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Nominal and Structural Subtyping in
Component-Based Programming

Klaus Ostermann, University of Aarhus, Denmark

In nominal type systems, the subtype relation is between names of types, and subtype
links are explicitly declared. In structural type systems, names are irrelevant; in deter-
mining type compatibility, only the structure of types is considered, and a type name
is just an abbreviation for the full type. We analyze structural and different flavors
of nominal subtyping from the perspective of component-based programming, where
issues such as blame assignment and modular extensibility are important. Our analy-
sis puts various existing subtyping mechanisms into a common frame of reference and
delineates the frontiers of the subtyping design space. In addition, we propose a new
subtyping definition in one particularly interesting corner of the design space which
combines the safety of nominal subtyping with the flexibility of structural subtyping.

1 INTRODUCTION

The choice of a nominal or a structural type system is one of the important characteristics
of any object-oriented language. In a structural system, an object type t1 is a subtype of
a type t2 if t1 is structurally compatible with t2, meaning that t1 has at least all methods
and fields (width subtyping) of t2, whereby the signatures of the methods and fields in t1
and t2 have to be compatible (depth subtyping). In the easiest case, compatible means
identical ; in type systems supporting some kind of covariance [8] it can be something
more sophisticated. Structural type systems are very common in type-theoretic research
such as [10, 8, 29] and research languages like Ocaml [22]. In nominal systems, the sub-
typing relation is a subset of the structural subtyping relation. In addition to structural
compatibility, there has to be a declared link between the two types. For example, a
type Point with methods int getX() and int getY() is a supertype of ColorPoint, which
has a method Color getCol() in addition to getX and getY, only if ColorPoint explicitly
declares (directly or indirectly) that it is a subtype of Point. Nominal type systems are
used in many main-stream object-oriented languages. In Java [2], for example, the imple-

ments or extends clause is used to declare subtypes; similar constructs exist in many other
languages.

Since the nominal subset relation is usually only a subset of the structural subset
relation, it is often claimed that structural systems offer more possibilites for software
reuse [15, 4, 25, 29]. We will indeed identify several examples where nominal subtyping is
an obstacle to reuse. However, we want to shed new light on this debate by analyzing the
situation from a component-based perspective; that is, we consider the situation where
different parts of the software are made and evolve independently of each other. The
main weakness of structural subtyping is that a design decision to make a type a subtype
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of another one is not documented in the code but is only very implicitly represented by
structural compatibility of the types. In particular, there is no place in the code (and hence
programmer) which accepts responsibility for the subtype relation - this is the reason why
it is hard to assign blame correctly. Our analysis makes this argument very concrete and
shows that structural subtyping leads to fragile code: blame cannot be assigned correctly
if subtype relations change due to changes in a part of the program.

As a result of the analysis, we develop a concrete set of desiderata for subtyping that
make the difference between structural and (different flavors of) nominal subtyping very
concrete and can be used to evaluate and compare different subtyping definitions.

These desiderata have been the motivation for the design of a new more flexible model
of nominal subtyping which combines its advantages w.r.t. stability and assignment of
blame with the flexibility of structural subtyping. In this model, subtype declarations
do not need to be part of the declaration of the subtype; they can also be declared in
a supertype, or even outside both the subtype and the supertype. Every place in the
program which makes use of a subtype relation (i.e., performs an upcast) must refer to
a “witness” of the subtype relation: the place in the program where the subtype relation
has been declared. We make this model concrete by describing it as an extension to
Featherweight Java [17], a small object-oriented language in the Java style, which is well-
suited to illustrate the semantics of our proposal.

The primary contributions of this work are:

• A new perspective on subtyping from the point of view of component-based design
and blame assignment.

• A concrete set of subtyping desiderata together with an evaluation of different sub-
typing mechanisms by means of these desiderata. This evaluation gives new insights
into the relation between those subtyping mechanisms.

• The design and formal specification of a new powerful model of nominal subtyping
which allows to express many subtyping relationships that could previously only be
established with structural subtyping without sacrifying the advantages of nominal
subtyping. A sketch of the soundness proof is also given.

The remainder of this paper is structured as follows. In Sec. 2 we analyze the interrela-
tion between subtyping and blame assignment. In Sec. 3 we discuss scenarios in which the
conventional nominal subtyping model is an obstacle to software reuse. Sec. 4 abstracts
from the examples and discusses general desiderata for subtyping. In Sec. 5 we give an
informal overview and assessment of our new model of nominal subtyping. In Sec. 6 this
model is made precise in the form of an extension to Featherweight Java and shown to
be sound. Sec. 7 compares the new model with various other subtyping mechanisms by
means of the desiderata from Sec. 4. Sec. 8 discusses other related work. Sec. 9 concludes.

2 SUBTYPING AND BLAME ASSIGNMENT

Consider the following scenario. We have four different components in our program : A
component which defines a type Stack with methods like push and pop (the stack com-
ponent), another component which defines a type FastStack which has similar methods
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as Stack (the fast stack component), a stack client component which offers a method
service(Stack s) requiring a Stack, and finally a user component which has access to a
FastStack fs and to a StackClient sc and performs an upcast from FastStack to Stack by
calling sc.service(fs).

Let us at first assume that the stack component and the fast stack component have
been developed independently of each other. In a nominal system, FastStack is then not a
declared subtype of Stack, hence the upcast in the user component fails - we cannot com-
bine FastStack with StackClient even if the interfaces of Stack and FastStack are identical.
Let us now consider a structural system. If the interfaces are not compatible (e.g., the
pop method is called top in FastStack, we are no better off than in the nominal case. The
upcast succeeds only if FastStack is a structural subtype of Stack. However, the important
point is that this is highly unlikely in this scenario! Names in independently developed
interfaces match only by accident. And even if the names would match, it would be highly
unlikely that one of the types is a behavioral subtype (Liskov substitution principle [24])
of the other one. Hence we can conclude that structural subtyping offers no advantages
over nominal subtyping in this case.

