
Vol. 7, No. 3, March–April 2008

Detecting Performance Antipatterns in Com-
ponent Based Enterprise Systems

Trevor Parsons and John Murphy, Performance Engineering Lab, School of
Computer Science and Informatics, University College Dublin, Ireland

We introduce an approach for automatic detection of performance antipatterns. The
approach is based on a number of advanced monitoring and analysis techniques. The
advanced analysis is used to identify relationships and patterns in the monitored data.
This information is subsequently used to reconstruct a design model of the underlying
system, which is loaded into a rule engine in order to identify predefined antipatterns.
We give results of applying this approach to identify a number of antipatterns in two
JEE applications. Finally, this work also categorises JEE antipatterns into categories
based on the data needed to detect them.

1 INTRODUCTION

Today’s enterprise applications are becoming more and more complex and have been
moving towards distributed architectures made up of a heterogeneous collection of
servers (see figure 1). Each server can in turn be made up of a large number of
software components that interact to service different user requests. Component
based enterprise frameworks [1] (such as JEE or .Net for example) alleviate the
burden of developers that need to construct such systems, by providing system
level services (e.g. security, transactions etc.). Thus, developers no longer have
to worry about building the underlying infrastructure of these systems and can
instead concentrate their efforts on developing functional requirements. However,
in order to meet non-functional requirements (such as performance requirements
for example), developers are still required to have an understanding as to what
is actually happening ”under the hood” of the application. Unfortunately due to
the complexity of such systems developers very often find it difficult to obtain a
complete understanding of the entire system behaviour. Consequently, it is common
that they make incorrect decisions during development, that lead to design flaws in
the application. Such flaws can lead to problems such as poor system performance,
maintainability issues, reliability issues, etc. Evidence of this problem can be seen
in recent surveys [2] which suggest that a high percentage of enterprise applications
fail to meet their performance requirements on time or within budget.

Current development and testing tools fail to help developers address this lack
of understanding in relation to complex enterprise systems. For example, most of
today’s performance monitoring tools merely profile the running system and present
vast amounts of relatively unstructured data to the tool user. The amount of data

Cite this document as follows: Trevor Parsons and John Murphy: ”Detecting Performance
Antipatterns in Component Based Enterprise Systems”, in Journal of Object Technology, vol.
7, no. 3, March - April 2008, pp. 55-90, http://www.jot.fm/issues/issue 2008 03/article1/



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

Figure 1: Typical Enterprise Architecture [3]

produced when monitoring even simple single user systems can be quite large. When
monitoring large scale multi user systems made up of a myriad of software compo-
nents, the amount of data produced can be overwhelming. Consequently developers
or system testers often find it difficult to make sense of this information. In such cir-
cumstances it can be extremely difficult and time consuming to identify performance
issues in an inefficient system.

For enterprise applications there are a number of common design mistakes that
consistently occur causing undesirable results [4] [5]. In fact the same design flaw
can often manifest itself in different ways across various parts of the application.
A large number of these well known problems have been documented as software
antipatterns [4] [5] [6] [7] [8]. Similar to software patterns [9], which document
best practices (often described as a proven solution to a problem in a context1)
in software development, antipatterns document common bad practices. However
as well as documenting the bad practice, antipatterns also give the corresponding
solution to the problem. Thus, they can be used to help developers identify problems
within their system. Furthermore they can be used to easily rectify these issues, by
applying the corresponding documented solution2.

This first contribution of this paper is an approach to automatically identify per-
formance antipatterns within enterprise applications built on top of component based
enterprise systems. Our approach extracts the run-time system design from data
collected during monitoring by applying a number of advanced analysis techniques.

1For a more precise definition of a software pattern see [10]
2The literature [11] gives a more complete overview of patterns and antipatterns

56 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



1 INTRODUCTION

A systems run-time design can be defined as an instantiation (or instantiations)
of a systems design decisions which have been made during development [11]. A
run-time design model captures structural and behavioural information from an
executing system. It contains information on the components that are executed,
as well as the dependencies and patterns of communication between components
that occur at run-time [11]. Using advanced analysis techniques we summarise the
run-time data and identify relationships and patterns that might suggest potential
antipatterns in the system. The information extracted from the monitoring data
can be represented in a run-time design model of the system. This model is loaded
into a rule engine or knowledge base which, (using predefined rules) can identify
potential (well known) performance antipatterns that exist in the system. Any de-
tected antipatterns are subsequently presented to the user along with specific data
on the antipattern instance. This approach takes the burden away from developers
having to sift through large volumes of data, in order to understand issues in their
systems, and instead automates this process.

The second contribution of this work is a study of JEE performance antipat-
terns. We show a hierarchy of performance antipatterns, from high level language
independent antipatterns, to technology specific ones. We also show that a high per-
centage of antipatterns related to enterprise technologies are performance related.
We further categorise the JEE performance antipatterns into a number of groups.
We focus on two of these groups in particular (design antipatterns and deployment
antipatterns) and further categorise the antipatterns within them into groups based
on the data needed to detect them.

The remainder of this paper is structured as follows: Section 2 discusses the
limitations of current performance tools and states why we believe there is a need
for more advanced analysis of the data that is collected from monitoring enterprise
applications. Section 3 gives an overview of our approach and a categorisation of
the different antipattern types that exist. Section 4 gives details on monitoring
techniques that are used to extract information from component based enterprise
systems such that antipattern detection can be applied. In section 5 we discuss
a number of analysis techniques used to identify relationships and patterns in the
run-time data. This information can be used to reconstruct the run-time design
of the system. In this section we also outline a number of advanced analysis tech-
niques that can be applied to summarise the data produced during monitoring. A
detection mechanism (based on a rule engine approach) is outlined in section 6. In
this section we also group the antipatterns that we can detect into a number of
different categories (based on the data required to detect them). Section 7 presents
our results from applying our Performance Antipattern Detection (PAD) tool to a
number of component based enterprise applications. In this section we show how we
successfully detected a number of performance antipatterns in these applications.
The applications tested include a sample application and a real enterprise applica-
tion from IBM. Related work and our conclusions are discussed in sections 8 and 9
respectively.

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 57



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

2 LIMITATIONS OF CURRENT PERFORMANCE TOOLS

Current performance tools for component based enterprise systems are quite lim-
ited, insofar as they tend to profile running systems and present vast amounts of
low-level data to the tool user. Most of today’s Java profilers for instance work
by monitoring at the JVM level. This is achieved by interfacing with the JVM
through a standard mechanism (e.g. the Java Virtual Machine Profiler Interface
[12] or Java Virtual Machine Tools Interface [13]). This allows the profiler to col-
lected information such as memory/CPU consumption on any class loaded by the
JVM. The information collected is then presented to the user. However, for en-
terprise systems the number of classes loaded by the JVM can be in the order of
thousands. The classes can generally be broken down into the following categories;
application level classes (written by the application developers), middleware classes
(corresponding to container services) and lower level java library classes. A major
issue is that, while developers are generally interested in obtaining information on
their own code, it can be very difficult for developers to distinguish their code from
lower level middleware and library calls. Another issue with such tools is that they
tend to present the information to the user in basic formats. For example they often
present lists of the different objects created, the number of instances, related CPU
and memory consumption etc. Although, from this type of information developers
can determine the most resource intensive/common objects in the system, it can be
difficult to determine the cause of a performance issue without also understanding
the run-time context of these objects (i.e. the sequence of events that lead to a
particular object being instantiated/called). Commercial profilers (e.g. [14]) often
present object graphs showing parent child relationships between objects in the sys-
tem. However it can be still difficult to trace the ordered sequence of events that
lead to particular problems in the system (since these graphs do not maintain the
order of calls). Consequently in conjunction with using such profiling tools devel-
opers are very often required to spend much time tracing through reams of source
code to identify issues in their applications.

The most significant problem with the current tools is that they only give a small
indication of where potential problems exist in the system, since they fail to give a
sufficient run-time context and also fail to perform any meaningful analysis on the
data collected. There is a real need for more advanced performance tools that do not
merely collect low level data on a running system. Instead these tools should collect
data at the correct level of abstraction that the developers work at (e.g. component
level for JEE systems), while at the same time they need to provide a sufficient run-
time context for the data collected (e.g. run-time paths [11], dynamic call traces
[15]) such that problems can be easily identified and assessed. Furthermore it is also
desirable that more advanced analysis be applied to the data collected to highlight
potential problems in the system automatically, such that developers do not have
to waste time correlating large volumes of information.

