoked through a Window subobject, whose address is
stored in a WindowManager list, while the most-derived subobject is an
AnimatedButton or AuditoryButton refining Display. Then, in a way similar to Figure
7, none of x.Display() calls performed in WindowManager.Display, x being a Window
subobject, binds to the Display refined by the AnimatedButton or AuditoryButton
subobjects. The reason is that, since delegation-lookup follows parental links (i.e.
base objects) a lookup initiated at a Window subobject never reaches a derived
AnimatedButton or AuditoryButton subobject. In conclusion, delegation-based inherit
fails to support late binding in our scenario.

Trying a covariant self The support of covariant self is discussed in [Abadi96]
in a typed-inheritance context, proposing to explicitly qualify as Self the return type of
methods that aim to return self. Such a language feature can be used to resolve the
delegation problem, but only for class-based languages, as follows: adopting the
notation of [Abadi96], we introduce method most_derived(): Self is self in a common
super-class, which due to self covariance, guarantees to return the most derived
subobject independently of the caller. Then, in the WM.Display, we change the style
of the call to x.most_derived().Display(). This ensures method invocations are always
made with the most-derived subobject, so the call binds by definition to the most
recent Display version.

Since the previous wrap-around is applicable only to class-based languages we
investigate the possibility to implement it in an untyped delegation context.
Technically, the covariant self is a late binding mechanism for the self construct. The
only way of emulation in untyped inheritance is via a method most_derived() { return
self; }, adopting the same modified call style as before. However,
x.most_derived().Display() is equivalent to x.Display() for the following reason: The
call to x.most_derived() by the WindowManager, having x a first message recipient,

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

implies most_derived() is invoked binding self to x, thus returning x. In other words,
this implementation of most_derived() suffers from the same problem, that is
restricting lookup to the sub-graph reachable by the message recipient, failing to
return the most-derived subobject.

Overall, there is no appropriate wrap-around in untyped delegation to resolve the
issue of lookup dependency on the first message recipient. So, as a last option, we
investigate the possibility to impose as a programming discipline that all method
invocations are made only with the most-derived subobject in a delegation graph, i.e.
forcing a most-derived first message recipient rule.

Imposing most-derived first-message recipients Through this rule we force
method invocations to be made only with the most-derived subobjects. This way, the
delegation lookup space is by definition the entire graph. So, it is guaranteed that the
most-recent versions of called methods are always resolved. While the rule seems to
sort things out, we show that it harms extensibility, information hiding and
abstraction.

To comply with this rule we should ensure that the Window Manager stores
references to most-derived subobjects – e.g. AnimatedButton subobjects. But the latter
requires refactoring of the implementation to transfer Register calls outside the
Window constructor, at every point that AnimatedButton or AuditoryButton objects are
created. Apparently, we may not hook such calls inside the AnimatedButton or
AuditoryButton constructors as we will be faced with the same issue if we similarly
derive from such objects. Practically, the above modifications, besides the apparent
code replication, introduce forward dependencies on inheritance: every time object-
based inheritance is applied, the original source code must be modified. For instance,
if we aim to add / remove a dynamic mixin to an object, like applying an
AnimatedButton subobject over a Button object, we should substitute in all registries
the base object with its mixin subobject, and vice versa. Additionally, the rule
imposes to reveal intrinsic APIs, such as the WindowManager object, not necessarily
designed to be available to client programmers. This damages information hiding,
reducing extensibility and modifiability of the underlying window manager system.
Overall, the rule itself is evidently problematic, since, besides extensibility and
information hiding that are damaged, abstraction and polymorphism are broken.

Closing remarks Our conclusion may seem surprising, not only because many
delegation-based classless languages exist, but also due to the proof of equivalence
between delegation and class-based inheritance reported in [Stein87]. However, in the
latter it is assumed that member inquiries are always resolved in the entire delegation
graph, something that for untyped delegation implies a first-message recipient rule.
The reason that this problem of delegation was not spotted in the past is attributed to
the role of classless languages in the course of real practice: as discussed in
[Ousterhout98], dynamic languages were adopted for scripting / gluing purposes,
rather than for building or extending comprehensive software libraries. The latter was
primarily done via static class-based languages. Our scenario and argumentation is
based on the assumption that library software may be implemented via classless
languages as well.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 111

5 SHORTCOMINGS OF EMBEDDING

Embedding languages allow programmers to perform unrestricted composition of
objects from subobjects, internally automating the substitution of method addresses of
base subobjects by the addresses of refined method versions from derived subobjects.
In an untyped context, the notion of derived or base is defined by convention, not by
type semantics, considering constituents to play the role of base objects and the
composition outcome to be a derived object. Due to method address substitution upon
composition, method invocations are guaranteed to take place with the most recent
address. As mentioned before, all known embedding languages are typed.