Now assume that FastStack has explicitly been designed to be a subtype of Stack.
In this case, we can safely assume that the names match and that FastStack is also be-
haviorally compatible with Stack. In the nominal system, the design decision to make
FastStack a subtype of Stack is also documented in a declared supertype link in FastStack.
The combination of FastStack with StackClient in User works with both structural and
nominal subtyping.

The situation gets more interesting if we consider changes to Stack or FastStack. If
one of these components change, such that they are no longer subtypes of each other, the
fast stack component should be blamed, because the designers of FastStack accepted the
responsibility for making FastStack a subtype of Stack. The blame is correctly assigned in a
nominal system because the compiler will announce that the declared subtype relationship
in FastStack does not hold. In a structural system, however, the user component is always
(incorrectly) blamed; both the Stack and the FastStack component can still be compiled
without an error but the upcast in the user component will lead to an error.

As a final scenario, let us consider the case that FastStack is pre-existing and the
programmers of Stack intend to design Stack to be a supertype of FastStack. In a nominal
type system such as Java, this cannot be expressed because we would have to change the
definition of FastStack in order to make Stack a supertype of FastStack. With a structural
type system, the required supertype relation can be established as desired, but the problem
with incorrectly assigned blame remains: Although the designers of Stack are responsible
for maintaining the supertype relation, the user component will be blamed whenever Stack
or FastStack change.

To summarize: Structural subtyping does not have means to express who accepts re-
sponsibility for maintaining a subtype relation. Hence blame cannot be assigned correctly.
The practical consequence is that the cause of the error and the place where the error oc-
curs are separated in time and space – a highly undesirable situation in a component-based
setting. In a nominal system, a type can accept responsibility for maintaining a subtype
relation by a corresponding supertype declaration, but the other way around (accepting
responsibility for maintaining a supertype relation) is not possible.
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class Hello {
String sayHello() { return "Hello"; }

}
class RemoteHello {

String sayHello() { /* send method call to remote host */ }
}

Figure 1: RemoteHello is not a subtype of Hello

interface Widget {...}
interface ColoredWidget extends Widget { Color getColor(); }
interface BorderWidget extends Widget {

void setBorderWidth(int n); }
interface ResizeableWidget extends Widget {

void setSize(int n); }

class WidgetImp implements Widget {...}

class SomeWidget extends WidgetImp
implements ColoredWidget, BorderWidget, ResizeableWidget {...}

interface ColoredBorderWidget implements
ColoredWidget, BorderWidget {}

interface BorderResizeableWidget implements
BorderWidget, ResizeableWidget {}

interface ColoredResizeableWidget implements
ColoredWidget, ResizeableWidget {}

Figure 2: SomeWidget is not a subtype of the three types at the bottom

3 SUBTYPING AND REUSE

The last scenario in the previous section showed a situation where we cannot express the
desired subtype relation with nominal typing. This is a substantial problem, and in this
section we will elaborate on it with a set of three examples illustrating the problem in
detail. We use Java-like syntax [2] in this paper, but the ideas are easily applicable to
other statically typed object-oriented languages.

The first problem is very simple: In most object-oriented nominal type-systems, classes
are also types, but we cannot create a subtype of a class without inheriting from it. This
is illustrated in Fig. 1: If we have objects of the class Hello that we want to make available
on a remote host, then a proxy (stub) class which is responsible for sending method
calls to the remote host, cannot be made a subtype of the Hello, and hence cannot be
used transparently everywhere where a Hello object is expected. The only way to make
RemoteHello a subtype of Hello is to make it a subclass - but that is obviously completely
undesirable in this example.
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package java.util;
interface Collection {

boolean contains(Object o);
boolean isEmpty();
void clear();
...

}
class ArrayList implements Collection {...}

package mypackage;
interface ReadOnlyCollection {

boolean contains(Object o);
boolean isEmpty();

}
class ReadOnlyList implements ReadOnlyCollection { ... }

Figure 3: ArrayList is not a subtype of ReadOnlyCollection

The second problem of nominal type systems is that it is not possible to specify that
an object should have a specific set of interfaces. Types are frequently used to model
certain features of an object. If more than one feature is required of, say, an object passed
as method argument, a new type needs to be defined which stands for the combination
of the two features. However, an object which indeed has both types is not a nominal
subtype of the combination type except if it is explicitly implemented by the object. The
latter strategy requires preplanning and leads to an exponential growth of the number of
interfaces. This is illustrated in Fig. 2. The three interfaces at the bottom denote sets
of features, but the component SomeWidget which has all the features is not a subtype
of these interfaces. SomeWidget could explicitly declare that it is a subtype of these
interfaces, but this would require us to preplan and provide an interface for every possible
combination of features. Since the number of combinations grows exponentially with the
number of features, this approach does not scale.

The third problem is related to the asymmetry of subtype declarations hinted at at
the end of Sec. 2. The problem is that in nominal systems one cannot document that
only a part of an existing interface is needed for some purpose, and it is not possible to
implement new classes having this partial interface. Consider the library types Collection
and ArrayList in Fig. 3. Assume we have a component Service which requires only a well-
defined subset of the features defined in Collection, such as only those methods that do
not change the collection, as indicated in the ReadOnlyCollection interface. With nominal
subtyping, we cannot document this property because we cannot make ReadOnlyCollection
a supertype of Collection without changing the definition of the latter.

Worse, we might want to create new classes such as ReadOnlyList which has only the fea-
tures required by Service. It is impossible, however, to use Service with both ReadOnlyList
and ArrayList because we cannot declare an appropriate subtype relationship between them
without changing the Collection interface.
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4 SUBTYPING DESIDERATA

The previous two sections showed different examples that illustrate problems of nominal
and structural subtyping in a component-based setting. Now we put these examples into
perspective and extract four principles that we believe to be critical for sound and reliable
subtyping in large-scale software development. These principles are also concrete criteria
which can be used to assess subtyping mechanisms.

Flexible Assignment of Responsibility

Definition

Whether or not an upcast from a type S to T goes wrong depends on three parties: The
party performing the upcast, the definition of S, and the definition of T . We say that
a subtyping mechanism allows flexible assignment of responsibility if the programmer(s)
can control which of these parties will be blamed if the upcast goes wrong.

