
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 4, May-June 2008

Daniele Mazzeranghi: “Panda: a Pattern-based Programming System for Automatic Code
Generation”, in Journal of Object Technology, vol. 7, no. 4, May-June 2008, pp. 67-99
http://www.jot.fm/issues/issue_2008_05/article1

Panda: a Pattern-based Programming
System for Automatic Code Generation

Daniele Mazzeranghi, Softison, Italy

Abstract
This article provides an overview of a pattern-based programming system, named
Panda, for automatic generation of high-level programming language code. Many code
generation systems have been developed [2, 3, 4, 5, 6] that are able to generate source
code by means of templates, which are defined by means of transformation languages
such as XSL, ASP, etc. But these templates cannot be easily combined because they
map parameters and code snippets provided by the programmer directly to the target
programming language. On the contrary, the patterns used in a Panda program
generate a code model that can be used as input to other patterns, thereby providing an
unlimited capability of composition. Since such a composition may be split across
different files or code units, a high degree of separation of concerns [15] can be
achieved.
A pattern itself can be created by using other patterns, thus making it easy to develop
new patterns. It is also possible to implement an entire programming paradigm,
methodology or framework by means of a pattern library: design patterns [8], Design by
Contract [12], Aspect-Oriented Programming [1, 11], multi-dimensional separation of
concerns [13, 18], data access layer, user interface framework, class templates, etc.
This way, developing a new programming paradigm does not require to extend an
existing programming system (compiler, runtime support, etc.), thereby focusing on the
paradigm concepts.
The Panda programming system introduces a higher abstraction level with respect to
traditional programming languages: the basic elements of a program are no longer
classes and methods but, for instance, design patterns and crosscutting concerns [1,
11].

1 INTRODUCTION

Software programming based on traditional programming languages (such as C, C++,
Lisp, Prolog, Java, C#, etc.) is graphically represented in Figure 1 (where the C#
programming language has been used).

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

Figure 1: Manual coding process.

Such languages differ under several aspects:
• Abstraction level from the underlying hardware or operating system.
• Support for paradigms and methodologies.
• Extensive core libraries.

However, the size of equivalent real programs is not very different from language to
language. In other words, traditional programming languages are not able to automate
common repetitive programming tasks.

Many code generation systems have been developed [2, 3, 4, 5, 6] that are able to
generate source code by applying code templates, which are defined by means of
transformation languages such as XSL, ASP, etc. This new programming model is
sketched in Figure 2 (where the target programming language is C#).

Figure 2: Traditional code generation process.

Such code generation systems are able to generate very sophisticated code snippets,
including complete programs, in a variety of programming languages. Nevertheless, these
code templates cannot be easily combined because they map parameters and code
snippets provided by the programmer directly to the target programming language. In

Programmer C# files

C# compiler.NET
Assembly

Template
(XSL, ASP)

C# files

C# compiler .NET
Assembly

Template
parameters

Programmer

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 69

order to modify or extend the generated code, the programmer may edit either the
template code or directly the generated code.

The former approach may require a deep understanding of the template structure;
furthermore, the template source code could not be available. The latter option is suitable
for small changes since the transformation engine cannot be exploited; furthermore, such
changes have to be repeated if the template is applied again, due to changes in the
template parameters or in the template code itself. However, some of the code generation
systems are able to keep certain kinds of manual changes to the generated code if the
template is applied afterwards.

Moreover, template code itself could benefit by the transformation engine, but code
generation systems do not usually provide support for meta-templates which generate
code templates.

Panda (Pattern Network Development Assistant) is a pattern-based programming
system for automatic generation of high-level programming language code. This system
attempts to inherit the capability to automate repetitive programming tasks from
traditional code generation systems together with the expressive power of programming
languages.

A Panda pattern may be classified as functional or procedural. A functional pattern
generates an instance of a code model that can be used as input to another functional
pattern or may be modified by a procedural pattern, thereby providing an unlimited
capability of composition (see Figure 3).

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

Figure 3: Panda code generation process.

Since such a composition may be split across different files or code units, a high degree
of separation of concerns [15] can be achieved.

