
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 3, March-April 2008

Cite this article as follows: Alexandr Savinov: “Concepts and Concept-Oriented
Programming”, in Journal of Object Technology, vol. 7, no. 3, March - April 2008, pp. 91 - 106
http://www.jot.fm/issues/issue_2008_03/article2/

Concepts and Concept-Oriented
Programming

Alexandr Savinov
1. Department of Computer Science III, University of Bonn
2. Institute of Mathematics and Computer Science, Acad. Sci. Moldova

Abstract
In the paper we introduce a new programming language construct, called concept,
which is defined as a pair of two classes: one reference class and one object class.
Instances of the reference class are passed-by-value and are intended to indirectly
represent objects. Instances of the object class are passed-by-reference. Each
concept has a parent concept specified by means of the concept inclusion relation.
This approach where concepts are used instead of classes is referred to as
concept-oriented programming (CoP). CoP is intended to generalize object-oriented
programming (OOP). Particularly, concepts generalize conventional classes and
concept inclusion generalizes class inheritance in OOP. This approach allows the
programmer to describe not only objects but also references which are made
integral and completely legal part of the program. Program objects at run-time exist
within a virtual hierarchal address space and CoP provides means to effectively
design such a space for each concrete problem domain.

1 INTRODUCTION

Let us assume that a variable stores a reference to a bank account object. This variable
is then used to access this account balance using its method, for example:
account.getBalance(). In OOP we are completely unaware of the reference
format and the operations used to access the represented object. The compiler
provides primitive (native) references and the programmer has an illusion of instant
access to objects. However, it is only an illusion and something always happens
behind the scenes during object access. In other words, any object access results in a
potentially complex sequence of hidden operations. For example, if the bank account
is represented by a Java reference then for each access it needs to be resolved into a
memory handle by JVM, which in turn needs to be resolved into an address in
memory by OS and then this address is processed by CPU and other hardware. If the
target object is represented by some kind of remote reference then again one method
call results in a sequence of operations executed at different levels of the distributed
system organisational structure. Here we see that object representation and access
(ORA) functions, even if they are hidden, may account for a great deal of the overall
system complexity and hence we need appropriate means for their description.

CONCEPTS AND CONCEPT-ORIENTED PROGRAMMING

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 3

Above we provided two examples where references have some internal structure
and associated functions which are activated implicitly during object access at the
level of run-time environent. In these and many other cases the reference format and
access functions are provided in the form of a standard library or middleware. One
problem with this conventional approach is that frequently we need to define our own
custom references with their own format and associated access procedures. In this
case using universal standard references with built-in functionality might be a limiting
factor. For example, creating and deleting many tiny objects is known to be a very
inefficient procedure. Dealing with remote objects requires special references
encoding information on their location and special access procedures based on some
network protocol. Using persistent objects is also based on specific requirements to
their identifiers and access rules. In all these cases it would be natural to develop a
special memory manager with a dedicated container which takes into account specific
features of its objects.

Of course, all these and many other problems can be solved using special features
of operating system (like local heap), middleware (like CORBA or RMI), libraries
(like Hibernate) or programming patterns (like proxy). Yet the problem remains: the
standard approaches can be applied to only standard situations they are designed for
while we would like to find a method for an arbitrary case. In other words, we would
like to find a method for modelling references having any format and any behaviour.
It is assumed that it is not known what references will be used for and what kind of
objects they will represent. The programmer might need many types of references for
different purposes which depend on each concrete program. In addition, ORA
functions of references and functions of objects have a cross-cutting nature and cannot
be easily separated and should be modelled together. Thus the idea is that the
functionality that is normally part of hardware, operating system, middleware or a
library can be described in the program itself using the same code as for any other
functions.

In this paper we propose a solution which is based on extending an object-
oriented programming language by introducing new language constructs and
mechanisms. The programmer then does not depend on the available environment
with its standard ORA mechanisms. Rather, using the proposed approach it is possible
to create internal custom containers with a virtual address system where all the objects
will live. In particular, the functionality provided by middleware, OS and CPU can be
successfully modelled using the programming language. If we see a statement
account.getBalance() then we cannot assume anything on the bank account
location and how it will be accessed. Its reference might contain the bank account
number while the object itself might really reside in a database on a remote computer.
Getting the account balance might mean using some special protocol involving also
operations with some special database developed for this and only this bank. Thus
references are interpreted as virtual addresses providing at the same time a possibility
to bind them to real locations.