Rationale

In a component-based setting, proper responsibility assignment (and hence blame assign-
ment) needs to be possible for every important design decision. Sect. 2 showed that all
three scenarios (any of the three parties can accept the responsibility) make sense.

Modular extensibility of subtyping relation

Definition

Let P be a program and <: the subtype relation in P . We say that <: is subtype-open if it
is possible to add type definitions T to P such that T is a subtype of an existing type in P
without changing P . Similarly, <: is supertype-open if it is possible to add type definitions
T to P such that T is a supertype of an existing type in P without changing P .

Let S and S′ be two types in P such that S is a structural subtype of S′. We say
that <: is subtype-supertype-open, if it is possible to add type definitions T ′to P such
that S <: T ′ and T ′ <: S′. If we view the subtyping relation of a program as a directed
acyclic graph, a subtype-open subtype relation means that the graph can be extended
with (sets of connected) nodes that have edges into the existing graph but not vice versa.
The same property with the reverse direction of the edges holds for a supertype-open
subtype relation. In a subtype-supertype-open subtype relation, we can have edges both
in both directions. Note that a subtype-open and supertype-open subtype relation is not
necessarily subtype-supertype-open.

Rationale

Modular extensibility (extension without changing code) is a prerequisite for component-
based programming. Java-like languages are only subtype-open, but the previous section
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has shown different examples where this was too limiting.

Unique name introduction

Definition

In object-oriented languages, every method or field in a type has a name. Based on the
overloading rules of the language, the signature of the field/method may be part of the
name or not. We distinguish between a name introduction and a name usage. We say
that a name m is introduced in a type T , if it has not been defined in a supertype S of T ,
otherwise we way that the m is used in T . A subtyping mechanism has the unique name
introduction property, if, for every type T and every name m, the set of supertypes of T
contains at most one name introduction of m.

Rationale

A name introduction can be seen as an implicit definition (in informal comments or only in
the mind of the programmer) of the meaning of a name - which is more than a type signa-
ture. Since the meaning of a (method) name is more than its signature, it is unlikely that
two separate name introductions mean “the same thing”, even if their signatures match.
A clean distinction between name introductions and name usages is also well-known from
λ-calculus, where we are used to the fact that α-conversion (consistent renaming of bound
variables) does not change the meaning of a program. Unique name introductions guaran-
tee a similar property: changing a name introductions and all name usages that (uniquely)
refer to this name introduction does not change the meaning of the program.

Traceability

Definition

For a type T , let trace(T ) be the set of types reachable from T following the declared
sub-/supertype links in T . We say that a subtype relation <: is traceable, if S <: T
depends only on trace(S) ∪ trace(T ). If there are no super-/suptype declarations, then
trace(T ) = {T}.

Rationale

Traceability is important for modular understandability of the code - if a programmer
wants to understand why an upcast is correct or not, he can systematically follow the
type declarations and does not need a global view on the code. For the same reason,
traceability is also important for modular type-checking of the code.
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class Hello {
String sayHello() { return "Hello"; }

}
class RemoteHello implements Hello {

String sayHello() {
/* method stub generated by RMI compiler */

}
}

Figure 4: RemoteHello is a subtype of Hello

5 OVERVIEW OF OUR PROPOSAL

Based on the desiderata defined in the previous section, we have developed a proposal
which addresses these desiderata. Before going into the exact details of the proposal, we
will give an overview of its refined subtyping mechanism. Later (in Sec. 7) we will compare
the proposed mechanism with respect to the proposed desiderata and related work.

Our proposal differs from the traditional nominal subtyping model such as in Java or
C# in three regards:

• The type of a class can be used independently of the class itself. In particular, it is
possible to create subtypes of a class type without inheriting the implementation.

• It is possible to define interface sets. Subtyping of interface sets is structural, that
is, an interface set is a subtype of another one iff their interface sets are in a subset
relation.

• It is possible to declare supertypes of an existing type.

The first two extensions are relatively straightforward and are basically variants or
minor improvements over previous proposals such as [30, 6]; the third one is a more
fundamental extension of an idea from Sather [35, 33]. The reason why we discuss all
three extensions is twofold: First, in order to have a simple and formalized realization
of these ideas for the subsequent discussion, detached from the context and languages
in which these extensions were proposed. Second, because their combination marks an
interesting extremal point in the subtyping design space, as we will detail in Sec. 7.

Fig. 4 illustrates the first extension. A class can be freely used as a type in implements
clauses, hence the class RemoteHello is a subtype of Hello, but does not inherit its imple-
mentation. This would be unsound if public instance variables were allowed because a
RemoteHello object does not have the instance variables of Hello. We prevent this prob-
lem by disallowing public instance variables; all access to instance variables is allowed via
this only. This is not a serious restriction because public instance variables can easily be
simulated with getter/setter methods.

The second extension is illustrated in Fig. 5. An interface stands for a set of other
interfaces if it does not define methods headers itself but instead ends its declaration with
a semicolon, as illustrated by the three declarations at the bottom of Fig. 5. The class
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interface Widget {...}
interface ColoredWidget extends Widget {

Color getColor();
}
interface BorderWidget extends Widget {

void setBorderWidth(int n);
}
interface ResizeableWidget extends Widget {

void setSize(int n);
}

class WidgetImp implements Widget {...}

class SomeWidget extends WidgetImp
implements ColoredWidget, BorderWidget, ResizeableWidget {...}

interface ColoredBorderWidget
implements ColoredWidget, BorderWidget;

interface BorderResizeableWidget
implements BorderWidget, ResizeableWidget;

interface ColoredResizeableWidget
implements ColoredWidget, ResizeableWidget;

Figure 5: SomeWidget is a subtype of all three interface sets at the bottom

SomeWidget is a subtype of all these interfaces even though a subtype relation between
these types is not explicitly declared. This is because we make a structural compari-
son: is the set of interfaces a subset of the set of interfaces declared in the interface set
specification?