In order to extend, for example, a Java programming environment with Design by
Contract [12], several approaches have been followed, but nearly everyone makes use of
a different technology, such as extending preprocessor, compiler or runtime support.
Such approaches are very complex and most of development time is spent on integration
details instead of focusing on the paradigm concepts. Moreover, two different paradigms
that make use of different technologies cannot be likely used at the same time.

On the contrary, Panda makes it possible to create a pattern itself by using other
patterns, thus making it easy to develop new patterns. Moreover, an entire programming
paradigm, methodology or framework can be easily implemented by developing a small
library of patterns. As a consequence, Panda makes it possible to focus on the paradigm
concepts instead of the implementation details. Furthermore, several paradigms may be
used at the same time by simply joining the corresponding pattern libraries.

Some examples of paradigms and frameworks that can be easily implemented in
Panda follow:

• Design patterns [8].
• Design by Contract [12].

Panda
Pattern 1

C# code
model 1

Panda
Pattern N

C# code
model N

Pattern
parameters

Programmer

Panda code
processor

C# files

C# compiler

.NET
assembly

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 71

• Aspect-Oriented Programming [1, 11].
• Multi-dimensional separation of concerns [13, 18].
• Data access layer.
• User interface framework.
• Class templates [7, 16].

2 SYSTEM ARCHITECTURE

The Panda programming system executes Panda programs by means of a runtime support
(RTS), implemented in a given programming language or framework (RTSL). The RTS
is responsible for connecting the elements of a Panda program, listed in the following:

• A set of RTS-based patterns, each of which is defined by a class implemented in
the RTSL.

• A set of language-based patterns, each of which is defined by a Panda statement
(where, in turn, both RTS-based and language-based patterns can be used).

• A sequence of Panda statements which are executed by the RTS by calling the
referenced patterns; the result of this execution is a set of RTSL objects which
represent the code to be generated.

• A code processor which generates the target code by processing the RTSL objects
created by the RTS.

.NET and Java are examples of RTSL.
Some examples of patterns are listed in the following:

• Patterns for creating and modifying code elements (such as classes and methods)
of an object-oriented language (such as, for instance, C#, Visual Basic .NET,
Java, etc.).

• Patterns for creating and modifying SQL Server scripts.
• Design by Contract patterns [12].
• Patterns for applying design patterns [8].
• Patterns for generating a Windows user interface (by creating, for instance, C#

Windows Forms).
• Patterns for generating a Web user interface (by creating, for instance, ASP.NET

pages).
• Patterns for generating a data access layer (by using, for instance, the ADO.NET

framework).
• Aspect-Oriented Programming patterns.

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

• Patterns for implementing subject-oriented programming and multi-dimensional
separation of concerns.

Some examples of code represented by RTSL objects follow:
• C#, Visual Basic .NET, etc.
• ASP.NET.
• Java.
• SQL Server script.

Some examples of code processors are shown in the following:
• Generator of .NET source files (C#, Visual Basic .NET, etc.).
• Generator of Visual Studio .NET solutions.
• Generator of .NET assemblies (both libraries and applications).
• Generator of Java source files.
• Generator of SQL Server script files.

Figure 3 illustrates an example of execution of a Panda program where the following
elements are involved:

• .NET RTSL.
• C# RTSL objects.
• Generator of .NET assemblies.

These elements will also be used in the examples described in the following sections. A
Panda IDE (Integrated Development Environment) implementing such elements is
available for download from the Panda Web site [14].

3 EXAMPLES OF PANDA PROGRAMS

Some examples of Panda programs which generate C# code are described in this section.
The first example is a very simple program which represents an empty class (Player1)
by using the functional EmptyClass pattern:

generate EmptyClass(ClassName = "Player1")

Such a program generates the following C# code:
public class Player1

{

}

This simple example corresponds to the typical philosophy of traditional code generation
systems.
By using the procedural AddReadWriteField pattern together with the EmptyClass
pattern, the following Panda program represents the Player2 class containing the Name

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 73

property (the AddReadWriteField pattern adds a C# field together with a get/set
property, given its name and type):

generate AddReadWriteField

(

 SourceType = EmptyClass("Player2"),

 PropertyName = "Name",

 FieldType = "String"