In the proposed approach it is assumed that objects are represented and accessed
indirectly using custom references described in the same language as used for the rest
of the program. So references are completely legalized and play the same role as
objects. They may have arbitrary structure and arbitrary behaviour. We also assume
that developing references is as important as developing objects. Since objects are

VOL. 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 93

represented indirectly by custom references, any access like method call or message
triggers a sequence of intermediate actions such as reference resolution, security
checks, transactional operations etc. However, in contrast to the existing technologies,
the proposed approach allows us to model these hidden operations within the program
as its integral part. Custom references are used to create a level of indirection and
unbinding object identifiers from the available software and hardware environment.

The paper is organized as follows. In section 2 we introduce a new programming
construct, called concept, which generalizes classes and underlies other mechanisms
described in the paper. In section 3 we describe inclusion relation between concepts,
which generalizes conventional class inheritance. Section 4 describes other important
mechanisms such as dual methods, polymorphism and life-cycle management. Section
5 gives a short overview of related work and finally in section 6 we make concluding
remarks.

2 CONCEPT DEFINITION

Object class and reference class

Since references are supposed to have an arbitrary structure and functions they can be
modelled by the same means as objects by using classes, which are called reference
classes. Thus in CoP there are two kinds of classes: object classes for describing
objects and reference classes for describing references. For example, if we would like
to identify bank accounts by their numbers then the reference could be defined as
follows:

reference AccountReference {

 String accNo; // Identifying field

 ... // Other members of the reference class

}

class Account {

 double balance;

 ... // Other members of the object class

}

Here we use keyword ‘reference’ instead of ‘class’ to mark this class as a reference
class. We might also add other members to this class, say, opening date field and a
method for getting balance. The most important thing is that instances of a reference
class, called references, are passed-by-value only, i.e., they do not have their own
references and are intended to represent objects. On the other hand, instances of an
object class are passed-by-reference, i.e., there is always some reference which
represents this object. An important consequence of introducing reference classes is
that objects can be represented by custom references rather than only primitive
references. A program is then split into two kinds of things – objects and references –
both having their own structure and functions.

Using separately reference classes and object classes is possible but is not very
convenient because references and objects do not exist separately but rather are two
sides of one and the same thing. To model these two main elements of any program in

CONCEPTS AND CONCEPT-ORIENTED PROGRAMMING

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 3

their inseparable unity we propose to use a new programming construct, called
concept, which is a pair consisting of one reference class and one object class.
Following this approach, instead of defining separately one account class and one
account reference class we need to define one concept which contains the both:

concept Account // One name for the pair of classes

 reference { // Reference class of the concept

 String accNo;

 ... // Other members of the reference class

 }

 class { // Object class of the concept

 double balance;

 ... // Other members of the object class

 }

Notice that object classes and reference classes cannot be used separately anymore.
Instead, we have to use them in pairs using concept names. Such an approach where
concepts are used instead of classes is referred to as concept-oriented programming
(CoP). Thus concepts in CoP are used where classes are used in OOP when declaring
a type of variables, fields, parameters, return values etc. For example, in the following
code all types are concepts:

Account account = getAccount("Alexandr Savinov");

Person person = account.getOwner();

Address addr = person.getAddress();

From this fragment it is actually not possible to determine if it is OOP program or
CoP program. If the types used in it (Account, Person, Address) are defined as
conventional classes then it is an OOP program. If they are defined as concepts then it
is a CoP program. The main difference of CoP from OOP is that variables store
custom references in the format defined in the reference class of their concepts. Say,
variable account stores account number and variable person might store passport
number and birth date which identify the owner of the account. In contrast, in OOP all
these variables would store primitive references provided by the compiler.

