
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 3, March-April 2008

Cite this column as follows: Richard Wiener: “Arithmetic Function Interpreter in C# 3.0 Using
Lambda Expression Trees”, vol. 7, no. 3, March - April 2008, pp 41 - 48
http://www.jot.fm/issues/issue_2008_03/column4/

EDUCATOR’S CORNER

Arithmetic Function Interpreter in C# 3.0
Using Lambda Expression Trees

Richard Wiener, Editor-in-Chief, JOT, Chair, Department of Computer Science,
University of Colorado at Colorado Springs

1 INTRODUCTION

Lambda expressions and expression trees are among several important new features in
the recently released C# 3.0/.NET 3.5 framework.

An example of a lambda expression that defines a function, g(x) = 2 * x * x + 3 * x +
10 is:

Func<double, double> g = x => 2 * x * x + 3 * x + 10;
double value = g(1); // Evaluates the function when x = 1

Here the first generic parameter indicates that the independent variable, x, is of type
double and the second generic parameter, of type double, is the return type.

In general a lambda expression is written as a parameter list, followed by the =>
token, followed by an expression or a statement block.

Expression trees, another new C# 3.0 feature, allow lambda expressions to be
represented as data structures instead of executable code. Expression trees are “efficient
in-memory data representations of lambda expressions and make the structure of the
expression transparent and explicit” (Microsoft C# 3.0 Specifications --
http://msdn2.microsoft.com/en-us/library/ms364047(vs.80).aspx#cs3spec_topic9).

An expression tree could be defined as follows:

Expression<Func<double, double>> expr = x => 2 * x * x + 3 * x
+ 10;

The variable, expr, is data and may be stored or sent to a remote computer. There it may
be “compiled” and converted back to an executable function. This can be accomplished
as follows:

A NEW SOFTWARE DEVELOPMENT PROJECT USING AN OLD GAME

42 JOURNAL OF OBJECT TECHNOLOGY VOL.7, NO. 3

Func<double, double> h = expr.Compile();
Console.WriteLine("h(2) = " + h(2));

2 THE PROBLEM

A classic problem in data structure theory is the dynamic evaluation of arithmetic
functions. Here the user inputs as a string an arithmetic expression containing constants,
parenthesees, one independent variable, say x, and combines these using the operators
‘+’, ‘-‘, ‘*’ and ‘/’. Some examples of such arithmetic functions would be:

1. “3 * x * x + 3 * x + 10”
2. “4 / (2 * x – 10) * x * x”
3. “(2 * x + 5) * (6 * x – 25) / (2 * x + 4)”
4. “4 * (x + 3)”
5. “4 * x + 3”

Since these functions are input as the program is running the challenge is to be able to
dynamically convert each string representation of a function to an internal structure that
permits the function to be evaluated for arbitrary values of the independent variable x. In
other words we wish to be able to implement dynamic function evaluation.

3 CLASSIC SOLUTION

A classic approach to performing dynamic function evaluation is to first convert the
arithmetic expression from its original infix format to postfix. In postfix format, there are
no parenthese. Combinations of operands are followed by the appropriate operator.

Consider as examples functions 4 and 5 given above.
The expression 4 * (x + 3) may be expressed as 4x3+* in postfix format. Reading

from right to left, the operands x and 3 are combined using ‘+’ and the sum combined
with the operand 4 using ‘*’.

The expression 4 * x + 3 may be expressed as 4x*3+ in postfix format. Here the
operands 4 and x are combined using ‘*’ and the result combined with the operand 3
using ‘+’.

Once the postfix expression is obtained, a relatively simple algorithm may be used to
evaluate the postfix expression. The symbols in the postfix expression are read from left
to right. If an operand symbol is read its value (or symbol if it is the independent variable
x) is pushed onto a stack. If an operator symbol is read, the stack is popped twice and the
two values returned are operated on by the operator symbol and the result pushed back
onto the stack. After all the symbols in the postfix string have been read the stack is

VOL. 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 43

popped one final time to return the result to the user. It should be simple to see this
algorithm in action for the two postfix strings given above.