)

that corresponds to the following C# code:

public class Player2

{

 private String m_Name;

 public String Name

 {

 get

 {

 return this.m_Name;

 }

 set

 {

 this.m_Name = value;

 }

 }

}

This simple example is already sufficient to show the composition capabilities of the
Panda language: the output of the EmptyClass pattern becomes one of the inputs of the
AddReadWriteField pattern.
The procedural AddCSharpMethod pattern can be used to add the ToString method:

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

generate AddCSharpMethod

(

 SourceType = AddReadWriteField

 (

 SourceType = EmptyClass("Player3"),

 PropertyName = "Name",

 FieldType = "String"

),

 MethodCode =

 #

 public override String ToString()

 {

 return m_Name;

 }

 #

)

Pattern parameters can be specified either by name or position (see, respectively, the
PropertyName parameter of the AddReadWriteField pattern and the ClassName
parameter of the EmptyClass pattern). Primitive values (strings, numbers, source code
in another programming language, etc.) are specified by using a delimiter character,
which can be either the quote character (") or the sharp character (#). The square brackets
are used for specifying a list of values.
In order to improve the readability of a Panda program, the chain keyword can be used,
that makes it possible to omit the assignment of the first parameter. For instance, the
previous example can be improved as follows, where the SourceType parameter of the
AddReadWriteField and AddCSharpMethod patterns is omitted:

generate chain

(

 EmptyClass("Player4")

 AddReadWriteField

 (

 PropertyName = "Name",

 FieldType = "String"

)

 AddCSharpMethod

 (

 #

 public override String ToString()

 {

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 75

 return m_Name;

 }

 #

)

)

4 EXAMPLE OF PATTERN CREATION

RTS-based patterns are mainly used for simple basic patterns (such as, for instance, the
AddReadWriteField pattern) and performance-critical patterns (such as, for instance,
the AddCSharpMethod pattern). A pattern may be defined by using a generic software
development tool able to generate a module compatible with the RTSL. Alternatively,
you can write a Panda program and use a code processor which generates modules
compatible with the RTSL. In both cases, several coding conventions have to be followed
(involving the base class and the public properties).

Language-based patterns are mainly used for large pattern libraries (such as, for
instance, a pattern library for generating a Web user interface), since they are more
intuitive with respect to RTS-based patterns:

• no coding conventions are required since the Panda language provides explicit
keywords and statements;

• the definition of a language-based pattern can include previously created patterns
(both RTS-based and language-based);

• the definition of a language-based pattern does not depend on a particular RTSL;
• the default value of a pattern parameter may be specified.

A typical example of code generation is described in this section: a strongly-typed C#
collection [7]. The Stack1 pattern is defined as follows, where the functional
pattern statement has been used:

define StackClass =

 public class StackClass

 {

 private StackSlot m_TopSlot;

 public StackClass()

 {

 }

 public ElementType Pop()

 {

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

 ElementType l_TopElement = m_TopSlot.Element;

 m_TopSlot = m_TopSlot.NextSlot;

 return l_TopElement;

 }

 public void Push(ElementType p_NewElement)

 {

 StackSlot l_NewSlot =

 new StackSlot(p_NewElement, m_TopSlot);

 m_TopSlot = l_NewSlot;

 }

 private class StackSlot

 {

 private ElementType m_Element;

 private StackSlot m_NextSlot;

 public StackSlot(

 ElementType p_Element, StackSlot p_NextSlot)

 {

 m_Element = p_Element;

 m_NextSlot = p_NextSlot;

 }

 public ElementType Element

 {

 get

 {

 return m_Element;

 }

 set

 {

 m_Element = value;

 }

 }

 public StackSlot NextSlot

 {

 get

 {

 return m_NextSlot;

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 77

 }

 set

 {

 m_NextSlot = value;

 }

 }

 }

 }

functional pattern Stack1(StackClassName, ElementType) =

 ExecuteCSharpFunction

 (

 Code = ImportCSharpMethod

 (

 #

 TypeDefinition Stack1(

 String p_StackClassName,

 String p_ElementType,

 TypeDefinition p_StackClass)

 {

 p_StackClass.ReplaceToken(

 "ElementType", p_ElementType);

 p_StackClass.ReplaceToken(

 "StackClass", p_StackClassName);

 return p_StackClass;

 }

 #

),

 Parameters =

 [

 StackClassName,

 ElementType,

 ImportCSharpType(StackClass)

]

)

The StackClass class, together with the StackSlot nested class, represents a simple
implementation of a stack containing generic objects of type ElementType.

