
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 1, January-February 2008

Cite this article as follows: Bourouis. A and Belattar. B: “JAPROSIM: A Java Framework for
Discrete Event Simulation”, in Journal of Object Technology, vol. 7, no. 1, January-February
2008, pp. 103-119, http//www.jot.fm/issues/issue_2008_01/article3/

JAPROSIM: A Java framework for
Process Interaction Discrete Event
Simulation.

Bourouis Abdelhabib, University Larbi Ben M’Hidi, Oum El Bouaghi 4000
Algeria.
Belattar Brahim, University Colonel El Hadj Lakhdar, Batna 5000, Algeria.

Abstract
In this paper, we discuss various aspects of the design, implementation, and use of
JAPROSIM which is a general purpose discrete event simulation framework based
on the Java programming language. JAPROSIM is an open source project
developed for both academic and industrial purposes. It also merges process-
interaction modeling structures with powerful java features in an intelligent way that
encourages model simplicity, reusability and automatic statistics collection. Further
motivations and aims are discussed. Java multithreading is a powerful built-in
mechanism used to coordinate different entities in a coroutine-like mode. The main
body of the paper is devoted for explaining the design of the framework in the
context of Object Oriented Simulation. Finally, a summary of the proposed
framework together with suggestions for improvements are given.

1 INTRODUCTION

Simulation models can be implemented in a variety of languages. We distinguish
different periods in the history of simulation software. Early simulation tools were
basically collections of routines written in general-purpose programming languages
like FORTRAN. The forerunners are dedicated simulation languages like
SIMSCRIPT. Predecessors are application-specific tools like NETWORK and
ARENA. Actually there are integrated environments with point-click-drag-drop
graphical interfaces like eM-Plant and Extend. This is in fact the result of reducing the
effort deployed at the modelling stage of simulation projects, so expressiveness is
weakened in spite of effectiveness and productivity. However, simulation still
requires programming, even with direct access to a powerful programming language.

The opportunity to extend features of existing commercial simulation languages
is limited due to the separation of the user from the base languages by offering pre-
specified functionalities; thus deep access is reserved only to vendors. Separation has
not eliminated the need for programming in simulation model building. In fact,
successful industrial modellers are those who overcome separation by “programming”
around the limitations caused by separation. Separation is also an obstruction to the

 JAPROSIM: A JAVA FRAMEWORK FOR DISCRETE EVENT SIMULATION

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

long-term model development and maintenance because this programming skill is
outside of the mainstream of information systems training in academia and within the
enterprise. Some simulation languages allow for certain programming-like
expressions or statements, which are inherently limited. Others allow the insertion of
procedural routines written in other general-purpose programming languages. Even
when that is possible, the task of the user is complicated. It has to learn and master a
new language. It must also deal with creation, insertion and update of statistical
variables which is a source of several errors.

Object Oriented Modelling (OOM) is an excellent approach that deals with large
and complex systems through abstraction, modularity, encapsulation, layering and
reuse. OOM was born with SIMULA, the first object-oriented programming language.
It introduced the object-oriented programming paradigm.

Conceptual model is obtained by decomposing a real system in a set of objects in
interaction. Each object represents a real world entity that encapsulates state and
behaviour. A class is a template for creating objects that share common related
characteristics. Guidelines are, in particular, identification of object classes that make
up a system with their interfaces and implementations.

Model conceptualization is one of the early steps in a simulation study for which
OOM is suitable. Hence Object Oriented Simulation (OOS) benefits from all the
powerful features of the OOM. It is, in addition, based on entities, events and
simulation time that make the main differences, see [Joines & Roberts 98].

The use of the Unified Modelling Language (UML) in OOS seems to be even
more appropriate since its version 2.0 offers significant improvements in dynamic
behaviour modelling, which is a key aspect in any discrete event simulation, see [Page
& Kreutzer 05]. The generation of executable code from static and dynamic UML
models provides an important means for narrowing the gap between conceptual and
computer models in simulation. Some research projects have already focused on an
automatic generation of simulation programs from UML specifications; see [Arief &
speirs 00].