Consider the postfix string 4x*3+. The first two symbols are operands and are
pushed onto the stack. The third symbol is an operator so the first two operands are
popped from the stack and combined using the ‘*’ operator producting 4 * x. This value
is pushed back onto the stack. Then the next operand, 3, is pushed onto the stack.
Finally, the operator ‘+’ causes the two values 4 * x and 3 to be popped and combined
with the operator ‘+’ producing the value 4 * x + 3 which is pushed onto the stack. Since
there are no further symbols, this final value is popped and returned to the user.

Further discussion and implementation details in C# may be found in the book
Modern Software Development Using C#/.NET by Richard Wiener, published by
Thompson in 2007. See pages 604 – 613 for complete details.

4 SOLUTION USING LAMBDA EXPRESSION TREES

Here it is assumed that the method InfixToPostfix() returns the postfix format for the
input function in the postfix field of the class.

Using various static methods from the new C# 3.0 class Expression, an expression
tree, result, is obtained. The mechanism follows the algorithm for the evaluation of a
postfix expression discussed above.

The expression tree, result, is converted to the executable code that the user can use
to dynamically evaluate the input function as follows:

Expression<Func<double, double>> e =
 Expression.Lambda<Func<double, double>>(result, X);
Func<double, double> f = e.Compile();
return f;

Here the result of non-generic type Expression is converted to a generic Expression with
parameterized type Func<double, double> using the static method Lambda as shown
above. Once obtained, it is converted to executable code using the Compile() method.

The complete details are given below in Listing 1.

Listing 1 – Class FunctionEvaluate
public class FunctionEvaluate {
 // Fields
 private String constant = "";
 private String infix;
 private String postfix;
 private ParameterExpression X =
 Expression.Parameter(typeof(double), "X");
 private List<char> operatorList = new List<char>(
 new char[] { '+', '-', '*', '/', '(', ')' });

A NEW SOFTWARE DEVELOPMENT PROJECT USING AN OLD GAME

44 JOURNAL OF OBJECT TECHNOLOGY VOL.7, NO. 3

public Func<double, double> ConstructFunction(String
function){

 infix = function.ToUpper();
 InfixToPostfix();
 Stack<Expression> stack = new Stack<Expression>();

 for (int postFixIndex = 0; postFixIndex <
 postfix.Length;
 postFixIndex++) {
 char ch = postfix[postFixIndex];
 if (!operatorList.Contains(ch)) {
 if (ch != 'X') {
 if (postfix[postFixIndex + 1] != 'X' &&
 !operatorList.Contains(postfix[postFixIndex
 + 1])) {
 constant += ch;
 } else {
 stack.Push(
 Expression.Constant(
 Convert.ToDouble(constant + ch)));
 }
 } else if (ch == 'X') {
 stack.Push(X);
 constant = "";
 }
 } else if (operatorList.Contains(ch)) {
 constant = "";
 Expression operand1 = stack.Pop();
 Expression operand2 = stack.Pop();
 switch (ch) {
 case '+':
 stack.Push(
 Expression.Add(operand2,
 operand1));
 break;
 case '-':
 stack.Push(
 Expression.Subtract(operand2,
 operand1));
 break;
 case '*':
 stack.Push(
 Expression.Multiply(operand2,
 operand1));
 break;
 case '/':
 stack.Push(
 Expression.Divide(operand2,
 operand1));
 break;
 }
 }
 }

 Expression result = stack.Pop();
 Expression<Func<double, double>> e =

VOL. 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 45

 Expression.Lambda<Func<double, double>>(result, X);
 Func<double, double> f = e.Compile();
 return f;
}

A GUI application is constructed that allows the user to input any legal arithmetic
expression as well as a starting value, ending value and increment. It then outputs a table
displaying the values of the function over the range specified and using the increment
provided.

A screen shot of this application for the function 2 * x * x + 3 * x + 5 from 0 to 10
with increment of 1 is:’

The code that implements this application is given in Listing 2. This includes the
implementation details of converting from infix to postfix. There is no error protection in
this code to protect the application from no user input or incorrect user input. It would be
relatively easy to add such protection.