58 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



3 OVERVIEW OF PERFORMANCE ANTIPATTERN DETECTION TOOL

Figure 2: PAD Tool Overview

3 OVERVIEW OF PERFORMANCE ANTIPATTERN DETECTION TOOL

In light of the limitations of current performance tools we propose an approach
to automatically identify performance antipatterns in component based enterprise
systems [16]. This approach has been realised in the PAD tool (see figure 2). Our
approach improves on current tools, taking the onus away from developers having to
sift through large volumes of data by performing analysis on the data collected, and
automatically identifying potential issues in the system. The tool consists of three
main modules: a monitoring module, an analysis module and a detection module.
The monitoring module (section 4) is responsible for collecting run-time informa-
tion on the different components that make up an enterprise application. The PAD
monitoring module is end-to-end i.e. it collects data on all (server side) tiers that
make up the enterprise application. The monitoring approaches allow for (a) iden-
tification of component relationships, (b) identification of communication patterns
between components, (c) tracking of objects (and how they are used) across com-
ponents, (d) the collection of component performance metrics, (e) the collection of
component meta data (e.g. container services used, bean type etc.) and (f) the
collection of information on server resources. The monitoring is performed at the
component level and the techniques used are portable across different middleware
implementations since they make use of standard JEE mechanisms. Thus they are

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 59



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

Figure 3: Hierarchy of Antipatterns

suitable for truly heterogeneous systems made up of servers from different software
vendors. The data collected during monitoring is passed to the analysis module
where the design of the application is automatically reconstructed. During analysis
(see section 5) a number of techniques are applied to extract the relationships from
the monitored data that reflect interesting aspects of the system design. Further-
more, an effort is also required during analysis to reduce and summarise the large
volume of data produced during monitoring. In section 5 we discuss a number of
techniques that can be utilised for these purposes. The output from the analysis
module is a run-time design model of the system (see figure 8) which captures the
relationships extracted from the monitored data. This model can be loaded into a
rule engine, representing the detection module, in the form of rule engine specific
facts. Rules can be input into the rule engine which describe the antipatterns that
we want to detect in the model. Rules are specified so that the rule’s conditions
verify the occurrence of a certain antipattern. Subsequently, when existing facts
match a rule’s condition clauses, the rule action is fired indicating the antipattern
detection (see section 6). In the following subsection we categorise the different
types of antipatterns that can exist for enterprise applications. In particular we
focus on the antipatterns detected by the PAD tool, i.e. performance design and
deployment antipatterns for component based enterprise technologies.

Antipattern Overview

Figure 3 gives an antipattern hierarchy diagram. At the top of the diagram we have
high level technology independent software antipatterns. Brown et al. [7] introduced
a number of such antipatterns concerned with a range of software quality attributes
(such as re-usability, maintainability, performance etc.). More recently Smith and
Williams [6] introduced general performance antipatterns which solely focus on per-

60 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



3 OVERVIEW OF PERFORMANCE ANTIPATTERN DETECTION TOOL

formance concerns (i.e. level 2). The performance antipatterns presented in the
literature [6] are high level and language-independent antipatterns. They describe
situations where a sub-optimal performance design choice has been made. Instances
of the antipatterns documented by Smith and Williams, however, occur throughout
different technologies. Many of these problems are especially common in enterprise
technologies where performance is often a major concern (level 3). JEE antipat-
terns have been presented in [4] and [5]. The literature [4] concentrates on EJB
antipatterns, while [5] lists antipatterns concerned with a number of aspects of the
JEE technology (i.e. Servlets, JSP, EJB and Web Services). We have analysed the
antipatterns from both sources. From a total of 43 antipatterns documented in [4]
we have identified 34 (79%) of them to be performance related antipatterns (since
they can have a significant impact on system performance). From a total of 52
antipatterns documented in the literature [5] we identified 28 performance related
antipatterns (54%). The high proportion of antipatterns from [4] and [5], that are
related to performance, is further evidence that performance is an important soft-
ware quality attribute for enterprise systems, and that poor performance design is
common in such systems.

We further divided all JEE performance antipatterns identified into 3 different
categories (level 4): (a) Performance programming errors, (b) performance design
antipatterns and (c) performance deployment antipatterns. Performance program-
ming errors (a) can be defined as common mistakes made by developers that result in
degraded system performance. They yield no design trade-off and always have a neg-
ative impact on performance. Examples include memory leaks, deadlocks, improper
cleanup of resources such as database connections, etc. Generally developers are un-
aware of the presence of performance programming errors in the system. The Rotting
Session Garbage antipattern [4] is an example of a performance programming error
that is often made by developers using the EJB technology. This antipattern occurs
when a client fails to explicitly remove a stateful session bean when finished using it.
The orphaned bean will continue to live in the application server using up system
resources until it times out. Until then, the EJB container must manage the bean,
which can involve the relatively expensive job of passivating the bean to make room
for other active beans. In many situations fixing programming errors alone will not
improve the overall system performance such that requirements are met. Often it
is the case that the system design requires modification. Performance design (b)
and deployment (c) antipatterns can be defined as instances of sub-optimal design
or sub-optimal deployment settings that exist within the application i.e. situations
where an inefficient design choice has been taken. In such situations an alternative
more efficient deign choice exists. Developers are often aware of having made these
choices, but can be unaware of their consequences. Performance design and deploy-
ment antipatterns can be used to identify and resolve these situations since they
document both the sub-optimal design and its corresponding optimal solution.

We are interested in both design and deployment antipatterns since, with compo-
nent based frameworks such as JEE, many decisions that were inherent in the design
and coding of applications in the past, have been abstracted out into the deploy-

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 61



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

Figure 4: Example Run-Time-Path

ment settings of the application. With EJB for example the granularity and type of
transactions can be specified in the XML deployment descriptors of the application.
As a result, when making deployment time configuration settings, different design
trade-offs that can significantly impact performance must be considered.

In section 6 we give the categories of performance design and deployment an-
tipatterns that our PAD tool can currently detect. In this section we categorise the
antipatterns further into groups related to the data required to detect them.

4 MONITORING

Our monitoring module is responsible for collecting information on the system under
test such that a detailed representation of the system can be recreated and potential
antipatterns identified. In particular we obtain information on component relation-
ships, component communication patterns, component resource usage, component
object usage, component meta data and server resource usage. Using this informa-
tion we can extract the required relationships to reconstruct the run-time design for
performance antipattern detection. Next we detail the different techniques required
to capture this information in a portable manner. Our monitoring approaches are
applied to a running application and do not require any analysis of the source code.

Capturing Component Interactions, Communication Patterns and Perfor-
mance Metrics

In order to be able to deduce the run-time design from an application we need to
identify the relationships that exist between the different components that make up
the system. These relationships can be captured by recording run-time paths [17]

62 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



4 MONITORING

[11]. Run-time paths capture the ordered sequence of events that execute to service
a user request. Figure 4 gives a run-time path from a sample JEE application. A
diagrammatic representation of this path is given in figure 5. It shows the different
components (from a number of different application tiers) that get called to service
a particular user action. Run-time paths clearly capture the different component
relationships. However, since run-time paths maintain the order of calls between
components they also capture communication patterns between the components.
Such communication patterns can be analysed to identify inefficient communication
between components. Furthermore run-time paths can also contain performance
metrics (such as CPU and memory usage) on the component methods that make
up the path as well as arguments passed between components and return types.
Performance metrics can be essential for identifying if particular relationships in the
system are truly affecting the system performance, while information on arguments
and return types can be useful for object tracking.

As part of the PAD tool we have recently implemented the COMPAS Java End-
to-End Monitoring (JEEM) tool [18], which has the ability to collect component level
end-to-end run-time paths from JEE systems. The tool does not require the source
code of the application to be available and is completely portable across different
middleware implementations. COMPAS JEEM works by injecting a proxy layer
in front of the application components through standard JEE mechanisms. The
proxy layer contains logic which maintains the order of calls along the different user
requests. A major advantage of this tool is that it can collect all the different run-
time paths invoked when the system is loaded with multiple simultaneous users. One
drawback of the tool is that it requires the system under test to be redeployed during
the instrumentation process. A recent extension of the tool, COMPAS Byte Code
Instrumentation (BCI), overcomes this problem by using the JVMTI to dynamically
instrument the application at run-time [19]. Thus no redeployment of the system is
required.

Tracking Objects Across Components

Objects can also be tracked along run-time paths to allow for analysis of their usage
in the system. Such analysis can lead to identification of inefficient object usage.
Figure 5 shows an example run-time path which tracks the lifecycle of instances of
the AccountDetails data transfer object.

The COMPAS BCI tool has recently been extended to track selected objects
across run-time paths [19]. Tool users can select particular classes to be tracked.
When an object of the selected class is created it is identified along with its corre-
sponding position in the run-time path. Whenever another method (other than the
constructor, or creator method for EJBs) is accessed this is also logged. Thus we
can identify where objects are created along the run-time paths and at what points
they are accessed. We can effectively see how objects are created, used and passed
along the run-time path. Figure 5 shows where instances of the AccountDetails

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 63



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

Figure 5: Run-Time-Path with Tracked Object, as a Sequence Diagram

object are created and accessed along a JEE call path. The object was created by
an entity bean in the application tier and passed to the web tier where a single
method was accessed. This information is required to identify a range of common
antipatterns (for example to identify variations of the excessive dynamic object al-
location antipattern [6] which manifests itself in a number of different antipatterns
in enterprise applications).