This paper presents the JAPROSIM framework design, implementation and use,
for developping object-oriented simulations. The framework is documented using the
UML and is divided into packages to organize the collection of classes into important
functional areas. The main purposes of the framework are the easy to conceive,
implement, use, reuse, understand and maintain discrete event simulation models, in
addition to automatic collection of statistics.

The framework is implemented in Java programming language allowing deep
access to its powerful features. It can serve as a kernel for the development of
dedicated object-oriented simulation environments. In addition, since Java has been
widely adopted as a teaching language in Computer Science curricula, it may also
serves as an academic material for teaching discrete event modelling and simulation.

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 105

2 PROCESS INTERACTION AND SIMULATION IN JAVA

Process-interaction simulation denotes a particular world-view used to model the
dynamics of discrete-event systems. The origins of this approach can be traced to the
authors of SIMULA. It provides a way to represent a system's behaviour from the
active entities point of view. As in SIMULA, active entities are transient entities
moving through the system (dynamic entities). A process-oriented model is a
description of the sequence of processing steps these entities experience as they flow
through the system. This approach has significant intuitive appeal and is the
predominant modelling worldview supported by commercial simulation software
tools. Transaction flow is a special case of the more general process interaction
worldview.

A system is modelled as a set of active entities in interaction. Interaction is a
consequence of competition and/or cooperation for the acquisition of critical
resources. Each active entity’s life cycle consists of a sequence of events, activities
and delays. A routine implementing an active entity requires special mechanisms for
interrupting, suspending and resuming its execution at a later simulated time under the
control of an internal event scheduler. This can be achieved using special
programming languages that offer at least a SIMULA’s coroutine like mechanism,
thus programming languages offering multithreading like Java are suitable.

An entity’s life cycle is a sequence of active and passive phases. On one hand, an
active phase is characterized by the execution of the relevant process. Normally this
corresponds to the events during which system state changes without progression of
simulation time. On the other hand, passive phases are characterized by activities and
delays. So the relevant process is suspended while simulation time advances. Events
are the criterion of scheduling which explain the use of a future event list (FEL). After
a process is suspended, the scheduler resumes and decides of which is the next
process to reactivate according to the system state and the FEL. The scheduler is a
special process that coordinates the execution of a simulation model.

Java is a general purpose language for creating safe, portable, robust, object-
oriented, multithreaded and interactive programs for theoretically any area of
application. It provides several extensive class libraries for developing graphical user
interfaces, network and distributed applications with capabilities for web-based
computing. It also has a utility package that contains useful classes that implement
vectors, arrays, linked lists, hash tables…etc. It has been commonly adopted as a
teaching language in Computer Science area. These features justify the choice of Java
as an implementation language.

3 RELATED WORK

The idea of building process-oriented simulations using a general purpose object-
oriented programming language is not original and several tools were developed in
this way. For example, both of CSIM++ [Schwetman 95] and YANSL [Joines &
Roberts 96] are based on C++, while PsimJ [Garrido 01], JSIM [Miller & al 98] are

 JAPROSIM: A JAVA FRAMEWORK FOR DISCRETE EVENT SIMULATION

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

based on Java. There are, however, unique aspects in JAPROSIM framework that lead
to fundamental distinctions between our work and others.

Discrete Event Simulation tools written in Java, like PsimJ [Garrido 01] and SSJ
[L’Ecuyer & al 02] are well designed and freeware libraries but not open source. Silk
from Threadtec [Healy & Kilgore 97] and [Kilgore 00] is also well designed but is a
commercial tool.

There is also a large collection of free open source libraries, we may consider for
instance:

• JavaSim developed at the university of Newcastle upon Tyne [Little 99] is a
set of Java packages for building discrete event process-based simulation,
similar to that in Simula and C++SIM.