The major drawback of embedding is the severe implementation complexity in
supporting two key features: (i) uninheritance, following our scenario with dynamic
mixins, supporting also cancellation of inheritance links independently of how they
are set – e.g., one could cut multiple chained mixins altogether with a single uninherit
call; (ii) dynamic removal or addition of members on individual subobjects. In
particular, following the compositional style of embedding, uninheritance requires
object disassembly support. Assuming that disassembly is applied on the inverse
ordering of composition, in every subobject a stack may be kept storing the addresses
of the previous method versions before composition is applied. Then, ‘un-embedding’
may restore the previous method addresses simply popping from the stack. Such an
implementation is simple, but it works only for undo-like uninheritance. Now, let’s
alter the restriction that dynamic uninheritance occurs only in the inverse order of
composition. Then, no backup / restore technique will suffice. Additionally, once we
allow individual methods to be added or removed, things get even more complicated.
Overall, the focus on method address substitution on concatenation, rather than on
storing explicit inheritance links, does not allow to compute the most-recent method
addresses of methods when uninheritance in freely applied. It comes by no surprise
that we entirely miss models or implementations of uninheritance via embedding.

6 DYNAMIC SUBOBJECT TREES

Definitions

Our inheritance model relies on dynamic associations of the form α β, with the
metaphoric interpretation α derived from β and β inherits to α. The symbolism a β
denotes that β is a base object of α, representing direct or indirect derivation of α from
β. The establishment of an inheritance association α β is permitted if and only if the
following precondition holds:

α ≠ β ∧ ¬ β α ∧ ¬ (∃ γ : γ≠ β ∧ γ β)
We adopt the metaphors of class-based languages, like ‘inherits’, ‘derived’ and ‘base’,
rather than the ones of delegation languages, i.e. ‘delegation’, ‘delegated’ and
‘delegator’. The three conjunctions formalize the fact that an object: (a) cannot inherit
from itself, i.e. no trivial cycles; (b) cannot inherit from any of its directly or
indirectly derived objects, i.e. no cycles; and (c) can inherit to at most one object, i.e.
the relationship results into trees. From the three rules, the third one, restricting to a

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

single descendant object, may seem rather unnatural. We explain later that this rule
puts no restrictions on inheritance, while simplifying the internal implementation and
the external programming model.

Inheritance control functions

The management of inheritance object trees is facilitated through a compact set of
library functions. Instead of a procedural API, a parent-slot editing model could be
provided, as in the SELF language. In our case we decided to adopt an API style,
since we consider the slot model to be more close to the underlying implementation.
The following functions are provided for controlling inheritance associations, α and β
being subobjects:

 inherit(α, β): Introduces α β adding β as the leftmost parent of α.
 uninherit(α, β): It cancels the inheritance association α β.
 isderived(α, β): Returns whether α β.

Since inherit(α,β) inserts β as the leftmost parent of α, inherit is not cumulative, i.e.
inherit(α,β) inherit(α,γ) ≠ inherit(α,γ) inherit(α,β). This property is made explicit in
the programming model, since, as we discuss next, the tree structure affects the
outcome of the lookup process. The implementation of inherit and uninherit in the
Delta language, together with the basic data-structure for subobjects, are provided in
Figure 8; the simplicity of the implementation is apparent.

SubObject {
Members: dictionary
MostDerived: SubObject reference
Derived: SubObject reference
Bases: list of SubObject reference
MyTree: list of SubObject reference

}

← Hash table with all members (identifier – value)
← The most-derived subobject of the tree
← The single descendant (derived) subobject
← Base sibling subobjects ordered left-to-right
← The tree subobjects ordered breadth-first left-to-right;

this list is shared by all subobjects of the same tree.

inherit (a, b) { establish a b
clear a.MyTree and b.MyTree
insert b in front of a.Bases
b.Derived = a
t = BFS left-to-right from a.MostDerived
_link(t, a.MostDerived)

}
_link (t, c) {

for each x in t do
x.MostDerived = c, x.MyTree = t

}

uninherit (a, b) { cancel a b
clear a.MyTree and b.MyTree
remove b from a.Bases
b.Derived = nil
b.MostDerived = b
tb = BFS left-to-right from b.MostDerived
_link(tb, b.MostDerived)
ta = BFS left-to-right from a.MostDerived
_link(ta, a.MostDerived)