Component Meta data

Component based enterprise frameworks are particularly suited for antipattern de-
tection since (a) they specify a component model which defines how the different
components types in the model should be used (e.g. using entity beans for persis-
tence) and (b) they generally contain meta data on the components that make up
the system. EJB meta data contains structural and functional information on each
of the EJB’s deployed in the system. For example, information on the EJB compo-
nent type (i.e. is the bean a stateless session bean, a stateful session bean, an entity
bean or a message driven bean). The meta data also contains information on the
container services required by the bean’s business methods (e.g. whether the bean
requires security checks, whether the bean should be invoked in a transactional con-
text, whether the bean can be accessed remotely etc.). This meta data is contained
in the XML deployment descriptors that are used to configure the application dur-
ing deployment. Thus the meta data can be obtained without having to access the
source code of the application. The data can be used to reason about the behaviour
of certain components. For example, if from our run-time profiling we see that a

64 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



5 ANALYSIS

particular component is frequently communicating with a database, from the meta
data we can check the component type. If this component turns out to be a stateful
session bean we could flag this as a potential antipattern, since stateful session beans
are not designed to frequently access persistent data (as outlined in the component
model specified by the EJB specification[20]). The fact that component based en-
terprise frameworks specify how certain component types should behave allows us
to automatically identify this type of unusual behaviour. Without this information
automatic antipattern detection is more difficult. For example, if instead we were
monitoring an application made up of plain old Java objects (POJO’s) with no in-
formation describing how we expect the objects to behave, it would be difficult to
flag unusual behaviour. In such situations domain or application specific informa-
tion could instead be supplied by the application developers. The PAD tool extracts
the component meta data from the XML deployment files of the JEE applications
automatically using an XML parsing library.

Monitoring Server Resource Usage

In enterprise frameworks such as JEE the different components that make up the ap-
plication interact with the underlying middleware. The state of the server resources
that service these components can significantly impact the overall system perfor-
mance (e.g. thread pools, database connection pools, object pools etc.). According
to the JEE Management specification application servers are required to expose this
data through a Java Management Extensions (JMX) interface [21]. Consequently it
can be recorded at runtime using a Management EJB (MEJB) [22].

5 ANALYSIS

In this section we discuss how we automatically extract the different relationships
(that make up a reconstructed run-time design model of the system) from the mon-
itored data. In particular we detail how we automatically identify inter component
relationships, inter component communication patterns and object usage patterns.
In addition, we show how run-time container services can be reconstructed and
added to the design model. In this section we also discuss how our analysis ap-
proach summarises and reduces the amount of data produced during monitoring
using clustering and statistical analysis techniques. The summarised data can be
used to further enhance the design model. Finally, at the end of this section, we
present the reconstructed design model, and the information that it captures.

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 65



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

Figure 6: Class Diagram created from Run-Time Path Analysis

Automatically Extracting Component Relationships and Object Usage
Patterns

Run-time paths (figures 4 and 5) capture the run-time design of the application (i.e.
they capture the design of the instrumented application that is executed during
monitoring). As shown in figure 5 run-time paths can be easily represented in a
graphical format. Figure 5 shows a run-time path converted to a UML sequence
diagram which captures the relationships between the different components for a
given user action. Run-time paths are represented at a code level by a tree like
data structure. A root node represents the first component in the path, which
has an ordered list of callees. Each callee is itself a node which can also have an
ordered list of callees. The RunTimePath data structure can be traversed to identify
the different component relationships that exist within it. The RunTimePath data
structure is traversed by visiting each node in a preorder fashion. By analysing all
run-time paths collected we can build up a collection of all the (run-time) component
relationships that exist for the application. This information can be represented in
a UML class diagram which shows the overall system architecture (see figure 6).
During analysis instances of a Component data structure are created which contain
this information.

Object usage patterns can also be identified by traversing the run-time paths
(produced using COMPAS BCI, see section 4). For each object type that we track,
we can mark any points along the path where an instance of this object is (a) created
and (b) accessed. This information can be stored in a TrackedObject data structure,
which contains information on the object type, a list of the call paths where it
has been created and accessed, a corresponding list of the object methods accessed
in each path and (depending on the granularity of the information required) the
points/positions along the path at which the objects were accessed. A diagrammatic
representation of this information is shown in figure 5.

66 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



5 ANALYSIS

Reconstructing Run-time Container Services

Component based enterprise frameworks provide services to components at run-time
(e.g. checking and ensuring that component boundary constraints are being met).
In EJB such boundary constraints include security restrictions and transactional
isolation checks. For example, an EJB component method may have the following
transactional attribute: (transaction) Required (i.e. the method will participate in
the client’s transaction, or, if a client transaction is not supplied, a new transaction
will be started for that method). Such attributes are defined during deployment,
(specified in the XML deployment descriptor) and do not change during run-time.
By analysing the different component attributes, along with run-time paths, it is
possible to reconstruct the different container checks as they occur along the paths.
For example, by analysing the transactional attributes of each component method
along a particular run-time path, one can easily reconstruct the transactional bound-
aries (i.e. where transactions begin and end) along the path. This information can
be used by developers to easily identify how the container services are being used by
their application. Since a high proportion of the application run-time can be spent
executing such container services [23] it is important that the services are utilised
in an efficient manner. Inefficient use of such services can lead to well known an-
tipatterns (e.g. the large transaction antipattern [5]). A RunTimeContainerService
data structure is created during analysis which contains information in relation to
the reconstructed services. The information includes the service type, the path id
in which the service occurred and the service start and end points along the path,
as well as the methods that make use of the service.

Automatically Identifying Communication Patterns

What is not clear from the class diagram in figure 6 is the communication patterns
or frequency of calls between the different components in the system. This type of
information is often required when trying to identify particular performance issues
in the application. It is important to be able to identify parts of the application
where there are high or unusual levels of communication between components as
knowledge of such patterns can lead to opportunities for optimizations (see section
7). By applying techniques from the field of data mining we can automatically
identify such patterns in the run-time paths.

Frequent Sequence Mining

Data mining techniques such as frequent itemset mining [24] have been tradition-
ally applied to market basket analysis to identify relationships between items that
tend to occur together in consumers’ shopping baskets. Consumers’ baskets can be
represented as unordered transactions of items, and items that consistently occur

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 67



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

Figure 7: Class Diagram of a modified version of Dukes Bank With Communication
Patterns Highlighted

together across the transactions can be identified3. This allows for improved market-
ing campaigns and product placement strategies. Similarly this type of analysis can
be applied to run-time paths to identify patterns of method calls that consistently
occur. As with consumers’ shopping baskets, run-time paths can be represented as
transactions in a transactional database. Unlike shopping baskets, which do not
maintain an order on the items within them, run-time paths contain the ordered
sequence of events. Frequent itemset mining does not respect this order and thus
the patterns it identifies are unordered patterns.

Frequent sequence mining (FSM) [26] is a direct generalisation of frequent item-
set mining and is more suitable for the analysis of run-time paths since it respects the
order within them. We have recently applied FSM to identify frequently occurring
sequences of method calls that occur across run-time paths [27]. The mining process
can identify the most common sequences of method calls within an ordered trans-
actional database. It has been shown how this technique can be utilised to identify
frequently repeating loops within run-time paths [27]. In situations where the run-
time paths are augmented with performance metrics, we have shown that the mining
process can be weighted to take these metrics into account, and thus identify the
most resource intensive frequent sequences (e.g. resource intensive loops) within the
data [27]. It has also been shown that identifying such patterns in run-time paths
allows for quick (manual) identification of design flaws in large enterprise applica-
tions [27]. In section 7 we show how this information can also be used for automatic
identification of performance antipatterns. Figure 7 shows a UML class diagram

3Transactional data in the data mining context refers to a database of transactional records. For
example a database of different customer shopping transactions on a given day (known as market
basket data) or a database of individuals banking transactions. It is important not to confuse a
transaction in the data mining context with the meaning of a transaction in the JEE context [25].

68 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



5 ANALYSIS

enhanced with information pertaining to identified sequences within the run-time
paths. A FrequentSequence data structure is created during analysis which contains
information relating to the frequent sequences identified in the run-time paths. The
data structure contains the path id’s of the sequence (i.e. in what paths the sequence
occurs), the items (i.e. the component methods) that make up the sequence, the
parents of the sequence, the support of the sequence (i.e. how often the sequence
occurs) and the sequence confidence [28] (i.e. the accuracy of the sequence). The
support of the sequence can be broken down further to reflect how often it occurs
in the different run-time paths.

Data Reduction

The amount of data produced during monitoring large scale enterprise applications
is often too large for easy human analysis. Thus it is required that the data be
reduced and summarised such that it can be presented to developers and system
testers in a more meaningful format. Summarising the data also allows for the data
to be more easily integrated with a run-time design model.

Clustering Run-time Paths

Run-time paths collected from enterprise applications can often be too long or too
many for easy human analysis. Considering the number of software components
and sub components in an typical enterprise application (this can be in the order of
hundreds), the number of paths that can be taken through the system is generally
quite large. Similarly the length of a run-time path corresponding to a particular
user action can also be very long (since a large number of component method calls
may be needed to service a user request). The issue of path lengths is somewhat
addressed through frequent sequence mining, since repeating sequences in a given
path can be identified and represented in a more concise manner (see the more
concise representation of loops in figure 5). To address the issue of having a large
number of unique paths we can apply another data mining technique called clustering
[28]. Clustering is the classification of similar objects into different groups, or more
precisely, the partitioning of a data set into subsets (clusters), so that the data in
each subset share some common traits.