The definition of the Stack1 pattern makes use of the ExecuteCSharpFunction
pattern, which compiles and executes the C# method specified in the Code parameter (the

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

method's parameters are provided by means of the Parameters parameter). The object
returned by the method (a TypeDefinition object in this case) is, in turn, returned by
the ExecuteCSharpFunction pattern and, afterwards, by the Stack1 pattern.
Therefore, the ExecuteCSharpFunction pattern makes it possible to achieve the same
expressive power of RTS-based patterns without requiring a C# IDE, at the price of a
worse performance.

The ReplaceToken method (available in every class of the DotNetCode
namespace for performing text replacements) is used to insert the name of the specific
stack class and the name of the specific type of stack elements.

The Stack1 pattern can be used in the following Panda program to generate a stack
of Player objects:

generate Stack1("PlayerStack", "Player")

Nevertheless, the implementation of the Stack1 pattern is not very different from an
RTS-based pattern, since it is based on the ExecuteCSharpFunction pattern. Actually,
the Stack1 pattern can also be implemented by combining basic patterns as follows:

functional pattern Stack2(StackClassName, ElementType) =

 chain

 (

 ImportCSharpType(StackClass)

 ReplaceToken("StackClass", StackClassName)

 ReplaceToken("ElementType", ElementType)

)

You can find other and more complex examples of pattern definitions in the Panda
samples available for download from the Panda Web site [14]. Such patterns are used to
generate a typical three-tier C# application, which makes use of the ADO.NET and
Windows Forms frameworks.

5 EXAMPLES OF PANDA LIBRARIES

The following sections will explain how some widespread programming paradigms can
be implemented by means of small pattern libraries.

Multi-dimensional separation of concerns

Panda can be used to achieve multi-dimensional separation of concerns [13, 18] (an
evolution of Subject-Oriented Programming [9, 17]), which will be explained by means
of a class hierarchy for parsing and processing a mathematical expression language [18].
Such a hierarchy is made up of the following classes: Expression, Number,
BinaryOperator, Plus, Minus, UnaryOperator, UnaryPlus, UnaryMinus. For

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 79

each class, the following virtual methods are defined, as well constructors and properties:
Eval, SyntaxCheck, Display, Process. If a virtual method for semantic or style
checking has to be added to this hierarchy, all classes have to be modified. The Visitor
design pattern [8] achieves multi-dimensional separation of concerns, but it presents the
following limitations:

• The resulting code structure is rather complex.
• This design pattern must be applied before starting the development of the virtual

methods (otherwise, a refactoring is required).
• If a new class representing a new mathematical expression is introduced, the

classes which implement this design pattern have to be modified; therefore the
separation of concerns holds for the virtual methods but not for the mathematical
hierarchy.

• This design pattern does not support any composition of the virtual methods, that
could be useful, for instance, for defining an overall checking which includes the
syntax and semantic checkings.

Hyper/J [10] is a tool that extends the Java language with a support for multi-dimensional
separation of concerns. This tool makes it possible to group Java code snippets into
hyperslices which can be combined to generate the requested class hierarchy. In the
mathematical expression example, the following hyperslices may be defined [18]:

• Kernel slice, which contains constructors and properties.
• Display slice, which contains the Display methods.
• Evaluation slice, which contains the Eval methods.
• Syntax Check slice, which contains the Check methods for syntax checking.

together with a rule for composing them. Every slice contains a separate Java code
snippet for each mathematical class, thus fully achieving separation of concerns. For
example, if a Check virtual method for semantic checking has to be introduced, a new
slice is added. If a new mathematical expression is introduced, all slices have to be
modified, but by adding separate code snippets.
Panda, too, is able to fully achieve separation of concerns in the following way:

• As usual, a separate chain statement is used for each mathematical class.
• Each method of each slice is specified in a separate execute statement, which

makes use of the AddCSharpMethod pattern.
• The rule for composing the hyperslices is implemented by a specific pattern