An interesting and important property of concepts is that they may provide two
definitions for one method in the reference class and the object class, which are
referred to as dual methods. For example, method getBalance can be defined in
both the reference class and the object class of concept Account. Then the question
arises: what definition to use for each method invocation? In order to resolve this
ambiguity we use the following principle:

reference methods of a concept have precedence over its object methods
In other words, applying a method to a reference means applying the reference
method rather than the object method (Fig. 1). For example, the statement
account.getBalance() will use the definition provided in the reference class of
concept Account. Once a reference method got control it may decide how to
proceed. In particular, it may call the dual object method. The moment where control
is passed from the reference to the object is referred to as a meta-transition.

This principle means that references intercept any access to the represented
object. It is quite natural because we simply are not able to execute the object method

VOL. 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 95

due to the absence of its primitive reference. It is the reference that knows where the
object resides and how to access it, particularly, how to call its methods. If one of dual
methods is absent (not defined by the programmer) then it is assumed that there is
some default implementation. Theoretically it is more convenient to assume that both
definitions are always available.

Turn point

getBalance()

account reference

getBalance()

account object

represents

Outside Inside

Figure 1. Reference and object.

Reference resolution

Program objects represented by custom references can be manipulated as if they were
normal directly accessible objects in OOP, i.e., in CoP we retain the complete illusion
of direct instant access on custom references. However, the question is then how
concretely an indirectly represented object can be accessed if its primitive reference is
not available? Indeed, if variable account stores account number then method
getBalance() cannot be directly executed because the object primitive reference is
not known and theoretically the account may reside anywhere in the world because its
reference is a virtual address. Thus any reference needs to be resolved before the
represented object can be really accessed.

The task of reference resolution is implemented by a special continuation method
of the reference class. This method is called automatically for this reference when the
represented object is about to be accessed. When this reference is resolved the
sequence of access continues. In particular, the method called by the programmer can
be applied to the resolved object. Instead of returning the resolved reference, the
continuation method marks the point where the reference is resolved and then the
compiler knows where the access can be continued. This allows us to perform
necessary actions before and after access. It is assumed that the continuation point is
where the next (nested) continuation method is called.

Listing 1 shows an example of the continuation method which converts this
reference account number into the corresponding primitive reference. It loads the
value of the primitive reference from some storage (line 5). Then it proceeds by
applying the continuation method to the obtained reference (line 6). And finally it
stores the state of the object back in the storage (line 7). If we apply some method to
an account object then it will be actually called at line 6 because it is the point where
we found the real location of the object. Thus each access is implicitly wrapped into
the reference continuation method.

CONCEPTS AND CONCEPT-ORIENTED PROGRAMMING

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 3

01 concept Account

02 reference {

03 String accNo;

04 void continue() {

05 Object o = load(this.accNo);

06 o.continue(); // Proceed

07 save(this.accNo, o);

08 }

09 ...

10 }

11 class {

12 ...

13 }

Listing 1. Continuation method.

3 CONCEPT INCLUSION

Complex references

Concepts do not exist in isolation and each concept has a parent concept specified in
its definition using an inclusion relation formally denoted by ‘<’ (this notation is used
in the theory of ordered sets, including formal concept analysis and ‘less than’ sign
means the number of elements in extension). If concept B is included in A then it is
written as B<A (B is less than A) where A is called a parent or super-concept and B is
called a child or sub-concept. The root of the concept inclusion hierarchy is denoted
as Root: RootCC <∀ , . In code, concept inclusion will be specified using keyword ‘in’
followed by the parent concept name, for example:

concept A in Root ... // By default

concept B in A ... // B < A

concept C in B ... // C < B

Let us assume that a concept within an inclusion hierarchy is used as a type of some
variable. Then by default this variable will contain a sequence of references of all
concepts starting from the root and ending with this concept. This sequence is referred
to as a complex reference while each its part is called a reference segment. An object
represented by one reference segment is referred to as an object segment. For
example, if concept C is included in B which is included in A then a reference to C will
consist of three reference segments with the format defined by the reference classes of
concepts A, B and C (Fig. 2).

Complex references are analogous of structured or layered addresses in a
hierarchical space like postal addresses. Each next reference segment is a local
identifier relative to the previous segment. The root concept represents the outer most

VOL. 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 97

space (the global space where all objects live) while each new sub-concept describes
an internal subspace within its parent concept. Each object in this hierarchy has a base
object, called also its context. In code, the current reference segment is denoted by
keyword ‘this’. The previous (higher) segment is denoted by keyword ‘super’. And
the next (lower) segment is denoted by keyword ‘sub’.

reference A (high)
C var = new C()

Complex
reference

reference B

reference C (low)

this

super

sub

Figure 2. Structure of complex reference.