Although there can be a large number of unique paths through the system many
of these paths can be very similar and may be constructed of many of the same sub-
paths. Using very basic clustering analysis we can reduce the number of paths sig-
nificantly into common path groups. In section 7 we show how this can be achieved
for run-time paths collected from monitoring a JEE system, when we cluster paths
together that (a) call the same component methods and (b) make use of the same
components. During analysis we create a Cluster data structure that contains all
run-time paths that belong to a particular cluster. This data structure also contains
information relating to the clustering criteria (e.g. for (a) above the data structure

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 69



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

contains the list of component methods that are called by the run-time paths in a
particular cluster). The cluster data structure can be added to the design model.
This allows a developer to see (a summary of) the different paths that are taken
through the system (e.g. at a method or component level), without the need to
analyse all run-time paths recorded.

Statistical Analysis

Statistical analysis is used to summarise resource usage and server resource infor-
mation. For example for each method we can get the average methods response
time/CPU usage/memory usage, maximum and minimum values, as well as the stan-
dard deviation. The same analysis can be applied to queues for server resources, e.g.
object pool sizes, database connection pools etc. The data structures created during
analysis can be enhanced with statistical values for the component methods/server
resources that they contain. The statistical values are calculated by analysing the
performance metrics collected with the run-time paths and by analysing the server
resource usage information that is collected.

Figure 8: Run-Time Design Meta Model

The Reconstructed Design Model

The output from the analysis module is a detailed design model that captures the
relationships and patterns identified during analysis, as well as the reconstructed
container services, path clusters and statistical information. We call this a run-time
design model since it captures a snapshot of system design decisions that are realised

70 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



6 DETECTION

as the system executes. Figure 8 gives a diagram of the different data structures that
are contained in the design model. Figure 8 contains 8 entities with the following
relationships: A Component entity can call zero or more other Components, is made
up of zero or more component Methods and can be associated with one or more
object Pools. A RunTimePath entity is made up of one or more component Method
calls. The RunTimePath can contain zero or more FrequentSequences (made up
of a sequence of one or more Methods), the FrequentSequences can in turn belong
to 1 or more RunTimePaths. Likewise a RunTimePath can contain zero or more
TrackedObjects and TrackedObjects can be tracked in one or more RunTimePaths.
A RunTimePath can belong to a single Cluster and a Cluster is made up of one
or more RunTimePaths. Finally, a RunTimeContainerService consists of one or
more Method calls within particular service boundary constraints (determined by
meta-data) and can be present in one or more RunTimePaths.

The extracted design model gives two main views into the system. A trans-
actional view and a hierarchical view. The transactional (RunTimePath) view of
the system shows the main paths (Clusters) through the system, the most frequent
communication patterns along these paths and how particular (Tracked) data ob-
jects are being created and used along the transactions. From the transactional
design view one can also determine the container level services that are used along
the different transactions. A more abstract hierarchical view of the system can also
be obtained from the design model, by analysing the Component details and the
component callers and callees. This shows the different component types and rela-
tionships that make up the system. The model also shows how the components are
being made available by the underlying container through the different container
pools.

6 DETECTION

The detection module is responsible for identifying performance design and deploy-
ment antipatterns in the extracted design model. Detection can be achieved through
the use of a knowledge base or rule engine. Our prototype PAD tool makes use of the
JESS rule engine [29] for this purpose. JESS is a Java based rule engine, whereby
information can be loaded into the rule engine in the form of JESS facts. Rules
can be defined to match a number of facts in the knowledge base. If a rule matches
the required facts, the rule fires. When a rule fires, particular tasks can be per-
formed. Such tasks are outlined in the rule definition. The information captured in
the extracted design model can be easily loaded into the rule engine by converting
the instances of the model entities to JESS facts. JESS will accept java objects as
input and automatically convert them to JESS facts. During analysis instances of
the model entities are created in the form of java objects. The objects created are
loaded into JESS by the detection module. To detect antipatterns in the design,
rules that describe the antipatterns must be written and loaded into the rule engine.

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 71



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

Antipatterns Categories

In this subsection we categorise the antipatterns, that we detect, based on the
similarities in the type of data used to detect them. In the following subsection we
give examples of rules that can be used to detect antipatterns from a number of the
different categories.

1. Antipatterns Across or Within Run-Time Paths: In order to detect the
antipatterns in this category, information is required on how often particular
components or services occur within the same, or across the different run-time
paths. For example, a large number of session beans occurring across the
different run-time paths may signify the existence of the Sessions-A-Plenty
antipattern [5] (i.e. the overzealous use of session beans, even when they
are not required). Another example of an antipattern in this category is the
Large/Small transaction [5] antipattern whereby an inefficient transaction size
is set resulting in either very large long living transactions or many inefficient
short living transactions.

2. Inter-Component Relationship Antipatterns: The inter-component re-
lationship antipatterns can be identified by analysing the relationships that
exist between the different components in the system. Where inappropriate
relationships exist antipatterns can be detected. A typical example might be
the Customers-In-The-Kitchen Antipattern [4] where web tier components di-
rectly access persistent objects (e.g. Entity Beans). Other antipatterns that
can be detected by analysing inter-component relationships include the Need-
less Session Antipattern (described in the following subsection), the Transpar-
ent Facade Antipattern [5] and the Bloated Session Antipattern [5].

3. Antipatterns Related to Component Communication Patterns: This
category of antipatterns can be identified by analysing the communication
patterns between particular component types. For example a high level of
fine grained chattiness between remote components (i.e. the Fine Grained
Remote Calls or Face Off [4] Antipattern). Another example might be an un-
usually bulky or high amount of communication between the business tier and
the database which could signify the existence of an Application Filter/Join
Antipattern [4]. Other examples include the Eager Iterator Antipattern [4].

4. Data Tracking Antipatterns: The data tracking category of antipatterns
can be detected by analysing how data objects are created and used across
particular run-time paths. A typical example of this antipattern is an unused
data object, whereby a data object is created and passed along the run-time
path, but the information which it contains is never accessed or used. An-
other variation on this antipattern is called aggressive loading of entity beans,
whereby an entity bean is loaded but only a small proportion of the persistent
data it contains is ever accessed [30].

72 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



6 DETECTION

5. Pooling Antipatterns: Antipatterns in this category can be detected by
analysing the related pool size and queue information. For example, to deter-
mine if an inefficient pool size has been specified we need to consider the pool
size, the number of object instances being used on average and the average
queue length. Examples of these antipatterns include inefficient configuration
of any of the container pools (thread pools, session bean pools, entity bean
pools, database connection pools etc.) [30].

6. Intra-Component Antipatterns: Intra-component antipatterns can be de-
tected by analysing internal component details. Examples include the Simul-
taneous Remote and Local Interfaces Antipattern [4] or the Rusty Keys an-
tipattern [4]. In both these cases the antipattern can be identified by analysing
the component meta data.

Figure 9: Rule to Detect Simultaneous Interfaces Antipattern

Example Rules

Next we give examples of how we specified antipattern rules for a number of different
antipatterns from the categories above. The rules given have been used to detect
instances of antipatterns in JEE applications as shown in section 7. JESS rules are
written in a Lisp like syntax [31]. A rule has two parts separated by the following
sign: =>. The left hand side (LHS) of the rule consists of patterns that match facts.
The right hand side (RHS) gives the functions to be executed when the pattern
on the LHS is matched. The RHS of the rules shown in this section consists of a
function call to the printAPSolution function. This function prints the antipattern
description, solution and corresponding contextual information for the particular
antipattern detected.

The rule in figure 9 describes an antipattern from the intra-component an-
tipatterns category. The antipattern described is the Local and Remote Interfaces
Simultaneously antipattern, whereby a component exposes its business methods
through both local and remote interfaces. The detection of this antipattern is
quite simple since it requires the matching of only one fact i.e. is there a com-
ponent fact that has the value ”true” for both attributes ”has local interface” and
”has remote intreface”.

The rule shown in figure 10 is from the inter-component relationship antipatterns
category. It describes a situation where a session bean has been used but was not

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 73



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

Figure 10: Rule to Detect Needless Session Antipattern

required. In general a session bean is generally only required if there is interaction
with the persistent tier (e.g. entity beans or the database components) or if other
container services are required. Otherwise a plain old java objects, which is less
resource intensive, can be used. To identify this antipattern we try to identify
session beans that exist but do not have any relationships with entity or database tier
components. Further checks can be made to identify the use of container services.
However, we have found that in many situations container services are used by
sessions when not required (e.g. setting transaction attributes to ”Required” by
default), so instead in the rule below we check only for (persistent) component
relationships. The rule in figure 10 (a) checks for a session bean component, C1
that has a list of caller and callee components, (b) checks for a second component
C2, that is either an entity bean or a database component and (c) checks if C2 is a
caller or callee of C1. JESS allows for the use of user defined functions which can
be used to provide more complex functionality to the rules in a concise manner [31].
The existsInList function in figure 10 is a user defined function which checks a list
(argument 2) for a particular value (argument 1). Without the use of such functions
the rules can become overly complex and difficult to both write and comprehend.
The PAD tool provides a number of user defined JESS functions to allow for the
easy construction of rules.

The final rule example given in this section (figure 11) is a rule from the antipat-
tern category concerned with component communication. In this rule we identify a
relationship between a session bean and an entity bean in the form of a frequently
repeating sequence (which may be present in the case of the Application Filter
antipattern, for example). If this relationship exists, the average resource consump-
tion of the frequent sequence is calculated and is flagged if it is above a user defined
threshold. The calculation of the resources consumed is performed by the Jess user
defined flagHighResourceConsumption function, which is passed the list of methods
in the sequence and the support of the sequence. The function refers to a user de-
fined configuration file which specifies the acceptable threshold values. Alternatively
if performance metrics are unavailable the frequency of the sequence alone can be
used to identify the antipattern.