(MergeMethods).
The Kernel slice can be implemented in Panda as follows (constructors and properties
have been omitted):

define Expression = chain

(

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

 EmptyClass("Expression")

 MakeTypeAbstract()

)

define Number = chain

(

 EmptyClass("Number")

 AddBaseType("Expression")

)

define BinaryOperator = chain

(

 EmptyClass("BinaryOperator")

 AddBaseType("Expression")

)

define Plus = chain

(

 EmptyClass("Plus")

 AddBaseType("BinaryOperator")

)

define Minus = chain

(

 EmptyClass("Minus")

 AddBaseType("BinaryOperator")

)

define UnaryOperator = chain

(

 EmptyClass("UnaryOperator")

 AddBaseType("Expression")

)

define UnaryPlus = chain

(

 EmptyClass("UnaryPlus")

 AddBaseType("UnaryOperator")

)

define UnaryMinus = chain

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 81

(

 EmptyClass("UnaryMinus")

 AddBaseType("UnaryOperator")

)

The code of the Display slice follows, where the implementation of the methods has been
omitted (the code of the Evaluation slice is analogous):

execute AddCSharpMethod

(

 Expression,

 #

 public void Process()

 {

 Display();

 }

 #

)

execute AddCSharpMethod

(

 Expression,

 #

 public abstract void Display();

 #

)

execute AddCSharpMethod

(

 Number,

 #

 public override void Display()

 {

 }

 #

)

execute AddCSharpMethod

(

 BinaryOperator,

 #

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

 public override void Display()

 {

 }

 #

)

execute AddCSharpMethod

(

 Plus,

 #

 public override void Display()

 {

 }

 #

)

execute AddCSharpMethod

(

 Minus,

 #

 public override void Display()

 {

 }

 #

)

execute AddCSharpMethod

(

 UnaryOperator,

 #

 public override void Display()

 {

 }

 #

)

execute AddCSharpMethod

(

 UnaryPlus,

 #

 public override void Display()

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 83

 {

 }

 #

)

execute AddCSharpMethod

(

 UnaryMinus,

 #

 public override void Display()

 {

 }

 #

)

The code of the Syntax Check slice follows (the implementation of the methods has been
omitted):

execute AddCSharpMethod

(

 Expression,

 #

 public void Process()

 {

 Check();

 }

 #

)

execute AddCSharpMethod

(

 Expression,

 #

 public abstract void Check();

 #

)

execute AddCSharpMethod

(

 Number,

 #

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

 public override void Check()

 {

 }

 #

)

execute AddCSharpMethod

(

 BinaryOperator,

 #

 public override void Check()

 {

 }

 #

)

execute AddCSharpMethod

(

 Plus,

 #

 public override void Check()

 {

 }

 #

)

execute AddCSharpMethod

(

 Minus,

 #

 public override void Check()

 {

 }

 #

)

execute AddCSharpMethod

(

 UnaryOperator,

 #

 public override void Check()

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 85

 {

 }

 #

)

execute AddCSharpMethod

(

 UnaryPlus,

 #

 public override void Check()

 {

 }

 #

)

execute AddCSharpMethod

(

 UnaryMinus,

 #

 public override void Check()

 {

 }

 #

)

The names of the methods defined in the Semantic Check slice are identical to those
defined in the Syntax Check slice. Therefore, the MergeMethods pattern renames the
conflicting methods and creates a new method which calls them. Such a pattern is applied
as follows:

execute MergeMethods

(

 TypeList =

 [

 Expression,

 Number,

 BinaryOperator, Plus, Minus,

 UnaryOperator, UnaryPlus, UnaryMinus

],

 Methods = ["Check", "Process"]

)

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

The resulting C# code follows (only the Expression and Number classes are shown):

public abstract class Expression

{

 private void Process_1()

 {

 Display();

 }

 public abstract void Display();

 private void Process_2()

 {

 Eval();

 }

 public abstract void Eval();

 private void Process_3()

 {

 Check();

 }

 public abstract void Check();

 public void Process()

 {

 Process_1();

 Process_2();

 Process_3();

 }

}

public class Number : Expression

{

 public override void Display()

 {

 }

 public override void Eval()

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 87

 {

 }

 private void Check_1()

 {

 }

 private void Check_2()

 {

 }

 public override void Check()

 {

 Check_1();

 Check_2();

 }

}

Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [1, 11] is a programming paradigm for achieving
separation of crosscutting concerns, such as tracing of method calls. A crosscutting
concern is defined by an aspect, which is made up of a pointcut and an advice. A pointcut
is a collection of joint points, each of which represents a point in the execution of a
program, such as method calls, field assignments, etc. An advice specifies the code to be
executed when one of the joint points is reached.