The third extension is the possibility to declare supertypes by means of an
extendedBy clause, illustrated in Fig. 6. The class ReadOnlyCollection declares that
it is a supertype of Collection. This is accepted by the type checker only if the set of
methods of ReadOnlyCollection (declared in the interface definition or inherited from su-
perinterfaces) are structurally a supertype of the methods of Collection. If we have some
method which accepts objects of type ReadOnlyCollection we can use the method with
instances of both ArrayList and ReadOnlyList. The extendedBy declaration means that
ReadOnlyCollection accepts the responsibility of maintaining the supertype relation, hence
blame can be assigned correctly if Collection or ReadOnlyCollection change.

The extendedBy clause has a number of fundamental implications. Consider the code
in Fig. 7, which adds an inherited interface to ReadOnlyCollection. The method m1 of
the client code accepts an instance of Collection, which is, through the declaration of
ReadOnlyCollection, a subtype of ReadOnlyObject. However, if we would allow a direct
upcast to ReadOnlyObject as in the call m2(c), we would need a closed world assumption
to type-check this call: There is no direct or indirect link from Collection to ReadOnlyObject.
The type ReadOnlyCollection refers to both types, but there is no direct or indirect reference
from the two types to ReadOnlyCollection. In the terminology of Sec. 4, the traceability
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package java.util;
interface Collection {

boolean contains(Object o);
boolean isEmpty();
void clear();
...

}
class ArrayList implements Collection {...}

package mypackage;
interface ReadOnlyCollection extendedBy Collection {

boolean contains(Object o);
boolean isEmpty();

}
class ReadOnlyList implements ReadOnlyCollection { ... }

Figure 6: ArrayList is a subtype of ReadOnlyCollection due to the extendedBy decla-
ration

interface ReadOnlyCollection extends ReadOnlyObject
extendedBy Collection { ... }

class Client {
void m1(Collection c) {
// m2(c); -- static error
ReadOnlyCollection d = c; //ok
m2(d); // ok

}
void m2(ReadOnlyObject r) { ... }

}

Figure 7: The subtype relation is not transitive

of the typing relations would be lost. This is not just a question of whether the type-
checker needs a global view of the program, it also means that a programmer who wants
to understand the code needs a global view of the system in order to understand why an
upcast is correct or not.

The declaration of ReadOnlyCollection is the “witness” of the subtype relation, hence
each place in the code which makes use of this subtype relation must refer (via a traceable
list of types) to this witness. This can be done by making the upcast in two steps: First, by
upcasting the object to a variable of type ReadOnlyCollection. This does not violate trace-
ability because there is a link from ReadOnlyCollection to Collection. Second, by upcasting
the temporary object to ReadOnlyObject. Again, this does not violate traceability because
there is a declared link from ReadOnlyCollection to ReadOnlyObject. In general, the type
checker makes sure that only those upcasts can be performed where the “proofs” that the
subtype relation is ok can be reached from the types of the object that are compared by
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interface Collection { ... }
class ArrayList implements Collection {...}

interface ReadOnlyCollection extends ReadOnlyObject { ... }

class ReadOnlyList implements ReadOnlyCollection { ... }

interface CollectionIsaROC implements ReadOnlyCollection
extendedBy Collection;

class Client {
void m1(Collection c) {
// m2(c); -- static error
CollectionIsaROC d = c; //ok
m2(d); // ok

}
void m2(ReadOnlyObject r) { ... }

}

Figure 8: CollectionIsaROC is a witness for the subtype relation between Collection
and ReadOnlyCollection

following super/subclass declarations. In particular, this means that the subtype relation
is not transitive.

Together with the interface set mechanism, we can go even one step further and sep-
arate the declaration of the subtype relation completely from the type or its subtype.
Fig. 8 shows a variant of ReadOnlyCollection that does not contain an extendedBy link
to Collection; neither is Collection declared as a subtype of ReadOnlyCollection. The sep-
arate interface declaration CollectionIsaROC links these two types together and declares
a subtype relation between them. Since there is no direct link between the two types,
an upcast has to be performed in two steps again, as illustrated by the Client code in
Fig. 8. If the subtype relation does not hold despite the declaration in CollectionIsaROC,
CollectionIsaROC is blamed because it is the declaration where the subtype claim is made.

6 THE FORMAL MODEL

In this section we define the semantics of the new subtyping constructs precisely as an
extension to Featherweight Java (FJ) [17]. Our extension is called FJ<:

1.

The formal syntax of FJ<: is defined in Fig. 9. The formal definitions use a number of
syntactic conventions. A bar above a metavariable denotes a list: T stands for T1, ...,Tk

for some natural number k ≥ 0. If k = 0 then the list is empty. The length of T is |T|.
Following common convention [17], T f represents a list of pairs T1 f1 · · ·Tk fk rather than

1A pun on the theoretical calculus System F<: [10], which has been used a lot in the study of
subtyping.
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Grammar
CL ::= class C extends C implements T { T f; K M } class declaration
IF ::= interface J extends T extendedBy T { H } interface declaration
IF ::= interface J extends T extendedBy T; interface set declaration
K ::= C(T f) { super(f); this.f = f; } constructor
H ::= T m(T x) method header
M ::= H { return e; } method declaration
e ::= x | f | e.m(e) | new C(e) | (T) e expressions

Identifiers
C, D class names
J interface names
S,T,U,V ::= C | J types
f,g field names
m method names
x argument names or this

Figure 9: Syntax of FJ<:

a pair of lists. Sometimes we will abuse syntax and confuse list notation with set notation,
e.g., write T ∈ T, but the meaning will always be clear from the context.

A class declaration consists of the keyword class, a class name, a superclass decla-
ration, a list of implemented interfaces, a list of field declarations, a constructor, and a
list of methods. An interface declaration specifies a list of extended interfaces (subtype
declarations), a list of interfaces that this interface extends (supertype declarations), and
a list of method headers that this interface declaration adds. An interface set is declared
by omitting the {...} body and using a semicolon ; instead. Constructors, methods, and
expressions are almost exactly like in FJ, except that public field access of the form e.f is
not allowed but only access to fields of this object, hence a field access consists only of
a field name. Other available expressions are access to method parameters or this via x,
method calls e.m(e), constructor calls new C(e), and type casts (T) e.