Sequence of resolution

If an object is represented by one reference segment then it is accessed by means of
this reference continuation method. If the object is represented by a complex reference
consisting of many segments then each of them can be individually resolved by its
continuation method. An approach where individual reference segments are resolved
each time the represented object segment needs to be accessed is referred to as
resolution on demand. The main problem of this method consists in multiple repeated
resolutions of the same reference segments because object parts are normally accessed
many times. In particular, each access to the parent object from its child will result in
the resolution of one and the same parent reference segment. If there are 100 calls of
base methods then there will be 100 resolutions of the base reference segment.

In order to overcome this problem we propose to use the mechanism called
resolution in advance. This approach is based on resolving reference segments before
real access happens. The resolution sequence starts from the first (high) segment and
then proceeds to the next segments ending with the last (low) segment. The result of
each resolution is stored in a special data structure, called context stack (Fig. 3). It
grows as each next segment is resolved. Initially it is empty. When the first segment A
is resolved it contains a direct (primitive) reference to the first context (the first object
segment). The result of resolving the second segment B is pushed on top of the
context stack, which now contains two direct references and so on till the last
segment. Finally, the number of elements on it is equal to the number of segments in
the complex reference being resolved (3 in this example). The top of the context stack
is a direct reference to the target object of concept C.

The most important property of this mechanism is that parent objects are directly
accessible from their child objects and need not to be resolved. So each occurrence of
keyword ‘super’ in code means direct access using the primitive reference from the
context stack. Since normally concept functionality is based on using parent concepts,
this mechanism leads to significant performance increase because it guarantees that
any reference segment is resolved only once for each use of the complex reference.

CONCEPTS AND CONCEPT-ORIENTED PROGRAMMING

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 3

reference A

Context stack
(resolved segments)

Complex reference

START

END

reference B

reference C

A B C

C var = new C()

Figure 3. Reference resolution and context stack.

4 OTHER MECHANISMS

Dual methods

Let us now assume that a reference has many segments each implementing one
method. The question is what definition will be used if we call this method for this
complex reference? For example, if concepts A, B and C implement method
doSomething and then we call this method for a reference to an object of concept C
then what method has to be really executed? Earlier we assumed that reference
methods will intercept object methods but in this case there are many reference
methods defined in different segments. In order to resolve this ambiguity we use the
following principle (Fig. 4, left):

parent reference methods have precedence over (override) child reference
methods

In other words, parent reference methods of higher segments intercept all accesses to
the child reference methods of lower segments. In our example, doSomething of
reference A will be called first and only after that it is possible to call doSomething
of reference B and C. Child reference methods are called using keyword ‘sub’.

An important application of this principle is the mechanism of method
overriding. However, the direction of such overriding is opposite to the conventional
one (as used in OOP), which means that base reference methods override child
reference methods. If we define a method of the reference class then it can be
overridden in the base reference class. This rule is quite natural and simply follows
from the necessity to intercept all incoming requests by external space before it
reaches any internal space. Thus parent reference methods protect child reference
method from direct use from outside.

For object methods this principle has the conventional direction as used in OOP
(Fig. 4, right):

child object methods have precedence over (override) parent object methods
This means that if we call some object method which is implemented by all object
classes in the hierarchy then the compiler will use the definition provided by this
object class (we say, that this method overrides its parent methods). After that this

VOL. 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 99

method can continue by calling its parent methods using keyword ‘super’. Thus child
object methods protect parent object methods from direct use from inside.

reference A

Complex
object

object A

object B

Complex
reference

R
ef

er
en

ce
 m

et
ho

d
(in

si
de

)

O
bj

ec
t m

et
ho

d
(o

ut
si

de
)

reference B

reference C object C

sub

sub

sub

super

super

super

Outside

Inside

external border

internal border

Figure 4. Dual methods.