AOP can be easily applied to several widespread concerns:
• Tracing.
• Profiling.
• Logging.
• Security.
• Persistence.
• Caching.
• Consistency checking.

AOP can be easily implemented by means of a library of Panda patterns. One of them
will be applied to a very simple mathematical library, whose methods may be called only
if the library is properly licensed. Given the following Panda code which represents the
C# classes of the mathematical library:

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

define BasicMath = chain

(

 EmptyClass("BasicMath")

 AddCSharpMethod

 (

 #

 public Double Square(Double p_Number)

 {

 return Raise(p_Number, 2);

 }

 #

)

 AddCSharpMethod

 (

 #

 public Double Cube(Double p_Number)

 {

 return Raise(p_Number, 3);

 }

 #

)

 AddCSharpMethod

 (

 #

 private Double Raise(Double p_Base, Double p_Exponent)

 {

 return Math.Pow(p_Base, p_Exponent);

 }

 #

)

)

define AdvancedMath = chain

(

 EmptyClass("AdvancedMath")

 AddCSharpMethod

 (

 #

 public Double Cos(Double p_Number)

 {

 return Math.Cos(p_Number);

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 89

 }

 #

)

)

define MathLibraryLicensing = chain

(

 EmptyClass("MathLibraryLicensing")

 AddCSharpMethod

 (

 #

 public static void CheckLicense()

 {

 // ...

 }

 #

)

)

the following Panda code adds license checking at the beginning of all public methods,
by using the BeforeExecutionAspect AOP pattern:

execute BeforeExecutionAspect

(

 TargetTypes = [BasicMath, AdvancedMath],

 Pointcut = "public * *.*(..)",

 Advice = # MathLibraryLicensing.CheckLicense(); #

)

as shown by the resulting C# code:

public class BasicMath

{

 public Double Square(Double p_Number)

 {

 MathLibraryLicensing.CheckLicense();

 return Raise(p_Number, 2);

 }

 public Double Cube(Double p_Number)

 {

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

 MathLibraryLicensing.CheckLicense();

 return Raise(p_Number, 3);

 }

 private Double Raise(Double p_Base, Double p_Exponent)

 {

 return Math.Pow(p_Base, p_Exponent);

 }

}

public class AdvancedMath

{

 public Double Cos(Double p_Number)

 {

 MathLibraryLicensing.CheckLicense();

 return Math.Cos(p_Number);

 }

}

public class MathLibraryLicensing

{

 public static void CheckLicense()

 {

 // ...

 }

}

Design by Contract

Design by Contract [12] could be implemented by means of the AOP patterns presented
in the previous section. However, creating a specific Panda pattern library simplifies the
application of consistency checking.

For example, the AddInvariantCondition pattern could be defined that adds a
given condition involving the fields of a given class to the class itself (inside a method
conventionally named Invariant), whereas the AddInvariantChecking pattern is
used to execute the Invariant method in every public or internal method or property.
These two patterns can be used to check the content of the m_Name field of the Player5
class:

generate chain

(

 EmptyClass("Player5")

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 91

 AddReadWriteField

 (

 PropertyName = "Name",

 FieldType = "String"

)

 AddCSharpMethod

 (

 #

 public Player5(String p_Name)

 {

 m_Name = p_Name;

 }

 #

)

 AddCSharpMethod

 (

 #

 public override String ToString()

 {

 return m_Name;

 }

 #

)

 AddInvariantCondition

 (

 "m_Name != null && m_Name.Length > 0"

)

 AddInvariantChecking()