}

Figure 8: The inherit / uninherit functions as implemented in the Delta language, together with the data-
structure for subobjects; MyTree is kept up-to-date to store the addresses of tree subobjects ordered

from the most-derived to the least-derived.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 113

Member lookup

Following our discussion, to resolve the most-recent version of a member in an
inheritance tree it suffices to locate the first subobject owning the member by
examining subobjects in a breadth-first left-to-right search, starting from the root
(most derived). Since for every subobject x, the list x.MyTree holds the subobjects
ordered this way, we need only scan this list sequentially and return the first found
subobject that owns the inquired member. The latter is reflected in the lookup
algorithm of Figure 9 (left part).

lookup (o, m) {

x

x

x

y

y

z

z

Local
lookup y

y

y

Lookup y

Lookup z

z

x

x

x

y

y

z

z

x

x

x

y

y

z

z

Local
lookup y

y

Local
lookup y

y

y

Lookup y

y

Lookup y

Lookup z

z

Lookup z

zfor each x in o.MyTree do
if m is found in x then

return x.m
return nil

}

Figure 9: The simple lookup algorithm of the Delta language with a few examples; local lookup
concerns member inquiries that are qualified to be resolved only in the caller subobject context.

The lookup algorithm is an untyped counterpart of member resolution ordering, the
latter produced in class-based languages by preprocessing the hierarchy structure so
as to identify a monotonic class linearization sequence. In Figure 9 (right part), a few
examples are provided illustrating the alternative search paths to resolve particular
members within an object inheritance tree. From the programmer’s point of view, the
member binding method is very easy to follow, being compliant with the behavior of
late-binding in class-based languages and the adopted metaphoric notion of
inheritance associations in object trees (i.e. what ‘base’, ‘derived’ and ‘most derived’
essentially imply). Next, we discuss two key properties resulting from the member
lookup algorithm, namely lookup monotonicity and subobject substitutability. Then,
we continue by justifying the rule restricting base objects to have a single descendant
subobject.

Lookup monotonicity Lookup monotonicity concerns only class-based
inheritance, requiring member resolution within base and derived classes following
the inheritance-specific class ordering. In our model, although subobject associations
represent metaphorically the notions of inheritance, those are directly reflected and
preserved by the member lookup algorithm in a way similar to class-based languages.
Although inheritance is untyped, once the notions of inheritance are explicit in the
programming model, it is critical to prove that lookup monotonicity is guaranteed. In
this context, it is trivial to prove that the breadth-first left-to-right ordering, for any
given subobject tree, is monotonic, i.e. order preserving, assuming the ordering
relationship defined below:

α < β : α β ∨ α left sibling of β

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

Following the previous definition of inheritance associations, the two disjunctive
conditions have the metaphoric interpretation α derived from β and α most recent
sibling of β, being equivalent to α < β: α most recent than β. Consequently, the
member lookup sequence is monotonic, since it preserves by definition the
inheritance-oriented ordering, visiting subobjects sequentially, from the most recent to
the least recent.

Subobject substitutability This is a very important property of the member
lookup algorithm, regarding all late-bound member inquiries. In particular, given any
T tree of distinct subobjects α1,…,αΝ, any expression E involving subobject αj∈T, and
the notation E{αj:ακ} implying substitution in E of every αj by ακ, the following holds:

eval E = eval E{αj:α1} = eval E{αj:α2} = …
eval E{αj:αj-1} = eval E{αj:αj+1} = ... eval E{αj:αN}

In other words, assuming late-bound member inquiries, the subobjects of the same
tree are referentially equivalent to each other, as we can substitute any subobject with
another in a program expression and still gain the same evaluation result. The latter is
a more strict form of LSP [Liskov87]. More specifically, LSP introduces
substitutability among objects of related derived classes as a desirable class-design
property to promote polymorphic functions, requiring reasonable behavior of a
polymorphic function after substitution. In our model, the subobjects of the same tree
are conceptually related in the same way as the distinct subobjects of a polymorphic
object in class-based inheritance, meaning they conceptually map to a family of
related classes. Hence, substitutability should apply. Moreover, due to the previous
property, after substitution a polymorphic function is guaranteed to have the same
behavior. From the discussion on the shortcomings of delegation it is clear that this
type of referential equivalence among subobjects of the same object graph is not
supported in delegation, since the behavior may vary depending on the first-message
recipient for successive method invocations. We consider that this is technically the
‘Achilles heel’ of delegation, regarding support for untyped object-based inheritance.