Listing 2 – Code for Dynamic Function Evaluation Application
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Linq.Expressions;

namespace FunctionEvaluation {

A NEW SOFTWARE DEVELOPMENT PROJECT USING AN OLD GAME

46 JOURNAL OF OBJECT TECHNOLOGY VOL.7, NO. 3

 public class FunctionEvaluate {
 // Fields
 private String constant = "";
 private String infix;
 private String postfix;
 private ParameterExpression X =
 Expression.Parameter(typeof(double), "X");
 private List<char> operatorList = new List<char>(
 new char[] { '+', '-', '*', '/', '(', ')' });

 public Func<double, double> ConstructFunction(String
 function){
 // See Listing 1
 }

 private void InfixToPostfix() {
 Stack<char> operatorStack = new Stack<char>();
 char newSymbol, topSymbol;
 postfix = "";
 for (int infixIndex = 0; infixIndex < infix.Length;
 infixIndex++) {
 newSymbol = infix[infixIndex];
 if (newSymbol == ' ' || newSymbol == '\t' ||
 newSymbol == '\n') { // white space
 continue;
 }
 if (!operatorList.Contains(newSymbol)) { // operand
 postfix += newSymbol;
 }
 if (operatorList.Contains(newSymbol)) {
 if (operatorStack.Count > 0) {
 topSymbol = operatorStack.Peek();
 if (Precedence(topSymbol, newSymbol)) {
 if (topSymbol != '(') {
 postfix += topSymbol;
 }
 operatorStack.Pop();
 }
 }
 if (newSymbol != ')') {
 operatorStack.Push(newSymbol);
 } else {
 char ch;
 // Pop the operator stack down to the first
 // left parenthesis
 do {
 ch = operatorStack.Pop();
 if (ch != '(') {
 postfix += ch;
 }
 } while (ch != '(');
 }
 }
 }
 // Pop leftover operands
 while (operatorStack.Count > 0) {

VOL. 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 47

 if (operatorStack.Peek() != '(') {
 postfix += operatorStack.Pop();
 }
 }
 }

 private bool Precedence(char symbol1, char symbol2) {
 if ((symbol1 == '+' || symbol1 == '-') &&
 (symbol2 == '*' || symbol2 == '/')) {
 return false;
 } else if (symbol1 == '(' && symbol2 != ')' ||
 symbol2 == '(') {
 return false;
 } else {
 return true;
 }
 }
 }
}

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using FunctionEvaluation;

namespace FunctionEvaluationApp {

 public partial class FunctionEvaluateUI : Form {

 public FunctionEvaluateUI() {
 InitializeComponent();
 }

 private void buildTable_Click(object sender, EventArgs e) {
 outputBox.Clear();
 String infix = functionText.Text;
 outputBox.AppendText("x" + "\t\t\t" + "f(x) = " +
 infix + "\n");
 outputBox.AppendText("-----------------------------------

 ------------------------" + "\n");
 FunctionEvaluate evaluate = new FunctionEvaluate();
 Func<double, double> f =
 evaluate.ConstructFunction(infix);
 // Build and output table
 for (double x = Convert.ToDouble(startValue.Text);
 x <= Convert.ToDouble(endValue.Text);
 x += Convert.ToDouble(increment.Text)) {
 outputBox.AppendText(x + "\t\t\t" + f(x) + "\n");
 }

A NEW SOFTWARE DEVELOPMENT PROJECT USING AN OLD GAME

48 JOURNAL OF OBJECT TECHNOLOGY VOL.7, NO. 3

 }
 }
}

About the author
Richard Wiener is Chair of the Computer Science Department at the
University of Colorado at Colorado Springs. He is also the Editor-in-
Chief of JOT and former Editor-in-Chief of the Journal of Object
Oriented Programming. In addition to University work, Dr. Wiener has
authored or co-authored 22 books and works actively as a consultant
and software contractor whenever the possibility arises. His latest book,
published by Thomson, Course Technology in April 2006, is entitled

Modern Software Development Using C#/.NET.