)

as shown by the resulting C# code:

public class Player5

{

 private String m_Name;

 public String Name

 {

 get

 {

 try

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

 {

 this.Invariant();

 return this.m_Name;

 }

 finally

 {

 this.Invariant();

 }

 }

 set

 {

 try

 {

 this.Invariant();

 this.m_Name = value;

 }

 finally

 {

 this.Invariant();

 }

 }

 }

 public Player5(String p_Name)

 {

 try

 {

 m_Name = p_Name;

 }

 finally

 {

 this.Invariant();

 }

 }

 public override String ToString()

 {

 try

 {

 this.Invariant();

 return m_Name;

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 93

 }

 finally

 {

 this.Invariant();

 }

 }

 public void Invariant()

 {

 if (!(m_Name != null && m_Name.Length > 0))

 throw new System.ApplicationException(

 @"The following invariant condition has been violated:

 m_Name != null && m_Name.Length > 0.");

 }

}

Design Patterns

The design patterns presented in [8] can be applied more easily by means of a Panda
pattern library. For example, the Decorator design pattern applied to a drawing library is
sketched in Figure 4.

Figure 4: The Decorator design pattern.

VisualComponent

VisualComponentDecorator

BorderDecorator

TextView

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

The VisualComponentDecorator class contains a field of type VisualComponent
and a virtual method for each method of the VisualComponent interface. Such virtual
methods provide the default behaviour of a decorator class, by forwarding any method
call to the object of type VisualComponent. Hence, the BorderDecorator class
overrides only the VisualComponent methods involved in drawing a border.
The VisualComponentDecorator class can be generated automatically by means of a
Panda pattern (AbstractDecorator), applied to the VisualComponent interface as
follows:

define VisualComponent = ImportCSharpType

(

 public interface VisualComponent

 {

 void Draw(System.Drawing.Graphics p_Graphics);

 Boolean IsEnabled();

 }

)

define VisualComponentDecorator = AbstractDecorator

(

 "VisualComponentDecorator",

 VisualComponent

)

As a consequence, the definition of the IsEnabled method may be omitted from the
definition of the BorderDecorator class:

define BorderDecorator = ImportCSharpType

(

 public class BorderDecorator : VisualComponentDecorator

 {

 private Int32 m_Width;

 public BorderDecorator(

 VisualComponent p_VisualComponent, Int32 p_Width) :

 base(p_VisualComponent)

 {

 m_Width = p_Width;

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 95

 }

 public override void Draw(

 System.Drawing.Graphics p_Graphics)

 {

 base.Draw(p_Graphics);

 DrawBorder(p_Graphics);

 }

 private void DrawBorder(

 System.Drawing.Graphics p_Graphics)

 {

 // ...

 }

 }

)

that generates the following C# code:

public interface VisualComponent

{

 void Draw(System.Drawing.Graphics p_Graphics);

 Boolean IsEnabled();

}

public abstract class VisualComponentDecorator :

 VisualComponent

{

 private VisualComponent m_DecoratedObject;

 protected VisualComponentDecorator(

 VisualComponent p_DecoratedObject)

 {

 m_DecoratedObject = p_DecoratedObject;

 }

 public virtual void Draw(System.Drawing.Graphics p_Graphics)

 {

 m_DecoratedObject.Draw(p_Graphics);

 }

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

 public virtual Boolean IsEnabled()

 {

 return m_DecoratedObject.IsEnabled();

 }

}

public class BorderDecorator : VisualComponentDecorator

{

 private Int32 m_Width;

 public BorderDecorator(

 VisualComponent p_VisualComponent, Int32 p_Width) :

 base(p_VisualComponent)

 {

 m_Width = p_Width;

 }

 public override void Draw(

 System.Drawing.Graphics p_Graphics)

 {

 base.Draw(p_Graphics);

 DrawBorder(p_Graphics);

 }

 private void DrawBorder(System.Drawing.Graphics p_Graphics)

 {

 // ...