74 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



7 RESULTS

Figure 11: Rule to Detect Bulky Database Communication

7 RESULTS

In this section we show how the PAD tool was applied to two JEE applications to
identify a number of performance design and deployment antipatterns. The first
of these applications is a sample application from Sun Microsystems called Duke’s
Bank [32] which is freely available for download. Sun have used the Duke’s Bank
application to showcase the JEE technology. The other application we tested is a
beta version of the IBM Workplace application, which is a real large scale enterprise
system [33]. Antipatterns from all the categories outlined in section 6 have been
detected. For each antipattern detected we give a brief description of the antipattern
and the antipattern category. We also give the related information (PAD output)
which is presented to the tool user upon detection. Using this information the
tool user can easily determine the severity of the problem and a decision can be
made as to whether refactoring is required or not. We do not show performance
improvements that can be attained by refactoring the antipatterns detected since
these improvements have already been well documented [4] [5]. Also performance
improvements can be very much application specific and vary greatly depending on
the severity of the antipattern.

PAD Tool User Modes and Data Reduction Results

The PAD tool can be used in two different monitoring modes. Either single user
mode or multi user mode. Single user means that there is only one user in the system
during monitoring (e.g. a single developer testing the application). Multi user mode
means that the system is loaded with multiple simultaneous users. Antipatterns
from categories 1,2,3,4 and 6 can be detected in single user mode. All antipatterns
can be detected in multi-user mode and in fact this mode is required to detect

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 75



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

the antipatterns in category 5. An added advantage of using multi user mode is
that accurate performance metrics can be given to the tool user on detection of an
antipattern. Such metrics can be used by the tool user to quickly assess the impact
of the detected pattern. Performance metrics can also be collected during single
user mode, however they are less reliable since the system is most likely being used
in a less realistic manner.

There are two main drawbacks of using multi user mode however. Firstly, it
requires a load to be generated on the system. In most cases this requires the creation
of an automated test environment (e.g. using load generation tools). Secondly, a
large amount of data is produced when monitoring enterprise systems under load.
In particular, our monitoring module produces a large amount of run-time path
information. This issue can be addressed however by applying the clustering and
statistical analysis techniques outlined in section 5. To show the effectiveness of
these data reduction techniques we have applied them to data collected from a
JEE application under load. For this test we loaded the Duke’s Bank sample e-
commerce application with 40 users for a five minute period. Each user logged onto
the system, browsed their account information, and deposited funds onto different
accounts. In total each user performed 8 different user actions. A total of 1081
run-time paths were collected during this period. To reduce the data produced we
clustered the paths (a) by the component methods that were invoked in each path
and (b) by the different components that were invoked in each path. After applying
clustering criteria (a) we grouped the paths into 11 different path clusters. That is,
our cluster analysis reduced the 1081 paths recorded to 11 (component-method level)
paths through the system. In this instance statistical analysis can be applied to the
component methods contained in each cluster to give a summary of the performance
metrics associated with the call paths in each cluster. Applying the single user mode
approach to the same user actions results in 11 distinct call paths. Our results show
that (in this instance) applying clustering analysis to data collected in multi user
mode can effectively reduce the number of distinct path clusters to the number of
different paths observed in single user mode. The path clusters in multi user mode
in fact contain more useful information than the paths collected in single user mode,
since they give more realistic performance metrics for each method that is invoked
in the path. Applying clustering criteria (b) to the 1081 paths resulted in 8 path
clusters. That is, at the more abstract component level, there were 8 different paths
through the system.

Antipatterns Detected in the Duke’s Bank Application

The first application we applied the PAD tool to, in order to identify performance
design and deployment antipatterns, was Duke’s Bank. Duke’s Bank is an online
banking application. When a user logs in to the Duke’s Bank application he/she
can perform the following actions: log on, view a list of accounts, view an individual
account’s details, withdraw or lodge cash, transfer cash from one account to another

76 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



7 RESULTS

or finally log off. For our tests each of the different (8) user actions was performed.
COMPAS BCI was used to collect run-time paths, related performance information
and to perform object tracking. Duke’s Bank was deployed on the JBoss application
server (version 3.2.7) with a MySQL database (version 4.0.2) as the backend. Our
MEJB monitoring tool was used to interface with the application server to collect
information on the server resources. For multi user mode (which was required to
identify the Incorrect Pool Size antipattern) the open source Apache JMeter load
generation tool was used to load the application. Two versions of dukes bank were
tested, the original version and a modified version with a number of antipatterns
added. The original dukes bank application consists of 6 EJBs (4 of these were
invoked during the tests, see figure 6). We also modified the original version of
Duke’s Bank to add a number of antipatterns to be detected by the PAD tool such
that antipatterns from all categories discussed in section 6 were present (see figure
7 for a class diagram of the modified version of dukes bank). The antipatterns
introduced are described in detail below. In total 3 antipatterns were detected in
the original version of Duke’s Bank by the PAD tool:

• Conversational Baggage Antipattern [4] (category 1): This antipat-
tern describes a situation where stateful sessions beans are being used but are
not necessarily required. Stateful session beans maintain state on the appli-
cation server between client requests and should be used only when there is
a clear need to do so. Stateless session beans will scale better than stateful
session beans and should be used when state does not need to be maintained.
Detection of this antipattern involves flagging the creation of unusually high
numbers of stateful session beans across the run-time paths. A potential in-
stance of this antipattern was flagged by the PAD tool when Dukes Bank was
analysed as the number of stateful session beans was above the user defined
threshold. This threshold was set to zero for the dukes bank application since
there is no noticeable state maintained from one user action to the next. When
the potential antipattern was detected PAD showed us that stateful session
beans were used in 100% of the run-time paths. On closer inspection of the
application (source code) we saw that indeed the stateful sessions could have
been replaced with stateless sessions to improve scalability.

• Fine Grained Remote Calls (also known as the Face Off antipattern
[4]) (category 3): This antipattern describes a situation where a number
fine grained calls are consistently made from a client to the same remote bean.
This results in a high number of expensive remote calls. A better approach
is (if possible) to make a more coarse grained call that performs the com-
bined tasks of the fine-grained calls. Performing a single coarse grained call
instead of a number of fine grained calls will reduce network latency and thus
the overall time required for the user action to execute. An instance of this
antipattern was identified by the PAD tool. The tool identified a frequent
sequence which contained fine grained remote calls. In fact it identified that
the remote methods AccountBean.getType and AccountBean.getBalance ap-

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 77



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

peared together 100% of the time they were called (i.e. the sequence had a
confidence value [28] of 100%). Thus it would be more efficient to combine
these calls into a single coarse grained remote call. This antipattern is far from
severe in this instance, however the identification of this antipattern shows that
the tool can indeed identify antipatterns in this category. The rule to identify
this antipattern can in fact be modified with a user defined threshold to only
flag more severe instances.

• Remote Calls Locally (also known as Ubiquitous Distribution [4])
(category 2): This antipattern describes a situation where beans that run
in the same JVM as the client are called through their remote interfaces. In
this situation the client has to perform an expensive remote call even though
the bean is local. While some containers can optimize in this situation, this
optimization is not a standard feature of JEE. A better approach would be to
write the beans with local interfaces (instead of remote, provided the beans
are not also called from remote clients) such that they can be accessed in
a more efficient manner. The PAD tool identified this relationship between
components. In fact all (4) beans invoked in the Duke’s Bank application are
accessed through remote interfaces even though their clients are calling them
from within the same JVM.

Next we describe the antipatterns that were added to Duke’s Bank and the
information given by the PAD tool when they were detected:

• Accessing Entities Directly [5]/Customers In The Kitchen [4] An-
tipattern (category 2): The application was modified such that compo-
nents in the web tier were directly accessing entity bean components (see
figure 7). This antipattern can cause a number of different performance issues
as documented in the antipattern description (e.g. problems with transac-
tion management). Furthermore it can create maintainability issues since it
mixes presentation and business logic. The PAD tool identifies the inappro-
priate component relationships and flags them as antipattern instances. The
component identified was the accountList.jsp which was modified to call the
AccountBean (entity) directly.

• Needless Session Antipattern (category 2): Another antipattern added
was the needless session antipattern. This antipattern is described in section
6 and outlines a situation where a session bean is used but not required. In
the Duke’s Bank application we added a session bean that was being used to
calculated the current time and date. This function could have been easily
carried out by a POJO which would have been a more efficient solution. The
antipattern was detected by the PAD tool which reported that the session
bean (CalculateDateBean) had no relationships with any persistent compo-
nents (e.g. entity beans or database components) and thus was a potential
needless session bean.