Inheritance and polymorphism

In CoP reference-object pairs exist in a hierarchy at run-time which is modelled by the
concept inclusion relation. In the run-time hierarchy an object has one parent object
(context) and many child objects (extensions). The context is shared among many
extensions and is accessed via ‘super’ keyword. Extensions can be accessed via their
local references while the current extension is accessed via keyword ‘sub’. In contrast
to OOP where all object segments exist together side-by-side and base object is not
shared, in CoP object segments exist separately and have their own references. For
example, if Button inherits Panel then in OOP each button object consists of two
parts which are created and exist together having one common primitive reference. In
CoP these two parts will be separate objects with their individual references.
Moreover one panel segment (context) may have many button segments (so one panel
includes many buttons). Thus CoP changes the semantics of inheritance. Child objects
are made more specific by the fact of existing in the context of their parent (along
with other child objects) rather then identifying themselves with the context. In other
words, in OOP a button ‘is a’ panel while in CoP a button ‘is in’ panel. Interestingly,
this approache generalizes that used in OOP because it is reduced to OOP in the case
child concepts do not define their own reference classes.

In OOP polymorphism is based on overriding base methods by child class
methods. Then the method executed depends on the real object class. The selection
(dispatching) is performed via some special built-in mechanism like a table of
function pointers (vtbl). In any case only one method will be executed. In CoP it is not
so and a method invocation is actually a sequence of steps executed in different
concepts. This sequence starts from the base reference and then proceeds to the child
references. Each intermediate method makes its own contribution to the processing of
the current request and then delegates it further to the child concepts. Depending on
the real object type we will get different processing chains.

CONCEPTS AND CONCEPT-ORIENTED PROGRAMMING

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 3

For example (Listing 2), let us assume that concept SavingsAccount is
included in concept Account (so one account may have many savings accounts as
well as other types of sub-accounts). Both concepts implement method
getBalance. The method of Account checks if the child object really exists (line
5) and then either returns its own balance (line 5) or the balance of the child account
(line 6). In code we can declare a variable as having base type Account and then the
balance returned by getBalance method depends on the real object type. If the
object is of concept Account (line 24) then we get one behaviour. If it is of concept
SavingsAccount (line 26) then we get another behaviour.

Notice that SavingsAccount assumes that there can be also internal objects
(line 15), i.e., it is implemented in the concept-oriented manner where methods are
intermediate processing elements getting a request from somewhere and then
dispatching them to somewhere for further processing. The polymorphic behaviour is
defined by the programmer who writes intermediate methods each contributing to the
overall processing. We can include a new child concept in SavingsAccount later
for example to describe some concrete savings account type and it will incorporated in
the whole access chain by getting requests from its parent concept.

01 concept Account

02 reference {

03 String accNo;

04 double getBalance() {

05 if(sub == null) return balance;

06 else return sub.getBalance();

07 }

08 }

09 class { double balance = 10.0; }

10

11 concept SavingsAccount

12 reference {

13 String subAccNo;

14 double getBalance() {

15 if(sub == null) return balance;

16 else return sub.getBalance();

17 }

18 }

19 class { double balance = 20.0; }

20

21 Account account;

22 double balance;

23 account = findAccount(); // Real type is Account

24 balance = account.getBalance(); // = 10.0

25 account = findSavingsAccount();// Type SavingsAccount

26 balance = account.getBalance();// = 20.0

VOL. 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 101

Listing 2. Dynamic polymorphism.

From this example we see that one and the same method applied to a variable of one
type may produce different behaviour depending on the real type of reference stored
in it. In CoP, such a method call is a sequence of actions associated with the reference
segments. Each intermediate reference and object may contribute to the processing of
the access request. In OOP, polymorphism is much simpler and is reduced to choosing
the method defined in the real object class which completely overrides its base
methods. Thus the method executed by default in OOP is only the last step in a
sequence of actions executed in CoP. Interestingly, CoP does not guarantees that the
last method corresponding to the real object type will be reached while in OOP it is
always so. The base reference methods override child methods and may finish
processing at any moment without continuation. For example, the base method may
raise an exception because of security constraints or insufficient resources. Such an
approach is more flexible because request processing is distributed among all
constituents at different levels rather than concentrating all the functionality in one
class.