• JSIM [Miller & al 98] is a Java-based simulation and animation environment
supporting Web-Based Simulation.

• simjava[Howell & McNab 98] is a process based discrete event simulation
package for Java, similar to Jade's Sim++, with animation facilities.

• jDisco [Helsgaun 00] a Java package for the simulation of systems that
contains both continuous and discrete-event processes.

• DESMO-J [Page & al 00] is a framework which supports both event and
process worldviews.

• SimKit [Buss 02] is a component framework for discrete event simulation,
influenced by MODSIM II and based on the event graph modeling.

JAPROSIM is also a well designed library, free and open source that adopts the
popular process interaction worldview. Its design is simple and easy to understand. It
is easy to build discrete event simulation using JAPROSIM, either for experimented
programmers in Java or for simulation experts with elementary programming
knowledge. JAPROSIM is not a java version of any existing simulation language as
simjava or JavaSim.

In addition, JAPROSIM embeds a hidden mechanism for automatic collection of
statistics. This approach also enables a clean separation between implementing the
dynamics of the model and gathering data, so traditional performance measurements
are automatically computed. The model can thus be created without any concern over
which statistics are to be estimated, and the model classes themselves will not contain
any code involved with statistics. This leads in more code source clarity.
Nevertheless, users could, if needed, implement specific statistics collection using
different classes offered by the JAPROSIM statistics package.

This feature makes the key difference between JAPROSIM and the other discrete
event simulation libraries written in Java. Exception is made for SimKit which already
offers this possibility, but which uses a different modeling approach based on event
graphs.

4 JAPROSIM DESIGN AND PACKAGES

The JAva PRocess Oriented SIMulation (JAPROSIM) is a framework for developing
discrete event object oriented simulation models. It is currently divided into six main
packages:

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 107

• kernel: a set of classes dealing with active entities, scheduler, queues and
resources.

• random: contains classes for uniform random stream generation.
• distributions: contains a rich set of classes for useful probability

distributions.
• statistics: contains classes representing intelligent statistical variables.
• gui: a set of graphical user interface classes to use for project

parameterization, trace and simulation result presentation.
• utilities: a set of useful classes for express model development.

We will focus on the simulation kernel, random, statistics and utilities packages. We
will briefly discuss the other packages to highlight their main structures in a queuing
network scenario. UML will serve as the conceptual language to describe packages,
classes and simulation models.

JAPROSIM kernel package:

The coroutine like mechanism is implemented trough SimProcess, Scheduler
StaticEntity and Entity classes. A coroutine program is a collection of coroutines
which run in quasi-parallel with one another. Each coroutine is an object with its own
execution state, so that it may be suspended and resumed. In contrast of the
JavaSimulation package [Helsgaun 00] which offers a Coroutine class identical to
SIMULA’s one, our aim in the design of JAPROSIM was putting a great emphasis
into following the semantic of SIMULA but the design itself is not close to it. The
advantage of this approach is that design is simpler without explicit coroutine class
support and the semantics of facilities that are well-known and thoroughly tested
through many years use of SIMULA are completely supported.

Native support for multithreaded execution is a fundamental aspect to the
implementation of a natural process-oriented modeling capability in Java. Every
active entity’s life cycle is executed in a single separate thread.

In a process oriented worldview, simulation processes are placed into the FEL
with respect to chronology (increasing simulation time) and managed by a scheduler.
Processes are executed in pseudo-parallel and only one (which has the imminent
simulation time) is running at any instance of real time. Simulation processes may
execute concurrently at any instance of simulation time. Hence the scheduler executes
in alternation with other simulation processes. This shared behavior is modeled
through the SimProcess abstract class which extends the Java Thread class. The
method processResume(Entity e) is called by the scheduler to reactivate a simulation
process and mainResume() is called by a simulation process to reactivate the
scheduler. Each simulation process has its own lock object. The scheduler has the
mainLock object. Locks are used in combination with wait() and notify() to
synchronize implementation threads instead of the Java deprecated methods suspend()
and resume(). A thread which calls any of the previous methods will block on its own
lock after notifying the appropriate one. schedule(Entity e) is a synchronized method
offered by the SimProcess class which could be called by the scheduler or by a newly
created simulation process for an appropriate insertion into the FEL.