The subtyping function defined in Fig. 10 computes the set of known subtype relation
as seen from a type T. It does not compute the subtypes of T but it represents the set of
subtype links visible from T according to the principle of traceability. This set of known
subtype relations is computed by following the type declarations to super- or subinterfaces
via the helper function subtypingAux . The second parameter Z of subtypingAux is an
accumulator which represents all types visited so far, hence we can stop the search if we
encounter a type twice, such that the algorithm does not loop if the subtyping graph
contains cycles. Every pair (T, S) in the result stands for a declared sub- or supertype
declaration that was encountered when following the sub- or supertype links in the given
type. Note that the result of a subtyping call, if viewed as a relation, is reflexive, because
the pairs (J, J) and (C,C) are added to the result for every visited type. However, the
relation is not transitive, in general.

The subtype relation <: is defined in Fig. 11. It is defined in terms of a subtype relation
<:S,T which keeps track of the original types whose subtype relation we want to verify,
see rule (S-Intro). The S,T pair in <:S,T is used to ensure traceability. For a given pair
S,T, the relation <:S,T is transitive by (S-Trans). Note that this does not mean that <:
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subtyping(T) = subtypingAux (T, ∅)

CT (J) = interface J extends T extendedBy S ...

Qi =
{
∅ if Ti ∈ Z
subtypingAux (Ti, Z ∪ {J}) else

Rj =
{
∅ if Sj ∈ Z
subtypingAux (Sj , Z ∪ {J}) else
subtypingAux (J, Z) =

{(J, J), (J,T1), ..., (J,T
|T|

), (S1, J), ..., (S
|S|
, J)}

∪Q1 ∪ ... ∪Q|T| ∪R1 ∪ ... ∪R|S|

CT (C) = class C extends D implements T ...
T0 = D

Qi =
{
∅ if Ti ∈ Z
subtypingAux (Ti, Z ∪ {C}) else
subtypingAux (C, Z) =

{(C,C), (C,D), (C,T1), ..., (C,T
|T|

)} ∪Q0 ∪ ... ∪Q|T|

Figure 10: Computation of known subtype relations

S <:S,T T

S <: T
(S-Intro)

U <:S,T V′ V′ <:S,T V

U <:S,T V
(S-Trans)

(U,V) ∈ subtyping(S) ∪ subtyping(T)
U <:S,T V

(S-Sub)

J <:S,T J

CT (J) = interface J extends T extendedBy S;
U <:S,T T

U <:S,T J
(S-Set)

Figure 11: Subtyping

itself is transitive. The main subtyping rule is (S-Sub). It specifies that U is a subtype of
V if a corresponding super- or subtype declaration is available in the subtyping structure
as seen from S or T. The union of subtyping(S) and subtyping(T) represents exactly those
subtype relations that are traceable starting from T or S.

The rule (S-Set) is responsible for realizing the subtyping of interface sets. A type
U is a subtype of an interface set J if U is a subtype of all interfaces T in the set. The
condition J <:S,T J makes sure that the subtype relation still remains traceable because
J <:S,T J holds only if J is traceable from either S or T. Without this condition, it would
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∀(T′,H), (T′′,H′) ∈ T,H :
H = T m(T),H′ = S m(S)⇒ T = S,T = S

noconflicts(T,H)

∀(T′,H′) ∈ methods(T) : H = H′ ⇒ T = T′

isIntroduction(T,H)

∀(T,H), (T′,H) ∈ T,H :
isIntroduction(T,H), isIntroduction(T′,H)⇒ T = T′

uniqueIntroductions(T,H)

noconflicts(T,H)
uniqueIntroductions(T,H)

checkMethods(T,H)
(Check)

interface J extends T extendedBy S {} OK

interface J extends T extendedBy S; OK
(T-Ifc1)

checkMethods(methods(J))
signatures(methods(S)) ⊇ signatures(methods(J))

interface J extends T extendedBy S {H} OK
(T-Ifc2)

checkMethods(methods(C))
signatures(methods(C)) ⊇ signatures(methods(T))

K = C(S g,U f) {super(g); this.f = f; }
fields(D) = S g M OK IN C

class C extends D implements T {U f; K M} OK
(T-Class)

x : T, this : C ` e ∈ S S :< T

T m(T x){ return e; } OK IN C
(T-Method)

Figure 12: Method, Class, and Interface Typing

be possible to “guess” such an interface set type as V′ in (S-Trans) which is outside the
set of traceable type declarations.

The other interesting part of the language semantics are the constraints on method,
class, and interface declarations to be type-safe. These are the places where blame is
assigned if a declared subtype relation does not hold. The formal definitions are in
Fig. 12. The predicate noconflicts checks whether a set of method headers has con-
flicts, i.e., whether there are two methods with the same name but different signatures.
The uniqueIntroductions check makes sure that the unique name introduction property
defined in Sec. 4 holds.

The check for interface sets (T-Ifc1) is the same as the check for interfaces (T-
Ifc2). An interface specification is ok (T-Ifc2) if there are no conflicts among the in-
herited and defined methods and if all types after the extendedBy keyword have at
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least all methods that this type defines. The auxiliary function methods, which is de-
fined in the appendix (Fig. 13), collects all method headers and the place where they
are declared in a type and all its supertypes. The function signatures extracts the
headers. The notation signatures(methods(S)) ⊇ signatures(methods(J)) is a shorthand
for signatures(methods(S1)) ⊇ signatures(methods(J)), ..., signatures(methods(S

|S|
)) ⊇

signatures(methods(J)) (similarly in other places).

For a class declaration to be ok (T-Class), it must not have method conflicts and it
has to implement (directly or in a superclass) all methods required by all implemented
interfaces T. In addition, the constructor parameters must match with the fields defined
in C and its superclass D. The helper function fields collects all fields of a class and its
superclasses and is again formally defined in the appendix (Fig. 13). Finally, all methods
of the class must be ok.

A method is ok (T-Method), if the method body can be type-checked in the ap-
propriate environment and if the type of the body is a subtype of the annotated return
type.