Why a single descendant rule

The rule forcing base objects to donate to at most one derived subobject is of key role
in our method as it turns the inheritance graph to a tree. It should be noted that this
rule applies only to objects in untyped inheritance, meaning it is irrelevant to class-
based languages. This clarifying remark is necessary to prevent interpret the rule in a
class-based context, as restricting base classes to at most one derived class is out of
discussion. To prove that a single descendant is not restrictive in our inheritance
model, we review the possible positions of a subobject in an inheritance graph without
this rule. In any such graph, for a given subobject x one of the following may hold
(see Figure 10 left part):

1. x donates to a single subobject (cases O0, O2, O3)
2. x donates to none, so it is the most-derived subobject (case O4)
3. x donates to more than one subobjects (cases O1)

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 115

O0

o2 o3

o1

Tree 1

o2 o3

o1

Tree 3

Equivalent by
definition

Equivalent by
definition

o1

o2 o3

Tree 2

o1

o2 o3

Tree 4
O1

O2 O3

O4

o0 o0 o0 o0

o4 o4 o4 o4

op opfwd fwd
O0

o2 o3

o1

Tree 1

o2 o3

o1

Tree 3

Equivalent by
definition

Equivalent by
definition

o1

o2 o3

Tree 2

o1

o2 o3

Tree 4
O1

O2 O3

O4

o0 o0 o0 o0

o4 o4 o4 o4

op opfwd fwd

Figure 10: Sample subobject graph (left), and the two equivalent ‘by definition’ object trees (right), due
to our lookup algorithm.

We will now transform the subobject graph of Figure 10 to a tree having equivalent
member resolution behavior in our inheritance model. Following Figure 10 – see Tree
1, since O1 may donate only to a single subobject, we choose to retain O2 O1 while
introducing Op and O3 Op, with Op a proxy object merely forwarding all member
inquiries directly to O1 (dashed arrow). Due to the presence of Op all inquiries not
resolved in O3 are eventually resolved in O1 as if O1 was also donating to O3.
Apparently, although the final tree is equivalent to the initial graph, it is impractical to
require programmers explicitly introduce such a proxy. We show that the latter is
never required.

The removal of Op results in the Tree 2 of Figure 10. Then, due to the lookup
algorithm, ∀ x∉{O0, O2, O3, O4} ∧ x∈O1 ⇒ O3.x ≡ O1.x, i.e. inquiries to O3 for
members found only in O1 are automatically resolved in O1. Since the proxy is
redundant, the Tree 2 of Figure 10 is equivalent to the initial graph. If we alternatively
choose to retain O3 O1 we gain another equivalent tree, Tree 4 of Figure 10. Hence,
for the example graph, programmers have two plausible alternatives, linking the
donor object O1 to either O2 or O3. The reason that the single descendant rule puts no
restrictions in our model is that the lookup algorithm guarantees to resolve inquiries to
subobjects for members actually owned by other subobjects of the same tree.
Consequently, there is no need to link multiple subobjects of the same tree to a single
base once the latter is already linked to any of these subobjects.

7 FROM PROTOTYPES TO CLASS OBJECTS

Prototypes should not be prototypical objects

Prototypes are used to emulate classes in untyped object-based languages
[Leiberman86], being normal prototypical objects differentiated only due to their
distinctive design role: to produce other objects via replication. We will show that
once prototypes are designed to comply with Design by Contract [Meyer97] their
traditional treatment as prototypical objects turns their use to totally impractical.

Prototypes should exist during runtime prior to the production of any respective
object. Intuitively, this is an exceptional privilege that may cause prototypes to
possess state that is not plausible for the objects produced from it. While this issue
was identified very early, the incorrect deployment of prototypes as normal objects
was treated as a cause of failure that programmers had to simply avoid [Smith94], not

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

as a fundamental design flaw. Theoretically, turning prototypes to prototypical objects
implies that prototypes are of the same class as the objects they produce. Then,
putting also Design by Contract into the game, the following should hold: prototypes
satisfy the class invariant of the produced objects. We demonstrate that this rule
makes the use of prototypes impractical; we build our argument incrementally:

 If there is a single object of a class C then this should be the prototype.
 Therefore, a prototype C cannot be used when there is no C object.
 Therefore, to use a set of prototypes C1,..,Cn there should be at least one

object per Ci prototype.
 Therefore, inheritance can be applied on prototypes C1,..,Cn only when at least

one object per Ci prototype.
 Therefore, inheritance is applicable at runtime only when at least one object

per involved prototype exists.
However, to keep an object of every class alive during the whole execution lifetime is
generally wrong: the creation of objects depends on the application semantics
defining when and why respective objects should be available. An object of a class
cannot exist unless the application state reaches a point implying that it should come
to construction. In this context, we assume that the invariant of every supplier class
includes the following condition: the object exists as a result of correct application
execution. Such a rule constitutes a generic global criterion for object correctness that
can be easily asserted (e.g., using application-level object bookkeeping) to be
included in class invariants. This rule implies that given any object satisfying the class
invariant, an exact copy is not directly guaranteed to also satisfy the invariant. The
reason is that object copying and generation should be governed by the application
semantics. Consequently, to unconditionally force that for all classes at least one fully
functional object should be retained during execution may contradict to the
application design, and inherently to the respective class invariant. Following the
previous discussion, instead of prototypes being technically a wrong metaphor, we
propose the term class objects, capturing more precisely their design role. Through
this differentiation, in the design domain, we now distinguish two different classes:

 The class concerning the produced objects, say A
 The class concerning the class object itself, say A_IMPL

The previous differentiation makes sense only in an object-based world where classes
are implemented as objects. In this context, our remark reveals that the behavior of a
class object is different from the behavior of the produced objects, meaning they
semantically map to different classes. Moreover, while the A class never exists as an
explicit object, i.e. it is only an artifact of the design domain, it is explicitly reflected
in the contractual obligations of objects produced by A_IMPL objects. More
specifically, when an A_IMPL class object creates A objects during runtime, it has to
install on them all Design by Contract members implied by class A. Finally, reflecting
our remark, given any class A and object O the following holds:

O produces objects compliant to A ⇔ O is an A_IMPL class object

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 117

We continue our discussion on class objects by presenting the implementation (in the
Delta language) of a generic function, which accepts a set of base class objects and a
derived mixin class object, and performs mixin composition returning the new
composite class object.

Dynamic mixin composition of class objects

Mixin inheritance [Bracha90] concerns base class parameterization resulting in
generic derived classes. It is also called inheritance on demand or genericity
[Meyer97], since for mixin class B, the base class T is a parameter to the compile-time
composition operator B[T], without strong coupling among B and the classes
“similar” to T. Following our previous discussion, the mixin composition operator on
class objects should return a class object producing instances compliant to the mixin
composition of the respective classes.

function mixin_comp() {
 local n = tablength(arguments);
 comp = [
 {.B : arguments[0] }, ←The B class object
 {.n : n - 1 }, ←Stores number of base A class objectsi

 {.new : (method(){ ←Object constructor for the composite class object
args = [];
argNo = 0;

 if (arguments[0] == self.B.class)
 { args = arguments[1]; argNo = 2; }

B_obj = self.B.new(|args|); ←Construct a B object
 B_obj.n = self.n; ←Store the number of total base objects
 for (i=1; i <= self.n; ++i) { ←Instatiate all base objects

args = [];
Ai = self["A" + i]; ←Get the A class objecti

if (arguments[argNo] == Ai.class)
 { args = arguments[++argNo]; ++argNo; }
 Ai_obj = Ai.new(|args|); ←Construct an A objecti

 inherit(B_obj, Ai_obj); ←Establish inheritance B A i

 B_obj[Ai.class] = Ai_obj; ←Store the produced base object
 }
 return B_obj; ←Return the B (most-derived) object
 })}
];

 for (i = 1; i <= n - 1; ++i)
 comp["A"+i]=arguments[i]; ←Store base class objects as keys “Ai”
 return comp; ←This is the class object pertaining to the composition of mixins.

}

Figure 11: Mixin composition among class objects in Delta; the key point is the implementation of the

new function of the composite class object producing objects compliant to B[A1...Ak].

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

For example, let’s assume the class objects A_IMPL for class A, and B_IMPL for
mixin class B. Then, the mixin composition among A_IMPL and B_IMPL is any class
object producing objects compliant to B[A]. We consider the general form of an N-ary
mixin composition operator among a mixin class B and a sequence of base classes
A1,…,Ak K≥1 evaluating as B[A1,…,Ak]. We implement this operator in the Delta
language, as a function over B and Ai class objects, returning a new class object
producing objects compliant to B[A1,…,Ak]. The implementation is provided in Figure
11. The expression arguments is a read-only table carrying all actual arguments as
arguments[i] i:0...N-1 while tablength is a library function returning table size N. Also,
for a table P with N+1 elements indexed as P[0],…,P[N], the expression |P| as an
actual argument evaluates by pushing onto the stack P[0],…,P[N] as if they those
were explicitly supplied arguments. Following Figure 11, the function mixin_comp
returns an object comp with a method named new producing objects reflecting the
mixin class inheritance scheme – see also Figure 12. Inside new, two basic steps are
taken: (i) an object B_obj complying to B class is constructed; and (ii) for each Ai a
base object Ai_obj is constructed, set as the base of B_obj via an inherit call.