 JAPROSIM: A JAVA FRAMEWORK FOR DISCRETE EVENT SIMULATION

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

At the end of its life cycle, a simulation process calls automatically the dispose()
method to reactivate the scheduler without blocking itself. So the corresponding
thread could be terminated. This leads to free occupied memory and improve
simulation performance. Otherwise this may cause a Java runtime error
“java.lang.OutOfMemoryError: unable to create new native thread” as we
experienced with an academic version of the commercial package Silk [Bourouis &
Belattar 06].

Specific behavior of a simulation process is normally described using the
dedicated abstract method body(). It must be rewritten to be an ordered sequence of
method invocations terminated by an implicit automatic call to dispose(). The
behavior of the scheduler is also described using this method.

Since SimProcess is abstract, it is intended to be extended. A new class is created
to model simulation processes. The Entity class provides the basis for defining classes
that obey to the process-oriented simulation worldview. This class is declared to be
abstract, so instances of Entity can not be created directly. Instead, modelers define
their own classes that extend Entity and describe the dynamic behavior of the
corresponding system components in terms of the process-oriented methods inherited
in particular from those classes.

Each class derived from Entity runs in its own thread of execution, a capability
inherited from SimProcess. The Entity class provides the implementation of the run()
method which in turn invokes body(). The user is required to supply the body ()
method. Four remarkable methods are offered, insert(), remove(), seize(), hold() and
release(). They could be used to model familiar queuing scenarios. The passivate()
method is used to wait until a specific system state is reached (ex: waiting for a
resource to be free). Since the thread will be suspended and inserted into the passive
list (PL) after a call to passivate(), this call is typically used within a while() loop.
Each time the scheduler takes control; it starts reactivating suspended threads in the
PL first, then dealing with the FEL. So such a reactivated thread would have the
opportunity to return back to the PL, if there is no expected evolution in the system
state.

The abstract class StaticEntity is used to model the behavior of active entities that
have not the ability to move. Typical examples of those entities are “intelligent
resources”. StaticEntity derives directly from SimProcess. Since The Entity class is
used to model dynamic entities, it derives from StaticEntity and defines two new
methods insert() and remove(). The other methods: seize(), hold(), release() and
passivate() discussed previously are defined in the StaticEntity and hence inherited by
Entity.

The scheduler proceeds in two phases. First, it reactivates each thread in the PL.
So the reactivated thread checks for expected changes in the system state and may
return back to the PL as it may continue executing the rest of its operations. Secondly,
the scheduler picks the imminent simulation process notice from the FEL and
reactivates the corresponding thread. These two phases are repeated as long as the
simulation experiment termination condition isn’t verified. Generally the termination
condition is expressed in the form of pre-specified time duration.

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 109

The Scheduler class has an attribute rng which is an instance of a random number
generator and could be customized by the user. The EntityCompare class implements
the Java Comparator interface and used to implement priority queuing mechanism.

The Resource class represents a passive entity characterized by a capacity.
Generally, a simulation process seizes some units of a resource to accomplish a
service and releases them later. The hold() method of the StaticEntity class is used to
specify the service duration.

The Queue class models a space for waiting which may be limited. It provides an
ordered list where entities (or other user-defined types) can reside. Typically, an entity
is inserted into a queue by having it activate the insert(Queue q) method of the Entity
class.