Life-cycle management

In OOP object creation involves automatic allocation of the necessary resources
represented by a primitive reference followed by the new object initialization
implemented in the class constructor. The former (reference creation) is a hidden
procedure provided by the compiler using the available run-time environment. The
latter (initialization) is controlled by the programmer via class constructor. Object
deletion also involves two procedures: one for cleaning up the object in the class
destructor and the other for freeing the resources (not controlled by the programmer).

In CoP both these tasks are implemented in concepts, i.e., concept is responsible
for both the reference allocation/de-allocation and object initialization/de-
initialization. Thus the programmer gets full control over these special procedures
using dual methods. To create a concept instance a special creation method is used
while deletion is implemented in a special deletion method. Just as other methods,
creation and deletion are dual, i.e., they can be implemented in both the reference
class and the object class. The object creation/deletion method is an analogue of the
conventional constructor/destructor in OOP. Their role consists in initializing a new
object just after its reference creation and cleaning it up just before its reference
deletion. The reference creation/deletion methods are responsible for
initializing/cleaning up a reference. Their role consists in allocating or freeing the
associated resources such as memory.

The creation/deletion methods have the same sequence of access as other
methods. For example, if we need to create a new savings account then we declare a
variable and then call the creation method:

SavingsAccount account.create();

Since this object is represented by two reference segments (Account and
SavingsAccount), the creation starts from the first one. An example of its
implementation is shown in Listing 3. It generates a unique identifier for the new base

CONCEPTS AND CONCEPT-ORIENTED PROGRAMMING

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 3

account (line 6) and then proceeds by allocating system resources for this object
(line 7), i.e., here we really create a new object with its primitive reference. Line 7 is
also the point where the object creation method (constructor) will be called (line 15).
Once the account object has been created we can allow possible children to contribute
to this process (line 8). In the case this object is a SavingsAccount, its extension
will be created here. Finally, when children are created, we store the association
between the new account number and the primitive reference in the map (line 9). This
information is then used in the continuation method for resolving references when this
account is being accessed. The creation method of SavingsAccount can be
implemented in the same way. The only difference is that it will be executed in the
context of the just created base account. In particular, the mapping from sub-account
numbers to primitive references will be stored in the base object (line 14) rather than
as a static variable (line 1).

01 static Map map = new Map();

02 concept Account

03 reference {

04 String accNo;

05 void create() {

06 this.accNo = getUniqueNo();

07 Object o.create();

08 if(sub != null) sub.create();

09 map.add(accNo, o);

10 }

11 }

12 class {

13 double balance;

14 Map map = new Map();

15 void create() { balance = 0; }

16 }

Listing 3. Object creation.

One important feature of this sequence of creation is that the base object needs not to
be always created. Instead, we can select an already existing base object which is
shared among many child objects. For example, a new savings account could be
created for a person who already possesses an existing base account. Another example
is where parent concept implements a container and then creating an object means
selecting an existing container. A container will be created only if all the existing
containers are full. Otherwise the creation procedure will try to find an existing
container for a new object. Even when we have to really create a new object we do
not need to call system procedures. This approach allows us to keep a pool of
primitive references and other system resources in a base concept rather than
allocate/free them for each object. So the programmer has full control over the
creation procedure. The deletion is implemented in the same way except that the

VOL. 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 103

operations are normally inverted (i.e., we proceed to children and then consecutively
delete parents on the way back).

5 RELATED WORK

ORA functionality exists at all levels of system organization. For example, memory
access performed by processor is not a single action but takes many internal micro-
cycles. Operating system brings a new level of indirection by providing its own
memory handles for identifying and accessing objects in the global or local heap.
Middleware such as CORBA or RMI [Mon06] propose additional ORA mechanisms
targeted at specific tasks like remote access. Language run-time environment may
implement its own object container with some specific logic of indirection, e.g., Java
or C#. In addition, such an environment may implement special facilities targeted at
access indirection like reflection or dynamic proxies which allow for transparent
interaction of method calls and dynamic implementation of arbitrary interfaces
[Blo00]. A general approach that can be used to change the behaviour of language
constructs, particularly, ORA functions, is metaobject protocol [Kic91, Kic93].