Type checking of expressions and the operational semantics of FJ<: are not very in-
teresting; they are a straightforward translation of the corresponding FJ definitions. For
this reason, these definitions are given in the appendix (App. A Fig. 13 and 14) and not
discussed here. Note, however, that these definitions differ from the FJ definitions in that
they use the refined subtype relation from Fig. 11.

Soundness of the type system is established via the standard progress and preservation
theorem2. A sketch of the soundness proof as a delta to the Featherweight Java soundness
proof is available in App. B.

7 DISCUSSION

We will now compare FJ<: and different other subtyping definitions with respect to the
desideratas defined in Sec. 4. The results are summarized in Table 1.

Structural subtyping such as in OCaml [22] or [25] is on one end of the spectrum.
Structural subtyping is traceable because only the structure of two types needs to be
compared; no lookup of other types is necessary. Name introductions are not unique -
with structural subtyping it is not possible to differentiate name introductions from name
usages. Since subtyping is not declared, the blame for every failing upcast will be assigned
to the party performing the upcast, hence it is not possible to assign blame flexibly.
The big advantage of structural subtyping is its modular extensibility. One just needs
to define a type and it is automatically a subtype or supertype of all other types with a
corresponding structure.

Nominal subtyping such as in most mainstream languages is on the other end of the

2The preservation theorem requires that the type of a rewritten program is a subtype of the
previous type. This cannot hold if the subtyping relation that is used for rewritten programs is
not transitive. For this reason, the subtype definition discussed here is only used for type-checking
the original program, whereas for rewritten programs a wider subtype relation that is defined in
the appendix is used. This is basically the same trick as the “stupid cast” rule in FJ.
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Structural
Subtyping

Yes No No, the party performing
the upcast is always blamed

Since subtype relations are
not declared, all kinds of
subtype openness are auto-
matically given

Nominal
Subtyping
in Java [2]

Yes No Not possible to assign re-
sponsibility to the super-
type

only subtype-open for inter-
face types; intervened with
inheritance for class types

Sather [35,
33]

Yes No responsibility can be as-
signed to both sub- and su-
pertype

subtype-open and
supertype-open

Compound
Types [6]

Yes Yes∗ Not possible to assign re-
sponsibility to a supertype

subtype-open and subtype-
supertype-open w.r.t. inter-
face sets

FJ<: Yes Yes/No∗ responsibility can be as-
signed to both sub- and su-
pertype

subtype-supertype-open

AspectJ
Inter-type
declara-
tions [19]

No No No, the party performing
the upcast is always blamed

subtype-supertype-open

“Duck
Typing”

No No The first party which calls
a method on an object that
does not exist is blamed at
runtime

subtype-supertype-open

Table 1: Comparison of different subtyping mechanisms

spectrum. We will consider subtyping as defined in Java [2] in more detail. In Java, the
subtype relation is traceable; in order to determine whether T is a subtype of T ′ it is
sufficient to follow the tree of superclasses and implemented interfaces of T and search for
T ′. Although, in principle, it would be possible to distinguish name introductions from
name usages, Java does not have unique name introductions: As long as the signatures are
compatible, the same method can be inherited from two distinct, unrelated interfaces. As
the examples in Sec. 2 showed, the subtype declarations in Java always assign responsibility
to the subtype; the other way around is not possible. The major disadvantage of nominal
subtyping is its limited extensibility: It is only possible to add new subtypes of interface
types; for class types, subtyping is intervened with inheritance because it is not possible to
create a subtype of a class type without inheriting the implementation of the class. More
importantly, it is not possible to add new supertypes in a modular way.

Subtyping in FJ<: combines and generalizes the subtyping mechanisms in Sather [35,
33] and compound types [6]. Sather is a language with nominal subtyping where type
declarations have a supertype clause similar to our extendedBy clause, in addition to
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the usual subtype clause. Hence Sather allows flexible assignment of responsibility. The
subtype and supertype clauses render Sather subtype-open and supertype-open. The main
difference to FJ<: is that Sather is not subtype-supertype-open because, as the authors
say [33], this would prevent modular type checking (i.e., traceability). The advantage of
FJ<: over Sather is that the non-transitive subtype relation enables to combine traceability
with subtype-supertype-openness.

Compound types [6] are a proposal to integrate intersection types into nominal object-
oriented languages, similar to our interface sets. The new extensibility dimension of com-
pound types is hence that they are subtype-supertype-open, but only with respect to
interface sets. This is because subtyping of interface sets is defined as a subset relation
between the respective interface sets, i.e., structural. Does this extension mean that one
inherits the disadvantages of structural subtyping through the backdoor? This is true to
some degree: In our example in Fig. 5, we cannot document that SomeWidget is designed
to be a subtype of ColoredBorderWidget. For example, removal of the ColoredWidget in-
terface from SomeWidget silently removes this subtype relation, and a client upcasting
SomeWidget to ColoredBorderWidget would be blamed for this error. The important dif-
ference to general structural subtyping, however, is that such intersection types are com-
patible with unique method name introductions. The unique name introduction property
may not hold because of other properties of the underlying type system, but compound
types themselves are compatible with it because an interface set does not introduce new
method names. One could argue that an interface set introduces a new name, namely
the name of the interface set, and that this name represents more than just the set of
interfaces it represents. However, this name is never matched against any other name,
hence it does not influence unique name introductions.

Compound types / interface sets are a very interesting corner point in the subtyping
design space which is illustrated by the comparison with Sather and FJ<:. FJ<:, as
defined in the previous section, guarantees unique name introductions and is also subtype-
supertype-open, whereas compound types are subtype-supertype-open only with respect
to interface sets. However, the unique name introduction property in FJ<: enforces that
only those subtype-supertype extensions are accepted that could also be represented by
compound types! Consider the CollectionIsaROC declaration in Fig. 8. Every method that
is introduced in ReadOnlyCollection which does not stem from an interface that is also
implemented by Collection leads to a non-unique name introduction in CollectionIsaROC

because the same method has to be available in Collection. Hence this situation would
be prevented by the uniqueIntroductions check in (Check) (Fig. 12).