Actual argument propagation There is one remaining issue to be explained. For
any C returned class object with C.new constructor for creating composite objects,
graceful initialization of the B and Ai constituent objects should be facilitated. In
general, there is no information regarding the B and Ai constructor signatures,
meaning we should accommodate all construction possibilities for the involved class
objects. An impractical solution is to rely on default constructors, requiring
programmers to explicitly bring composite objects, after construction with no
parameters, to the desirable state. In our implementation, the new method of the
returned class object adopts a parameter passing pattern for propagating actual
arguments to the corresponding constituent-object constructor.

A1 A2 An

B

αn αn-1 α1

β

In subobject trees αi+1 (left sibling)
is more recent thanαi

In class trees Ai+1 (right sibling)
is more recent than Ai

The structure of objects
produced from the class
object comp returned
from mixin_comp

The class structure
corresponding to the

mixin composition
B[A1,...,An]

A1 A2 An

B

αn αn-1 α1

β

In subobject trees αi+1 (left sibling)
is more recent thanαi

In class trees Ai+1 (right sibling)
is more recent than Ai

The structure of objects
produced from the class
object comp returned
from mixin_comp

The class structure
corresponding to the

mixin composition
B[A1,...,An]

Figure 12: Mixin class structure (left) and object structure produced by the comp class object (right).

We give two examples before generalizing on the call pattern. Consider the
composition among classes B and A1,…,Ak as before, returning the class object C. Lets
assume that the call C.new(x,y,z) should construct a composite object with (x, y, z)
passed for construction of the B object, having every Ai created with its default
constructor. Then, instead of C.new(x,y,z), the call should be made as C.new(“B”,
[x,y,z]) - see Example 1 of Figure 13. Similarly, C.new(10, x,y,z, f(a)), with 10 for B,
(x,y,z) for A1 and f(a) for A7, should be made as C.new(“B”, [10], “A1”, [x,y,z] “A7”,
[f(a)]) - see Example 2 of Figure 13.In general, the call to new is made following the
pattern at the bottom left of Figure 13. The prerequisite is that involved class objects
encompass a member “class” with a unique string value among them. The [] means

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 119

optional while [] is array construction. Following this pattern, assuming A0 equivalent
to B, the list of actual arguments is made of optional ordered pairs <Namei, Arrayi>,
i:0...K, where if Namei=Ai.class then Arrayi holds the arguments for constructing Ai
via Ai.new(|Arrayi|). The latter relates to the calls self.B.new(|args|) and
Ai.new(|args|) of Figure 13.

Example 1:
C.new(“B”, [x,y,z]) ⇒
 B.new(x, y,z)

 A1.new()
 …

 AN.new()

With Ai equivalent to B the generic call pattern is:
C.new([“Ai”, [Ai args]] i:0...K)

Example 2:
C.new(“B”, [10], “A1”, [x,y,z] “A7”, [f(a)]) ⇒
 B.new(10)
 A1.new(x, y, z)

 A2.new()
 …

 A7.new(f(a))
 …

 AN.new()

Figure 13: The call pattern for the new method of the class object resulting from mixin composition.

8 SUMMARY AND CONCLUSIONS

We presented a new form of dynamic untyped object-based inheritance, as
implemented in the context of a language named Delta, relying on object trees and a
member resolution algorithm guaranteeing late-binding of inquired members to their
most-recent version. The proposed programming model emphasizes inheritance
associations adopting the metaphoric notions of ‘base’ and ‘derived’, offering a small
set of inheritance control functions for dynamic inheritance and un-inheritance.
Through a case scenario we show how the proposed inheritance model is: (a)
practically superior to embedding, as the latter is an excessively complicated
programming model for uninheritance and non-monotonic evolution of objects; and
(b) more appropriate than delegation, since, for certain generic scenarios, delegation
fails to support polymorphism due its parental lookup policy. Our approach of
explicitly introducing metaphoric notions of inheritance in an untyped inheritance
context, via a lookup algorithm preserving monotonicity at the metaphoric semantic
domain, reflects a programming model resembling that of class-based inheritance,
however, without compromising the compositional flexibility of untyped object-based
inheritance.