The described approach is aimed at providing language means for describing
indirect ORA and hence it is important to compare it with existing language-based
approaches to this problem. The simplest method of language-based indirection
consists in using some discipline or pattern. One of the most wide-spread patterns is
that of proxy, which is a class simulating the target class. Another pattern which can
be used to indirect access is chain of responsibility. Like any pattern, these methods
are rather specific and need high level of manual support because the compiler is
unaware of their semantics and cannot help in their maintenance. An interesting
approach to reference modelling consists in using smart pointers [Str91]. Yet it is not
dedicated method but rather an adaptation of the universal mechanism of templates to
the problem of reference modelling.

A much more fundamental approach is provided within aspect-oriented
programming (AOP) [Kic97]. Here any object access may trigger quite complex
intermediate actions, which are injected in the necessary points of code implicitly by
aspects. However, this approach does not provide any means for modelling custom
references and indirect access. In addition, the direction of module dependence is
opposite to that used in CoP (see [Sav05, Sav07] for more details). Another related
approach is based on using mixins (abstract subclasses) [Bra90, Sma98]. In particular,
it is similar to CoP (and AOP) in its ability to wrap some target code into another
method (using ‘around’ keyword).

The mechanism of dual methods in CoP is similar to super/inner methods of
classes [Gol04] which is implemented in the Beta programming language. In
particular, the inner methods are designed in such a way that they implement the same
sequence of access as that in reference methods. However, the mechanism of
super/inner methods is implemented as an addition to normal classes. Hence it can be
viewed as an enhancement to OOP aimed at providing means for object protection
from outside. In CoP, this behaviour is implemented using a completely different
approach, namely, by means of concepts.

CONCEPTS AND CONCEPT-ORIENTED PROGRAMMING

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 3

The proposed approach relates also to so called context-oriented methods which
are aimed at bringing context dependence into programming [Con05]. These methods
introduce language constructs and mechanisms which allow the programmer to put
objects in a context changing their behaviour at run-time. For example, in the
ContextL programming language it is done by means of the keyword ‘in-layer’ while
in CoP we use ‘in’ which generalizes inheritance and ‘super’ to access the context.
The context-orientation also relates to a technology known as dependency injection.

There exist also other mechanisms that can be used to model indirection such as
annotations in attribute-oriented programming, language-oriented programming and
domain languages, multi-dimensional separation of concerns, subject-oriented
programming. Yet some approaches to programming having the same name are
actually based on very different notions and do not relate to our work [Voi92,
Mcc99].

Earlier we have already described an approach to programming based on using
concepts to which we refer as CoP-I [Sav05]. The approach described in this paper
(see also [Sav07]) is referred to as CoP-II. Although they use the same programming
construct, the difference is significant. Namely, we changed the role of concept
constituents: in CoP-II (in this paper) we assume that references represent objects of
this concept while in CoP-I we assume that references represent objects of child
concepts.

6 CONCLUSIONS

In the paper we described a new approach to programming based on using concepts
instead of classes and inclusion instead of inheritance. This approach is backward
compatible with OOP. One of its main achievements is that references are completely
legalized and made first-class citizens of the program along with objects. The
functions encapsulated in objects and references are orthogonal and this can be
viewed as a continuation of a very general and deep principle of Separation of
Concerns formulated by Dijkstra [Dij76]. In other words, any program consists of two
types of functionality which needs to be separated in a principled manner.

By bringing in the concept of concept in programming languages, we can
effectively model references and intermediate functions executed implicitly during
object access. However, this also changes the way how a system is being developed.
An action in CoP is not a single operation but rather a sequence of processing steps
executed by intermediate objects on the way to the target. In many cases this
intermediate hidden functionality accounts for most of the system complexity. This
leads to a paradigm shift because we cannot follow the instantaneous action principle
anymore. Instead, in CoP any action is indirect and needs some environment to
propagate. Modelling such underlying environments becomes one of the main design
goals (rather than modelling classes of objects in OOP). Methods in CoP are not end-
points for processing but play an intermediate role: they get control from somewhere
and pass it further to somewhere. They are triggered automatically whenever a request
intersects the border. So the most interesting events happen under the hood without
any explicit action from the programmer and CoP provides adequate means for
modelling such a view of the system.