On the other hand, if all method names in ReadOnlyCollection stem from interfaces
that are also implemented by Collection, then the extendedBy Collection clause is not
necessary in the declaration of CollectionIsaROC - that is, the same type could also be
declared as an interface set / compound type only. Interface sets hence seem to represent
the maximum in subtype-supertype-openness that can be reconciled with unique name
introductions.

Since the uniqueness check uniqueIntroductions in (Check) (Fig. 12) is not necessary
for type soundness, we can also consider it optional: With this check enabled, subtype-
supertype-extensibility boils down to interface sets; without the check, name introductions
are no longer unique, but other extensibility scenarious not expressible with interface sets
are also possible. This would be useful if the link between two name introductions is
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outside the source code itself. For example, two teams may have negotiated on the phone
that a method name x represents a particular concept. In this case, it would be ok to
merge two name introductions of x, because they are name introductions only syntactically
and in reality both stand for the negotiated meaning of x. The fact that most subtype
definitions used in practice do not have unique name introductions suggests that this may
indeed be a common situation and hence the option to drop the uniqueness check may be
useful.

Our subtyping desiderata are also insightful in the comparison with other subtyping
mechanisms not discussed in this work so far. With AspectJ [19], the subtype structure
can be extended by means of inter-type declarations. For example, the declaration declare

parents : X implements Y in an aspect makes the class X a subtype of the interface Y,
provided that X implements all interfaces required by Y (whereby these methods could
also be added by the aspect, but this mechanism is not in the scope of this paper). With
this mechanism, all extensibility scenarios we considered can be encoded. However, this
mechanism is not traceable: A client upcasting X to Y does not have to refer to the aspect
in any way, hence a global view is required in order to understand the upcast. Blame
is assigned incorrectly: Since the (client) upcast site does not refer to the witness of the
subtype relation (the intertype declaration), the client is always blamed.

The term “duck typing” is frequently used to describe typing in dynamically-typed
languages such as Ruby [37] (“If it walks like a duck and quacks like a duck, it must be
a duck”). In these languages, there is no well-defined subtype relation, hence our criteria
for comparison do not fit 100%. Whether an object is ok (does not lead to a dynamic
type error) as an argument to a method is not traceable. In fact, even with a global view
on the system this is (in general) not decidable. Most dynamically typed languages do
not differentiate name introductions from name usages. Blame is assigned to those places
in the code which (at runtime) call a method on an object that does not understand the
method. This makes it very hard to track the error down to the place responsible for the
error. Although our terminology does not quite fit to dynamic typing, duck typing can
be seen as the most flexible mechanism with respect to modular extensibility - even more
flexible than structural subtyping, since the set of methods required from an object are
only those that are actually called in a particular control flow.

8 RELATED WORK

Languages which extend nominal subtyping: The relation to Sather [35, 33], com-
pound types [6], safe structural conformance [25] and AspectJ [19] has already been dis-
cussed in detail in the previous section. The language gbeta [14] has a nominal core but
uses structural subtyping on sets of mixins, which are closely related to interfaces. A simi-
lar approach is choosen in McJava [18]. The latter work also describes an implementation
strategy for subtyping of mixin sets on the Java Virtual Machine [23]. Induction [34] is a
technique with which the commonalities between two independent types can be computed
and made available in the form of a a new common supertype. Some languages allow
the user to choose between nominal and structural subtyping with mechanisms such as
branding in Modula [9]. However, with such a mechanism one can only choose between
these two mechanisms but not combine the advantages of both mechanisms.
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Conflict between inheritance and subtyping: This conflict is well-known and has
been discussed in many works [26, 20, 36, 11, 3, 31, 27]. Our proposal to create subtypes
of a class without inheriting its implementation is a step towards a better separation of
these two concepts. Similar ideas have been proposed in Emerald [3, 31] and some other
works, but the idea to simply use the class name as a type is, to the best knowledge of
the author, new.

Subtyping recursive types: In structural type systems, it is possible to establish
subtype relations between recursive types [1], e.g., interface C { C clone(); } can be
a subtype of interface D { D clone(); }. Such subtype relations cannot be established
in any of the nominal subtype relations we have considered; making nominal systems
powerful enough to express such subtype relations is hence part of our future work.

Discussions of nominal versus structural type systems: There are only few
works with an explicit comparison of these approaches. Hölzle [16] argues that structural
subtyping may lead to unintended subtype relations (Cowboy.draw versus Display.draw)
and a loss of abstraction because the type system cannot differentiate between, say, a
number representing a length and a number representing a weight. He argues in favor
of structural subtyping that a new common supertype can easily be retrofitted into an
existing type hierarchy simply by defining the type. A similar effect can be achieved
with our extendedBy clause, but without sacrifying the model of explicitly declared
subtype relations. Day et al note that nominal systems make renaming of features in
subtypes possible [13]. Leavens and Weihl argue that subtypes should be designed “with
subtyping in mind” and that nominal subtyping makes modular program verification easier
[21]. Findler et al [15] state that nominal typesystems are mainly choosen because they
are easier to implement and understand and argue that nominal type systems prevent
component reuse, hence they propose the possibility to perform structural casts in an
otherwise nominal system. We think this argument in favor of structural subtyping is
relativized by the weakness of structural subtyping w.r.t. blame assignment.

Findler et al also propose to add structural type casts to a nominal language [15].
Their work also tries to achieve a better assignment of blame if subtyping goes wrong.
They consider interface contracts that cannot be verified statically in that the party which
performs the cast specifies (in a string) which party is to blame if a pre- or postcondition,
respectively, fail. The work does not consider the problem of assigning blame if the
statically verifiable structure in the upcast does not match. Our work does not consider
dynamically checked contracts. We think, however, that the need for structural casts is
decreased by the mechanisms proposed here.

Generalization: There are a few works on generalization or exheritance, a concept
dual to inheritance [12, 28, 32]. These works focus mainly on the definition and meaning
of generalization, e.g., by removing methods from the subclass. Neither of these works
considers the implications of generalization for static nominal subtyping.