 }

}

6 CONCLUSIONS

Tha main benefit of the Panda programming system is to increase the abstraction level of
software programs. Instead of talking about classes, fields, methods, etc., a Panda
program is made up of decorators, tracing of method calls, data layers and user interfaces
derived from a business layer, etc. Hence, adopting Panda requires a new approach to
software development, that can be followed in different ways:

• Development of a new project by using only Panda code: only the Panda IDE is
required and all Panda features can be exploited.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 97

• Import, in a new Panda project, of an existing project (developed, for instance, in
C#), extended by using only Panda code: only the Panda IDE is required and the
legacy code can be both extended (by generating new classes) and enriched (for
instance by means of Design by Contract patterns), but applying a pattern to the
legacy code is more tricky.

• Extension of an existing project by using both a traditional language and Panda:
handling the legacy code is tricky as before and, furthermore, a Panda add-in for a
traditional IDE is required.

However, this is just the first stage of the Panda programming system, which could
evolve in several directions:

• Development of pattern libraries for the programming paradigms or frameworks
presented in this article: Design patterns, Design by Contract, Aspect-Oriented
Programming, Multi-dimensional separation of concerns, etc.

• Development of pattern libraries for other widespread programming paradigms or
frameworks: three-tier architectures, ASP.NET, multithreading, unit testing
(including user interface modules), the model-view-controller pattern, etc.

• Development of statement-level patterns (such as, for instance, executing a given
C# code snippet for each element of an array).

• Development of patterns for crosscutting concerns (tracing, profiling, caching,
etc.).

• Evolution of the Panda language (such as pattern inheritance).
• Support for other target programming languages (Visual Basic .NET, Java, C++,

etc.).
• Introduction of new code processors (such as, for instance, a generator of

ASP.NET pages).
• Enhancement of the C# Panda IDE.
• Integration of Panda in other development tools (such as, for instance, Microsoft

Visual Studio .NET).
• Graphic designer to simplify pattern definition, particularly for template-like

patterns.

OVERVIEW OF THE PANDA PROGRAMMING SYSTEM

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 4

REFERENCES

[1] AspectJ Web site: http://www.eclipse.org/aspectj/.

[2] Code Generation Network Web site: http://www.codegeneration.net.

[3] CodeCharge Web site: http://www.codecharge.com.

[4] CodeSmith Web site: http://www.codesmithtools.com.

[5] Codify Web site: http://www.workstate.com/codify/.

[6] DeKlarit Web site: http://www.deklarit.com.

[7] Ecma International. "C# Language Specification". Standard ECMA-334:
http://www.ecma-international.org/publications/standards/Ecma-334.htm,
2006.

[8] Gamma E., Helm R., Johnson R. and Vlissides J. "Design Patterns: Elements
of Reusable Object-Oriented Software". Addison-Wesley, 1995.

[9] Harrison W. and Ossher H. "Subject-Oriented Programming (A Critique of
Pure Objects)". Proceedings of the eighth annual conference on Object-
oriented programming systems, languages, and applications: 411-428, 1993.

[10] Hyper/J Web site: http://www.alphaworks.ibm.com/tech/hyperj/.

[11] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J. and
Irwin J. "Aspect-Oriented Programming". Proceedings of the European
Conference on Object-Oriented Programming: 220-242, 1997.

[12] Meyer B. "Object-Oriented Software Construction (2nd Edition)". Prentice-
Hall, 1997.

[13] Multi-Dimensional Separation of Concerns Web site:
http://www.research.ibm.com/hyperspace/.

[14] Panda Web site: http://www.softison.com/panda/.

[15] Parnas D. L. "On the Criteria To Be Used in Decomposing Systems into
Modules". Communications of the ACM, 15 (12): 1053-1058, 1972.

[16] Stroustrup B. "The C++ Programming Language (3rd Edition)". Addison-
Wesley, 1997.

[17] Subject-Oriented Programming Web site: http://www.research.ibm.com/sop/.

[18] Tarr P., Ossher H., Harrison W. and Sutton S. "N degrees of separation:
multi-dimensional separation of concerns". Proceedings of the 21st
international conference on Software engineering: 107-119, 1999.

VOL. 7, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 99

About the author
Daniele Mazzeranghi is a software developer with over 10 years of
industrial experience. He has recently founded the Softison company to
develop, patent and market the Panda programming system. His
interests include object-oriented programming, code generation systems
and the .NET framework. He can be reached at
daniele.mazzeranghi@softison.com. See also www.softison.com.