78 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



7 RESULTS

• Application Filter Antipattern [4] (category 3): The application filter
antipattern describes a situation where large amounts of data are retrieved
from the database tier and filtered in the application tier. However, databases
are designed to process filters a lot faster can be done in the application tier.
Thus filters should, where possible, be implemented in the database tier. We
modified the Duke’s Bank application to include an application filter. The
dukes bank application can retrieve account information for a customer that
has logged in. When this is performed the application performs a search for
the accounts that are owned by the particular user. We created an applica-
tion filter in this situation by modifying the SQL statement which filtered the
information (using the following SQL statement "select account id from

customer database where customer id = ?") to instead retrieve all accounts
and send them to the application tier for filtering. In the application tier fil-
tering of the data was performed by checking the details of each account to see
if it matched the id of the customer. We applied the PAD tool to the modified
version of Dukes Bank. The tool successfully identified the application filter
that had been added to the application. In fact the PAD tool identified that
by modifying this filtering 7/11 of run-time paths were affected. The tool iden-
tified two frequent sequences of communication: (1) between a session bean
(AccountControllerBean) and an entity bean (AccountBean) (see figure 11 )
and (2) between the same entity bean (AccountBean) and the database in
these paths. The first sequence of size 1 (AccountBean.getDetails) occurred
1180 times across the different run-time paths. The second sequence of size 2
(ResultSet.next, ResultSet.getString) occurred 6336 times across the run-time
paths. It was evident from this information that an application filter existed
in the application, especially when considering that this amount of activity
was occurring in single user mode.

• Unused Data Object/Aggressive Loading [30] (category 4): A second
antipattern was identified when the PAD tool was applied to the dukes bank
application modified with an application filter antipattern. The antipattern
detected was the unused data object antipattern/aggressive loading antipat-
tern. This antipattern describes a situation whereby information is loaded
from the database, but the data (or at least a high percentage of the data) is
never used. A solution to this problem can be to refactor the application such
that information is not retrieved if it is never actually required. Often how-
ever the information may be required a small percentage of the time. In such
circumstances the information can be lazy loaded when it is required. This
antipattern occurred in the application filter above. During filtering a check is
performed on each account to see if its owner id matched that of the (logged
in) customer’s. To obtain each account’s owner id, the application loads the
account information from the database into an entity bean. An AccountDe-
tails Data Transfer Object (DTO) [34] is then created by the entity bean with
the account information. Finally during the filtering the DTO is accessed to
obtain the account owner id. Rather than loading all the account information

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 79



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

into the entity bean, and subsequently into the DTO, a lazy loading approach
can be used to load only the information that it generally needed (i.e. the
account owner id). If the remaining (unloaded) information is required it can
be loaded later. This antipattern will in fact be removed if the application
filter is pushed into the database tier as suggested in the antipattern solu-
tion for the application filter. However there may be situations where it may
not be possible to easily remove the application filter and where lazy loading
can be applied. Lazy loading can in fact be applied in any situation where
only a small proportion of the entity bean fields are ever accessed. The PAD
tool provided the following information when this antipattern was identified:
The AccountDetails Object was created on average 1886 times across the 7
run-time paths with a maximum value per path of 2400 times and a minimum
value of 1200 times. The object has 8 accessor methods. Each method is given
below with the corresponding average number of times it was accessed per run-
time path: getCustomerID’s 1886 times, getType 1.4 times, getDescription 3
times, getBalance 2.6 times, getAccountId 8.1 times, getCreditLine 2.3 times,
getBeginBalance 0 times and getBeginBalanceCreditLine 0 times. From the
PAD tool output it is evident that (if the application filter could not be re-
moved) it would be beneficial from a performance perspective to apply lazy
loading for account bean and DTO in this application to all fields except for
the CustomerIds field.

• Incorrect Thread Pool Size (category 5): The final antipattern added
to the dukes bank application was a deployment antipattern. We redeployed
the application and modified the thread pool size to 10 (from the default
1,000,000). To detect this antipattern we ran the tests in multi user load. We
loaded the application with 40 users (over 10 seconds) and monitored the sys-
tem for a 5 minute period. We specified the maximum passivation level as 4
(10% of user load) in (user configuration files associated with) our antipattern
rules. The PAD tool detected the incorrect thread pool size antipattern and
presented the following information to the tool user: The AccountController-
Bean instance cache passivation levels exceeded the specified user threshold
of 4. The average passivation level of the measured period was 15. In this
situation increasing the size of the instance cache is recommended.

Next we discuss the issue of false positives and negatives detected by the PAD
tool when applied to Duke’s Bank. In the strictest sense no false positives were found
during the tests i.e. the tool did not identify antipatterns instances that were not
present in the system. However with performance related antipatterns we are more
concerned with identifying antipatterns that have an impact on the overall system
performance. It is likely that the fine grained remote calls antipattern instance
would not have a significant impact on the system performance and thus might
be considered a false positive in this instance. However, by modifying the user
defined threshold associated with the rule to detect this antipattern we can filter
out instances with a low performance impact. Our aim was to show that instances

80 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



7 RESULTS

of this antipattern can be identified by our tool and thus we set the threshold value
such that even insignificant instances (from a performance perspective) were also
identified. Similarly the remote calls locally antipattern may not have a performance
impact in application servers that can optimize remote calls that are made to local
components. However, again our aim was to show that this antipattern can be
identified using our tool.

By studying the Duke’s Bank documentation [32] and source code we were con-
fident that our tests did not produce false negatives i.e. there were no antipatterns
in the application, which were defined in our antipattern library that we did not
detect.

Antipatterns Detected in the IBM Workplace Application - Beta Version

The second system tested was an early beta version of the IBM Workplace Appli-
cation [33]. IBM Workplace is a collaborative enterprise application built on the
JEE technology. In total 76 EJBs were instrumented, 38 of these were only ever
invoked during the test runs (17 entity beans with Container Managed Persistence
and 21 Session beans). The test run consisted of invoking 25 different user actions.
Monitoring was performed using the COMPAS JEEM tool (COMPAS BCI was un-
available at the time of testing). As a result no object tracking information was
obtained. Also performance metrics were not collected during these tests due to our
limited access to the system. All tests were carried out in single user mode. The
IBM Workplace application was running on the IBM WebSphere application server
(version 5.x). The database used was IBM’s DB2. Using the PAD tool we identified
antipatterns from four of the different categories outlined in section 6:

• Local and Remote Interfaces Simultaneously (category 6): This an-
tipattern occurs when a bean exposes both local and remote interfaces. There
are a number of issues associated with this antipattern including exception
handling issues, security issues and performance problems. From the 76 beans
instrumented the PAD tool identified 30 (session) beans that exposed both
local and remote interfaces. Many of the beans identified were not invoked
during the test run, however the required information for antipattern detec-
tion in this instance was available in the beans meta data. On identification of
this antipattern we contacted the development team who acknowledged that
this was indeed an antipattern that had been removed in a later release due
to security concerns.

• Unusual/Bulky Session-Entity Communication (category 3): The sec-
ond antipattern type identified by the PAD tool was in relation to database
communication. The tool identified unusually high communication levels be-
tween session and (persistent) entity beans (see rule in figure 11). In fact as a
result of the 25 user actions, a frequent sequence of entity bean calls (from a
session bean) of size 24 occurred 58 times. In fact in one particular run-time

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 81



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

path this sequence occurred 33 times. The 24 calls in the sequence were all to
the same method which suggested that the sequence was in fact a loop of size
24. From this data it seemed that there was potentially an application filter
causing this issue. Again we contacted the development team responsible for
this code. The development team had identified this antipattern in a later
release and had rectified it by pushing the filtering into the database tier as
suggested by the application filter antipattern solution.

• Transactions-A-Plenty/Incorrect Transaction size [5](category 1): An-
other antipattern detected by the PAD tool was the transactions-a-plenty an-
tipattern. The tool identified that for one particular use case a very high
number of transactions were being created. In fact the tool identified that 131
transactions were created in a single run-time path. In fact for every session
bean method call a transaction was being initiated. On further inspection
we discovered that the issue was the fact that the session beans methods’
transactional settings were being set to ”Requires New” by default. The de-
velopment team addressed this issue by editing the transactional settings for
the beans in the deployment descriptors to initiate transactions only where
new transactions were actually required.

• Bloated Session Bean Antipattern [5](category 2): The final antipat-
tern type detected was the bloated session bean antipattern. This antipattern
is similar to the well known God class antipattern [7]. It describes a situation
in EJB systems where a session bean has become too bulky. Such session
beans generally implement methods that operate against a large number of
abstractions. For example one method may check the balance of an account
while another may approve an order, and yet another may apply a payment
to an invoice. Such sessions can create memory and latency issues since their
creation and management can come with much overhead due to their bulky na-
ture. The PAD tool identified two potential bloated session beans in the IBM
Workplace application. The first potential instance of this antipattern was a
session bean which had 8 entity bean relationships, 6 session bean relationships
and was invoked in 11 of the 25 user actions executed. It also contained a high
number of business methods (47). The second instance of this antipattern was
a session bean which had 7 entity relationships 1 session relationship and was
invoked in 6 of the 25 user actions. This session had 14 business methods.
In general the rule of thumb is that there should be a 1 to 1 relationship be-
tween session and entity beans [5]. From the information (above), presented
by the PAD tool upon identification of these potential antipattern instances,
it seemed that these session beans were in fact bloated session beans. Unfortu-
nately we were unable to contact the developers originally responsible for this
code. However we did discover that this code was removed from later releases
of the application which indicated that it was indeed problematic.