Matching: Matching and the notion of MyType has been proposed as an alternative
to subtyping [5]. Matching has advantages over subtyping with respect to the treatment
of the type of this, as required, e.g., for binary methods [5]. This problem is orthogonal
to our work. It would be interesting, though, to investigate whether the idea of the
extendedBy clause would also work for matching.
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9 CONCLUSIONS AND FUTURE WORK

We have presented an analysis of subtyping from a component-based perspective. Nomi-
nal subtyping can give more safety guarantees like unique name introductions and correct
blame assignment, whereas structural subtyping excels at modular extensibility of the
subtyping relation. We have developed concrete terminology to compare subtyping mech-
anisms and proposed a definition of subtyping that makes nominal subtyping almost as
flexible as structural subtyping without sacrifying clear assignment of responsibility and
blame for subtype relations.

Our future work will concentrate on analyzing other kinds of structural subtypes, such
as those required for F-bounded parametric polymorphism [7] or the structural subtyping
mechanism on interface sets proposed in this paper and check whether they can also be
replaced by advanced nominal subtyping mechanisms. The long-term future work is to
find a general mechanism with which a program part can accept responsibility for any
kind of design decision, not just subtyping.
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A AUXILIARY FUNCTIONS, EXPRESSION TYPING, AND COMPU-
TATION OF FJ<:

The formal definitions are given in Fig. 13 and 14.

B SOUNDNESS

In this section we sketch how the soundness proof in [17] needs to be adapted in order to
prove soundness of FJ<:.

In a small-step semantics, it is not possible to establish soundness with a non-transitive
subtype relation. Hence we explictly distinguish two different type systems: A strict type
system which is used for type-checking the original program, and a type system with a
wider, transitive subtype relation that is used for intermediate programs. Every program
that is accepted by the strict type system is also accepted by the relaxed type system. The
traceability property (which is only relevant for the original program) is only guaranteed
by the strict type system, however.

The rules for runtime subtyping are in Fig. 14. The existential quantification in (SR-
Intro) means that it is sufficient to find a matching subtype declaration anywhere in the
program. Similarly to the stupid cast rule in FJ, the runtime subtyping rules may only
be used for rewritten programs.

With this extension, the FJ proof in [17] goes through virtually unchanged. The only
non-trivial change to the proof is Lemma A.1.1 of [17], hence we will re-state and prove it
here:
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Auxiliary functions:

methods(Object) = ∅

CT (C) = class C extends D implements T
{S f; K H1 {return e1}...Hn {return en}}

methods(C) = {(C,H1), ..., (C,Hn)} ∪methods(D)

T,H = (T1,H1), ..., (Tn,Hn)

signatures(T,H) = {H1, ...,Hn}

CT (J) = interface J extends T extendedBy S {H}
methods(J) = {(J,H1), ..., (J,H

|H|
) ∪
⋃

T∈T
methods(T)

fields(Object) = ∅

CT (C) = class C extends D implements T {S f; ...}
fields(D) = T g

fields(C) = T g,S f

(T′,U m(S x)) ∈ methods(T)

mtype(m,T) = S→ U

CT (C) = class C extends D implements T {S f; K M}
T m(U x) {return e; } ∈ M

mbody(m,C) = (x, e)

CT (C) = class C extends D implements T {S f; K M}
m is not defined in M

mbody(m,C) = mbody(m,D)

Congruence:

e0 −→ e′0
e0.m(e) −→ e′0.m(e)

(RC-Invk-Recv)

ei −→ e′i
e0.m(..., ei, ...)
−→ e0.m(..., e′i, ...)

(RC-Invk-Arg)

ei −→ e′i
new C(..., ei, ...)
−→ new C(..., e′i, ...)

(RC-New-Arg)

e0 −→ e′0
(T)e0 −→ (T)e′0

(RC-Cast)

Figure 13: Operational semantics and auxiliary functions
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NOMINAL AND STRUCTURAL SUBTYPING IN COMPONENT-BASED PROGRAMMING

Computation:

mbody(m,C) = (x, e0)
fields(C) = T f

(new C(e)).m(d)
−→ [d/x,new C(e)/this, e/f]e0

(R-Invk)

C <: T

(T) (new C(e)) −→ new C(e)
(R-Cast)

Expression Typing:

Γ ` x ∈ Γ(x) (T-Var)

Γ ` this ∈ C0

fields(C0) = T f

Γ ` fi ∈ Ti

(T-Field)

Γ ` e0 ∈ T0

mtype(m,T0) = T→ S
Γ ` e ∈ U U <: T

Γ ` e0.m(e) ∈ S
(T-Invk)

fields(C) = T f
Γ ` e ∈ U U <: T

Γ ` new C(e) ∈ C
(T-New)

Γ ` e0 ∈ S S <: T

Γ ` (T)e0 ∈ T
(T-UCast)

Γ ` e0 ∈ S
T <: S T 6= S

Γ ` (T)e0 ∈ T
(T-DCast)

Γ ` e0 ∈ S
T 6<: S S 6<: T

Γ ` (T)e0 ∈ T
(T-SCast)

Runtime subtyping rules:

∃S,T : S′ <:S,T T′

S′ <: T′
(SR-Intro)

U <: V′ V′ <: V

U <: V
(SR-Trans)

U <: U (SR-Ref)

Figure 14: Typing rules
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B SOUNDNESS

Lemma A.1.1 : If mtype(m, S) = T→ T0 then mtype(m,T) = T→ T0 for all T <: S.

Proof: Easy induction in the derivation of T <: S using the noconflicts predicate and the
method subset relations defined in (T-Ifc2) and (T-Class).

Since FJ<: does not need an evaluation rule for field access (field names are substituted
in (R-Invk)), the corresponding case from the proof of the progress theorem goes away.
Instead, the (R-Invk) case of the proof needs to take the additional substitutions into
account, but this is easy due to the term substitution lemma A.1.2.

The uniqueIntroductions check in (Check) (Fig. 12) is not needed for the soundness
proof; all that matters for type soundness is the compatibility of method signatures, which
is already guaranteed by noconflicts. Hence it is ok to make this check optional.

The rest of the proof works exactly as the original FJ proof, except that meta-variables
for classes have to be replaced by meta-variables for types in several places.
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