We consider the latter design decision as particularly advantageous. By adopting
standard notions of typed inheritance we offer a programming model relatively
familiar to programmers of class-based languages. Although such metaphoric notions
are not mapped to a type system, they are ‘semantically explicit’, since they are
reflected in the inheritance control functions and the member lookup algorithm. This
feature makes transitions among class-based and classless languages more natural,
even straightforward, in comparison to delegation and embedding languages.

We argue that untyped object-based inheritance deserves more attention,
primarily due to the increased possibilities for compositional schemes through
inheritance. Classes and inheritance always remain the primary design concepts,

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

usually implemented in most languages around prototype frameworks. As early
identified [Smith94], overemphasis on technical issues has led to numerous solutions
reflecting diverse programming models. Till today, little progress has been made
towards modeling and composition patterns over prototypes, while the impression that
prototypes are prototypical objects is still around. We have discussed why the latter is
a serious design misconception, demonstrating how dynamic mixin composition on
class objects is easily implemented through the proposed inheritance framework.

REFERENCES

[Abadi96] Martin Abadi, Luca Cardelli: ‘Object Protocols’, Chapter 3.5, ‘A Theory of
Objects’, Springer-Verlag, pp. 32-33, 1996.

[Agesen00] Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Hölzle,
John Maloney, Randall Smith, David Ungar, Mario Wolczko: ‘The SELF
4.1 Programmers Reference Manual’, 2000.

[Anderson02] Chris Anderson, Sophia Drossopoulou: ‘δ: an imperative object based
calculus with delegation’, Technical report available on-line from:
http://www.cee.hw.ac.uk/DART/publications/auto/And+Dro:delta-
2002.html, 2002.

[Blaschek91] Gunter Blaschek: ‘Type-Safe Object-Oriented Programming with
Prototypes - The Concepts of Omega’, Structured Programming Journal,
Vol. 12, No 1, pp. 217-226, 1991.

[Bracha90] Gillad Bracha, William Cook: ‘Mixin-based inheritance’. In proceedings
of the ACM ECOOP/OOPSLA’90 conference, 1990, pp 303 - 311.

[Cardelli95] Luca Cardelli: ‘A language with distributed scope’, ACM POPL’95
proceedings, pp. 286 – 297, 1995.

[Cardelli96] Luca Cardelli: ‘Object-based vs class-based languages’, ACM PLDI’96
Tutorial, 1996.

[Ierusalimschy03] Romeo Ierusalimschy: ‘Programming in Lua’, Book available on
line from http://www.lua.org/pil/, ISBN 85-903798-1-7, 2003.

[Kniesel00] Gunter Kniesel: ‘Darwin -- Dynamic Object-Based Inheritance with
Subtyping’. PhD thesis, CS Dept. III, University of Bonn, Germany, July
2000.

[Lieberman86] Henry Lieberman: ‘Using Prototypical Objects to Implement Shared
Behavior in Object-Oriented Systems’, ACM OOPSLA’86 Proceedings, pp.
214-223, 1986.

[Liskov87] Barbara Liskov: ‘Data Abstraction and Hierarchy’, ACM OOPSLA’87,
keynote, in ACM SIGPLAN Notices, Vol. 23, No. 5 (May 1987), pp. 17-
34, 1987.

[Meyer97] Bertrand Meyer: ‘Object-Oriented Software Construction’, Second
Edition, Prentice Hall, Santa Barbara, CA, 1997.

http://www.cee.hw.ac.uk/DART/publications/auto/And+Dro:delta-2002.html
http://www.cee.hw.ac.uk/DART/publications/auto/And+Dro:delta-2002.html
http://www.lua.org/pil/

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 121

[Ousterhout98] John K. Ousterhout: ‘Scripting:Higer-Level Programming for the 21st
Century’, IEEE Computer, March 1998, pp. 23-30, 1998.

[Smith94] Randall Smith, Lentczner Mark, Walter R. Smith, Antero Taivalsaari,
David Ungar: ‘Prototype-based languages: object lessons from class-free
programming’, Panel in ACM OOPSLA’94 Proceedings, pp. 102-112, 1994.

[Smith95] Randall B. Smith, David Ungar: ’Programming as an Experience: The
Inspiration for Self’, ECOOP’95 Proceedings, Springer LNCS Vol. 952,
pp. 303-330, 1995.