VOL. 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 105

In this new approach objects are thought of as existing in a virtual space with its
own structured address system. Actually this space may play more important role than
the functionality of the internal objects. It is similar to a living cell border or state
border which implements common functions important for any internal element. An
object can be accessed only by intersecting the borders of the spaces where it exists
and hence the space always intervenes in processing of any request. Designing an
appropriate virtual space for a system is therefore of high importance and CoP
provides effective means for doing it at the level of the programming language.

CoP is being developed together with a new approach to data modelling, called
the concept-oriented model [Sav06, Sav07a]. In particular, CoP provides a mechanism
for data physical representation and access. In future we are going to closer integrate
these two approaches. Another goal consists in designing an experimental
programming language based on the proposed concept-oriented principles.

REFERENCES

[Blo00] Blosser, J. Explore the Dynamic Proxy API, Java World, November 2000.
http://www.javaworld.com/javaworld/jw-11-2000/jw-1110-proxy.html

[Bra90] Bracha, G., Cook, W. Mixin-based inheritance. Proc.
OOPSLA/ECOOP’90, ACM SIGPLAN Notices, 25(10), 303-311, 1990.

[Con05] Constanza, P., Hirschfeld, R. Language constructs for context-oriented
programming. In Dynamic Languages Symposium, co-located with
OOPSLA'05, 2005.

[Dij76] Dijkstra, E.W. A Discipline of Programming. Prentice Hall, 1976.

[Gol04] Goldberg, D.S., Findler, R.B., Flatt, M. Super and inner: together at last!
Proc. OOPSLA’04, 116-129, 2004.

[Kic91] Kiczales, G., Rivieres, J., Bobrow, D.G. The Art of the Metaobject
Protocol. MIT Press, 1991.

[Kic93] Kiczales, G., Ashley, J.M., Rodriguez, L., Vahdat, A., Bobrow, D.G.
Metaobject protocols: Why we want them and what else they can do. In:
Paepcke, A. (ed.) Object-Oriented Programming: The CLOS Perspective,
101-118, MIT Press, 1993.

[Kic97] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J.-M. and Irwin, J. Aspect-Oriented Programming, Proc.
ECOOP’97, LNCS 1241, 220-242, 1997.

[Mcc99] McConnell, B. Concept-oriented programming. Dr. Dobb’s Journal,
24(6), 90-96, 1999.

[Mon06] Monson-Haefel, R. Enterprise JavaBeans, O’Reilly, 2006.

[Sav05] Savinov, A. Concept as a Generalization of Class and Principles of the
Concept-Oriented Programming. Computer Science Journal of Moldova,
13(3), 292-335, 2005.

CONCEPTS AND CONCEPT-ORIENTED PROGRAMMING

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 3

[Sav06] Savinov, A. Grouping and Aggregation in the Concept-Oriented Data
Model. Proc. SAC’06, 482-486, 2006.

[Sav07] Savinov, A. Concepts and their Use for Modelling Objects and References
in Programming Languages. Technical Report, Institute of Mathematics
and Computer Science, Moldavian Academy of Sciences, 43pp., 2007.

[Sav07a] Savinov, A. Concept-Oriented Model. Encyclopedia of Database
Technologies and Applications, Editors: Rivero, L.C., Doorn, J.H.,
Ferraggine, V.E. (accepted).

[Sma98] Smaragdakis, Y., Batory, D. Implementing layered designs with mixin-
layers. Proc. ECOOP’98, 550-570, 1998.

[Sop] Subject-Oriented Programming, http://www.research.ibm.com/sop/

[Str91] Stroustrup B. The C++ Programming Language, 2nd Edition, Addison
Wesley, 1991.

[Voi92] Voinov A.V. Netlog - A Concept Oriented Logic Programming Language,
Proc. LPAR’92, 357-368, 1992.

About the author
Alexandr Savinov (Ph.D.) is currently a researcher at the
Department of Computer Science III, University of Bonn, Germany.
He received his MS degree from the Moscow Institute of Physics
and Technology in 1989 and his PhD from the Technical University
of Moldova in 1993. His primary research interests include
programming, data modelling and knowledge management

methodologies with applications to distributed systems, peer-to-peer technologies,
grid computing, web services, semantic web and other areas. He is an author of a new
general system theory, called the concept-oriented paradigm (see
http://conceptoriented.com). Previous research interests include expert systems, fuzzy
logic and data mining. See also: http://conceptoriented.com/savinov