No false positives were identified when we applied the PAD tool to the IBM
workplace application and in fact all antipatterns identified were addressed in the

82 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



8 RELATED WORK

subsequent versions of the application which suggested they were indeed problematic
pieces of code. Unfortunately we could not assess whether false negatives were
identified in the application as we did not have access to the complete system source
code or documentation.

8 RELATED WORK

Antipatterns have been previously documented and categorised in a range of differ-
ent literature [7] [6] [8] [4] [5]. Technology independent software antipatterns have
been previously documented in the literature [7] and [6]. Smith and Williams [6]
focus on technology independent performance antipatterns in particular. Technol-
ogy specific antipatterns have been documented in [8], [4] and [5]. The literature [4]
and [5] both categorise their antipatterns according to the related component types
which are effected. For example, antipatterns related to entity beans, antipatterns
related to session beans etc. In contrast we have taken technology specific (JEE)
performance antipatterns and categorised them according to the data required to
detect them. A similar approach has previously been taken by Reimer et al., who
have categorised programming errors based on the algorithms used to detect them
[35]. Our antipattern categorisation also differentiates between performance design
antipatterns, performance deployment antipatterns and performance programming
errors. Similarly, Moha and Gueheneuc [36] provide a taxonomy in which they
attempt to clarify the difference between errors, antipatterns, design defects and
code smells. In their analysis they define code smells as intra-class defects, design
defects as inter-class defects. Our antipattern categorisation is at a higher more
abstract component level. Hallal et. al. [37] provide a library of antipatterns for
multi-threaded java applications. They also distinguish between errors and design
antipatterns. They classify the mutli-threaded antipatterns, that they present, fol-
lowing a categorization which reflects the effect of the antipatterns on the outcome
of the tested program.

There has been much work in the area of reverse engineering applications to
extract the application design. Many of these approaches (e.g. [38] [39] [40]) work
by analysing the source code of the application (or the bytecode) and create static
models of the system. A drawback of using static models is that they contain all
potential relationships that may exist in the system. For performance analysis many
of these potential relationships may never be relevant. The PTIDEJ tool [41] makes
use of both static and dynamic models to construct detailed class diagrams that
contain inheritance, instantiation, use, association, aggregation, and composition
relationships. Our reverse engineering approach works at a higher (component)
level of abstraction and contains run-time relationships only. Chen et al. [42] had
previously shown how such dynamic component relationships (or models) can be
extracted from run-time paths for the purpose of problem determination using the
pinpoint tool. Our monitoring approach is an extension of the pinpoint tracing tool
[18]. In contrast to pinpoint it is completely portable and also provides for object

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 83



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

tracking [19]. Briand et. al have previously presented work on reverse engineering
sequence diagrams from distributed [43] and multi-threaded [44] java applications.
Their approach, similar to our analysis module, is based on populating instances
of a meta model with information collected by monitoring a running system. The
literature [45] similarly presents an approach for architecture recovery using runtime
analysis. With this approach a run-time engine takes a mapping specification and
monitoring events (from a running system) as input, and subsequently produces
architecture events. A drawback of this approach is that it requires an engineer
to create the mapping specification between the low level events recorded and the
architecture events that are produced. An alternative approach for the identification
of run-time relationships has been suggested by Agarwal et al. [46]. They use
a data mining approach to extract resource dependencies from monitoring data.
Their approach relies on the assumption that most system vendors provide a degree
of built in instrumentation for monitoring. A major drawback of this approach
however is that it is statistical and not exact, and at higher loads the number of
false dependencies increase significantly.

Data mining techniques have been previously applied to run-time paths for the
purpose of problem determination using clustering and statistical analysis to cor-
relate the failure of requests to the components most likely to have caused them
[42]. We make use of clustering for the purposes of data reduction. Clustering has
previously been used in a wide range of fields. A comprehensive survey of current
clustering techniques can be found in the literature [47]. Similarly frequent itemset
mining algorithms have been used in many different domains [28]. However, we
believe we are the first to apply FSM to run-time paths to identify communication
patterns in enterprise applications.

There has been much research in the area of detecting low level programming
errors or bugs in software systems (e.g. [35] [48] [49] [50] [51] [52]). Current perfor-
mance tools also focus on this area of programming errors and provide views that
assist in the identification of memory leaks and deadlocks (e.g. [14]). Problems
detected should ideally be annotated with descriptions of the issue detected as well
as a solution that can be applied to alleviate the problem. For example the Smart
Analysis Error Reduction Tool (SABER) [35] used for programming error detection
provides supporting information which explains why the code is defective. It also
provides contextual path and data flow information which can explain how the de-
fect occurred. Our work concentrates on higher level instances of inefficient design
[53] [16]. The detection of higher level design antipatterns has not been so widely
addressed. A recent commercial tool, eoSense [54] has been developed to identify
general JEE antipatterns. This tool identifies a number of JEE antipatterns and
presents the user with possible solutions. This tool, similar to our approach, ex-
tracts a run-time model from a running system [55] and has the ability to identify
performance related issues (e.g. bulky or excessive communication). However, the
tool has been designed to be used in single user mode and thus does not perform
data reduction when monitoring applications under load.

84 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



10 ACKNOWLEDGEMENTS

While antipattern detection is a relatively recent research topic, there has already
been a significant effort in the area of detecting software design patterns. Most of
these detection approaches have relied on static analysis [56] [57], or a combination
of static and dynamic analysis [58] [59]. Using static analysis is unsuitable for
detection or design recovery in large enterprise systems since the number of potential
relationships can be extremely large if there are a large number of components in
the system. A further advantage of dynamic analysis over static analysis is that
it allows for the collection of performance metrics. Our approach uses run-time
data and does not perform static analysis on the source code (or bytecode) of the
application. A more indepth discussion on related work is given in the literature
[11].

9 CONCLUSIONS

In this paper we outline an approach for the automatic detection of performance
design and deployment antipatterns. We discuss a number of advanced monitoring
and analysis techniques that are required for our antipattern detection approach.
Furthermore we categorise the antipatterns we detect into groups, according to the
data required to detect them. We show how the approach can be applied to en-
terprise applications using our PAD tool. Using the tool we identified a number of
antipatterns in both a sample application from Sun and a real enterprise applica-
tion from IBM as presented in our results section. We also show how monitoring
information collected from a system under load can be reduced using data reduction
techniques.

As part of our future work we intend to automatically assess the performance
impact of the detected antipatterns such that developers can concentrate their efforts
on refactoring the antipatterns with the highest performance impact. It is also
expected to apply this approach to alternative component frameworks.

10 ACKNOWLEDGEMENTS

The authors would like to thank IBM and in particular Patrick O’Sullivan and Simon
Pizzoli for their help with this work and for allowing us access to their systems. Our
work is funded under the Commercialisation Fund from the Informatics Research
Initiative of Enterprise Ireland.

REFERENCES

[1] Szyperski C., Gruntz D. and Murer S.: “Component Software: Beyond
Object-Oriented Programming”, Addison-Wesley, November, 2002.

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 85



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

[2] Noel J., ”J2EE Lessons Learned”, SoftwareMag.com,
http://www.softwaremag.com/L.cfm?doc=2006-01/2006-01j2ee, ac-
cessed February, 2008.

[3] Roehm B. , Csepregi-Horvath B. , Gao P., Hikade T., Holecy M., Hyland
T., Satoh N., Rana R. and Wang. H. ”IBM WebSphere V5.1 Performance,
Scalability, and High Availability WebSphere Handbook Series”, June,
2004, http://www.ibm.com/redbooks, accessed February, 2008.

[4] Tate B., Clarke M., Lee B. and Linskey P.: “Bitter EJB”, Manning, 2003.

[5] Dudney B. et al.: ”J2EE Antipatterns”, Wiley, 2003.

[6] Smith C. U. and Williams. L. ”Performance Solutions”. Addison Wesley,
2002.

[7] Brown W. J., Malveau R. C. and Mowbray T. J.:”AntiPatterns: Refac-
toring Software, Architectures, and Projects in Crisis”, Wiley, 1998.

[8] Tate B.:”Bitter Java”, Manning Publications Co., 2002.

[9] Gamma E. and Helm R. and Johnson R. and Vlissides J.: ”Design Pat-
terns: Elements of Reusable Object-Oriented Software”, Addison-Wesley,
1995.

[10] The Hillside Group, Pattern Definitions,
http://www.hillside.net/patterns/definition.html, accessed February,
2008.

[11] Parsons T., ”Automatic Detection of Performance Design and Deploy-
ment Antipatterns in Component Based Enterprise Systems”. Ph.D. The-
sis, 2007, University College Dublin.

[12] The Java Virtual Machine Profiler Interface,
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html, accessed
February, 2008.

[13] The Java Virtual Machine Tools Interface,
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html, accessed
February, 2008.

[14] Quest Software, JProbe profiler, http://www.quest.com/jprobe/, ac-
cessed February, 2008.

[15] Jerding D.F., Stasko J.T. and Ball T. ”Visualizing Interactions in Pro-
gram Executions”. In the proceedings of the International Conference on
Software Engineering, 1997.

86 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



10 ACKNOWLEDGEMENTS

[16] Parsons T. and Murphy J.: ”The 2nd International Middleware Doctoral
Symposium: Detecting Performance Antipatterns in Component-Based
Enterprise Systems”, IEEE Distributed Systems Online, vol. 7, no. 3,
March, 2006.