[Stein87] Lynn Andrea Stein: ‘Delegation is Inheritance’, ACM OOPSLA’87
Proceedings, pp. 138-146, 1987.

[Taivalsaari93] Antero Taivalsaari: ‘A critical view of inheritance and reusability in
object-oriented programming’, PhD Thesis, Jyvaskyla Studies in Computer
Science, Economics and Statistics 23, University of Jyvaskyla. Finland,
ISBN 951-34-0161-8, 1993.

Appendix

The isderived function
isderived (a, b) { Returns if a b

if b.Derived = a then Check if a b holds (i.e. directly derived)
return true

else {
for each x in a.Bases do Check if any of the base subobjects is derived from b

if isderived(x, b) then
return true

return false
}

}

The Delta language syntax
code ::= { [def] }
def ::= ([stmt] ‘;’ | func)
func ::= (funcprefix | methodprefix) funcdef
funcprefix ::= ‘function’ [id]
methodprefix ::= ‘method’
funcdef ::= ‘(‘ [id { ‘,’ id }] ‘)’ block
block ::= ‘{’ code ‘}’
funcexpr ::= ‘(‘ func ‘)’
stmt ::= (expr | whilest | forst | ifst | ‘break’ | ‘continue’ |
 ‘return’ [expr] | block | assertion |

‘const’ id ‘=’ expr | ‘try’ stmt ‘trap’ lval stmt |
‘throw’ expr)

whilest ::= while ‘(’ expr ‘)’ stmt | ‘do’ stmt ‘while’ ‘(‘ expr ‘)’
forst ::= ‘for’ ‘(’ exprlist ‘;’ expr ‘;’ exprlist ‘)’ stmt
ifst :: ‘if’ ‘(’ expr ‘)’ stmt [‘else’ stmt]
exprlist ::= [expr { ‘,’ expr }]
expr ::= (assign | primary | boolean | arith)
assign ::= (lval ‘= expr | lval ‘+= expr | lval ‘-=’ expr | ’ ’
 lval ‘*=’ expr | lval ‘/=’ expr)
lval ::= ([‘local’ | ‘static’ | ‘global’ | ‘::’] id | member)
member ::= (expr get id | expr subscr | expr get string)

AN ENHANCED FORM OF DYNAMIC UNTYPED OBJECT-BASED INHERITANCE

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

get ::= (‘.’ | ‘..’)
subscr ::= (‘[’ expr ‘]’ | ‘[[’ expr ‘]]’)
primary ::= (lval | lval (‘++’|‘--') | (‘++’|‘--') lval | ‘lambda’ |

const | callable)
object | ‘self’ | ‘arguments’ | ‘-’ expr | ‘not’ expr)

callable ::= (lval | ‘(’ expr ‘)’ | funcexpr | call)
call ::= callable ‘(’ [actual { ‘,’ actual }] ‘)’
actual ::= (pr | | | ex ‘ ’ expr ‘ ’)
const ::= ‘nil’ | ‘true’ | ‘false’ | number | string
boolean ::= expr boolop expr
arith ::= expr arithop expr
arithop ::= ‘+’ | ‘-‘ | ‘*’ | ‘/’ | ‘%’
boolop ::= ‘or’ | ‘and’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ‘!=’
object ::= ‘[’ ,’ slot}] ‘]’ [slot { ‘
slot ::= (‘{’ expr {‘,’ expr } ‘:’ slotval ‘}’ | slotval)
slotval ::= (expr | methoddef)
methoddef ::= ‘(’ ‘method’ funcdef ‘)’

assertion ::= ‘assert’ expr

Availability information
The Delta language (compiler, standard libraries, virtual machine), with the full
examples presented in this paper, are available (Windows only) via anonymous ftp
from the following address: http://www.ics.forth.gr/hci/files/plang/DELTA.ZIP. The
Delta IDE named Sparrow is available from http://139.91.186.232/sparrow-setup.exe
(installer, Windows only). The latter are only an initial packaging to allow
programmers or language developers have a hands-on experience with the language
and it’s IDE. Once the site for Delta is built, the Delta ftp address will contain the
necessary redirection information.

About the author

Anthony Savidis is an Associate Professor of ‘Programming
Languages and Software Engineering’ at the Department of Computer
Science, University of Crete, and the Technical Coordinator of the HCI
Laboratory, Institute of Computer Science - FORTH. His e-mail
address is as@ics.forth.gr

http://139.91.186.232/sparrow-setup.exe
mailto:as@ics.forth.gr