[17] Chen M., Kiciman E., Accardi A., Fox A. and Brewer E.: ”Using run-
time paths for macro analysis”, Proc. 9th Workshop on Hot Topics in
Operating Systems, Lihue, HI, USA, May 2003.

[18] Parsons T., Mos A. and Murphy M.,:”Non-Intrusive End to End Run-
time Path Tracing for J2EE Systems”, IEE Proceedings Software, Au-
gust, 2006.

[19] Bergin J. and Murphy L., ”Reducing runtime complexity of long-running
application services via dynamic profiling and dynamic bytecode adapta-
tion for improved quality of service“, Proceedings of the 2007 workshop
on Automating service quality, 2007, Atlanta, Georgia, USA.

[20] The Enterprise Java Bean Specification,
http://java.sun.com/products/ejb/docs.html, accessed February,
2008.

[21] The J2EE Management Specification,
http://www.jcp.org/en/jsr/detail?id=77, accessed February, 2008.

[22] The Java Management Extensions technology,
http://java.sun.com/javase/technologies/core/mntr-
mgmt/javamanagement/, accessed February, 2008.

[23] Ammons, G., Choi, J.D., Gupta, M. and Swamy,N: ”Finding and Re-
moving Performance Bottlenecks in Large Systems”, In Proceedings of
ECOOP, 2004.

[24] Agrawal R., Mannila H., Srikant R., Toivonen H. and Verkamo A.I.:
”Fast discovery of association rules”. In Advances in Knowledge Discov-
ery and Data Mining, 1996.

[25] E. Roman, Scott W. Ambler and Tyler Jewell, ”Mastering Enterprise
JavaBeans”, second edition, J.Wiley and Sons, USA and Canada, 2002.

[26] Agrawal R. and Srikant R.: ”Mining sequential patterns”. In P. S. Yu
and A. L. P. Chen, editors, Proceedings 11th International Conference
in Data Engineering, 1995.

[27] Parsons T., Murphy M. and O’Sulivan, P.: ”Applying Frequent Sequence
Mining to Identify Design Flaws in Enterprise Software Systems”, In
Proceedings 5th International Conference on Machine Learning and Data
Mining (poster track), Leipzig, Germany, 2007.

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 87



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

[28] Hand D., Mannila, H., and Smyth P.: ”Principles of Data Mining”. MIT
Press, 2001.

[29] JESS, http://www.jessrules.com/jess/index.shtml, accessed February,
2008.

[30] Precise Java, http://www.precisejava.com/, accessed February, 2008.

[31] E. Friedman-Hill. Jess in Action. Manning Publications, July, 2003.

[32] http://java.sun.com/javaee/5/docs/tutorial/doc/, accessed February,
2008.

[33] http://www.ibm.com/software/workplace, accessed February, 2008.

[34] Alur D., Crupi J. and Malks D.: ”Core J2EE Patterns: Best Practices
and Design Strategies”, Prentice Hall, Sun Microsystems Press, 2001.

[35] Reimer, D., et al.: ”SABER: Smart Analysis Based Error Reduction”,
Proceedings of the ACM SIGSOFT international symposium on Software
testing and analysis, 2004.

[36] Moha N. and Gueheneuc Y.G.: ”On the Automatic Detection and Cor-
rection of Design Defects”. In Serge Demeyer, Kim Mens, Roel Wuyts,
and Stephane Ducasse, editors, Proceedings of the 6th ECOOP workshop
on Object-Oriented Reengineering, July 2005.

[37] Hallal H. H., Alikacem E., Tunney W. P., Boroday S., and Petrenko A..
”Antipattern-Based Detection of Deficiencies in Java Multithreaded Soft-
ware”, Proceedings of the Quality Software, Fourth International Con-
ference on (QSIC’04), IEEE Computer Society, USA, 2004.

[38] Murphy G.C., Notkin D., and Sullivan K.. ”Software Reflexion Models:
Bridging the Gap between Source and High-Level Models”. Proceedings
SIGSOFT Symposium on Foundations of Software Engineering, ACM
Press, New York, 1995.

[39] Jackson, D. and Waingold, A. ”Lightweight extraction of object models
from bytecode”. In David Garlan and Jeff Kramer, editors, Proceedings
of the 21st International Conference on Software Engineering, May, 1999.

[40] Korn, J., Chen, Y.F., and Koutsofios, E.: ”Chava: Reverse engineering
and tracking of Java applets”. In Proceedings of the 6th Working Con-
ference on Reverse Engineering, IEEE Computer Society Press, 1999.

[41] Gueheneuc, Y.G.: ”A Reverse Engineering Tool for Precise Class Dia-
grams”. In Janice Singer and Hanan Lutfiyya, editors, Proceedings of
the 14th IBM Centers for Advanced Studies Conference, ACM Press,
October, 2004.

88 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3



10 ACKNOWLEDGEMENTS

[42] Chen M., Kiciman E., Fratkin E., Fox A. and Brewer E.: ”Pinpoint:
Problem Determination in Large, Dynamic, Internet Services”, Proc. Int.
Conf. on Dependable Systems and Networks (IPDS Track), Washington,
D.C., June, 2002.

[43] Briand L.C., Labiche Y. and Leduc J., ”Toward the Reverse Engineer-
ing of UML Sequence Diagrams for Distributed Java Software.” IEEE
Transactions on Software Engineering, vol. 32, no. 9, September, 2006.

[44] Briand L.C., Labiche Y. and Leduc J., ”Towards the Reverse
Engineering of UML Sequence Diagrams for Distributed, Multi-
threaded Java Software”. Technical Report SCE-04-04, Carleton Univ.,
http://www.sce.carleton.ca/Squall, September, 2004.

[45] Schmerl B., Aldrich J., Garlan D., Kazman R., and Yan H., ”Discovering
Architectures from Running Systems”. IEEE Transactions on Software
Engineering, July, 2006.

[46] Agarwal M. K., Gupta M., Kar G., Neogi A. and Sailer A.:”Mining Ac-
tivity Data for Dynamic Dependency Discovery in e-Business Systems”,
IEEE eTransactionson Network and Service Management Journal, Vol.1
No.2, September, 2004.

[47] Berkhin. P., ”Survey of clustering data mining techniques”. Technical
report, Accrue Software, San Jose, CA, 2002.

[48] Hovemeyer D. and Pugh W., ”Finding bugs is easy”, SIGPLAN Notices,
vol. 39, no. 12, ACM Press, New York, NY, USA, 2004.

[49] Johnson, S., ”Lint, a C program checker”. In UNIX Programmer’s Sup-
plementary Documents Volume 1 (PS1), April, 1986.

[50] Evans, D., ”Static Detection of Dynamic Memory Errors”. In Proc. of
PLDI, May, 1996.

[51] Detlefs, D. L., ”An overview of the extended static checking system”.
SIGSOFT Proceedings of the First Workshop on Formal Methods in
Software Practice, January, 1996.

[52] Ball, T. and Rajamani, S. K., ”The SLAM project: Debugging sys-
tem software via static analysis”. In Proceedings of the 29th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Portland, Oregon, January, 2002.

[53] Parsons, T., ”A Framework for Detecting, Assessing and Visualizing
Performance Antipatterns in Component Based Systems”. First Place
at ACM SIGPLAN Student Research Competition at The 19th An-
nual ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, Vancouver, Canada, October, 2004.

VOL 7, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 89



DETECTING PERFORMANCE ANTIPATTERNS IN COMPONENT BASED ENTERPRISE SYSTEMS

[54] Eologic, Eosense, http://www.eologic.com/eosense.shtml, accessed
February, 2008.

[55] West A. and Cruickshank G., ”Derived Model Analy-
sis: Detecting J2EE Problems Before They Happen”,
http://dev2dev.bea.com/pub/a/2007/07/derived-model-analysis.html,
accessed February, 2008.

[56] Keller, R. et al., ”Pattern-based reverse-engineering of design compo-
nents”. In Proceedings of the International Conference on Software En-
gineering, 1999.

[57] [4] Kramer C. and Prechelt L., ”Design recovery by automated search for
structural design patterns in object-oriented software”. Proc. of the 3rd
Working Conference on Reverse Engineering (WCRE), Monterey, CA,
November, 1996.

[58] Heuzeroth, D., Holl, T. and Lowe, W., ”Combining Static and Dynamic
Analyses to Detect Interaction Patterns”, Proceedings of the Sixth In-
ternational Conference on Integrated Design and Process Technology
(IDPT), June, 2002.

[59] Wendehals L., ”Improving Design Pattern Instance Recognition by Dy-
namic Analysis”. WODA, ICSE, 2003.

ABOUT THE AUTHORS

Trevor Parsons is a post doctoral researcher in the School of
Computer Science and Informatics in University College Dublin and
a member of the Performance Engineering Laboratory. Contact him
at trevor.parsons@ucd.ie. See also http://pel.ucd.ie/tparsons/

John Murphy is a senior lecturer in the School of
Computer Science and Informatics in University College
Dublin and a member of the Performance Engineering
Laboratory. Contact him at j.murphy@ucd.ie. See also
http://www.cs.ucd.ie/staff/jmurphy/home/

90 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 3