Kernel class diagram

There is no implicit conditional status delay logic associated with queues, which
means the entity's thread of execution is not suspended pending some system status
evolution. Modeling conditional status delays is the realm of the while() and
passivate() constructs. As a consequence, an entity can reside simultaneously in any
number of queues. This feature can be particularly convenient in collecting certain
types of system statistics related to wait times or queue lengths.

Another important distinction is that the removal of an entity from a queue could
be independent of the ordering of the queue at the time of removal. Users are required
to explicitly identify the entity to be removed at that time of removal. Typically this is
accomplished by having the corresponding entity activate the remove(Queue q)
method of the Entity class. While entities are generally inserted and removed from
queues using the insert(Queue q) and remove(Queue q) methods of the Entity class,
the same tasks can be accomplished by directly accessing the insert(Entity e) and
remove(Entity e) methods defined in the Queue class.

The random and statistics packages

Random number generators (RNGs) are the basic tools of stochastic modeling. As any
other craftsman, the modeler has to know his tools. Bad random number generators

 JAPROSIM: A JAVA FRAMEWORK FOR DISCRETE EVENT SIMULATION

110 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

may ruin a simulation and there are several pitfalls to be avoided. The random
package provides the RandomStream interface which represents a base reference for
creating Random Number Generators. Each RNG must rewrite the RandU01() method
which normally returns a uniformly distributed number (a Java double) in the interval
[0,1]. The java.util.Random could be used indirectly. Nevertheless, JAPROSIM
provides yet a set of well known good RNGs see [L’Ecuyer 98] and [L’Ecuyer &
Panneton 05], as Park-Miller, McLaren-Marsaglia and RandMrg in which the
backbone generator is the combined multiple recursive generator (CMRG) Mrg32k3a
proposed in [L’Ecuyer 99]. The setSeed(long[] seed) method is used to specify seeds
instead of default values.

The user can define its own RNG by implementing the RandomStream interface.
To be used with JAPROSIM, an instance of the user-defined RNG must be assigned
to the Scheduler’s static public attribute rng.

A prosperous set of discrete and continuous Random Variate Generators (RVGs)
is offered by the distribution sub-package. This set covers typically most practical
distributions in discrete event simulation. However, the user could supply it with
additional RVGs.

The statistics package provides two useful classes. DoubleStatVar class dealing
with time-independent statistical variables (having double values) as response time
and waiting time in a queue. It implements the mechanisms for keeping track of
observational-based statistics and must be updated every time its value change using
the update() method. TimeIntStatVar class is used for time-dependent statistics (with
integer values) such as a queue length or number of customers in a system. Typically,
the user instantiates the desired class, then puts and updates it in the appropriate code
locations. The placement of statistical variables and their update is a source of several
pitfalls. For this reason we have enhanced automatic placement and update of those
variables for the most known and useful performance measurements, as we will see
later through a queuing network scenario.

The utilities package

This package offers pre-specified entities with specific behavior. The
SimpleServiceStation is used to model intelligent servers which are able to take
decisions like “batch servers”. The SymetricServiceStation models a service station
with identical servers while AsymetricServiceStation models a service station with
multiple heterogeneous servers. The homogeneity/heterogeneity of servers here comes
from service distributions.

5 A SIMPLE QUEUING NETWORK SCENARIO

In order to show the JAPROSIM capabilities, let’s compute an example of a simple
queuing network, depicted in the figure bellow.

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 111

Open queuing network

The network contains two service stations; each of them has an unlimited FIFO queue
where transactions awaiting to be served are put. The transactions (coming from two
independent exogenous sources) go into the system by means of two input points and
may leave it also using two output points, after being served. We assume
exponentially distributed random arrival times in the input streams of transactions and
exponentially distributed random service time of both servers. The corresponding
parameters of the simulation model are:

• γ 1=3.57 and γ 2=4.82, where γ i is the exogenous arrival rate of the input
source number i (and the parameter of the exponential distribution of arrival
time).

• µ1=4.15, µ2=5.96, where µi is the parameter of the exponential distribution of
a server of the service station number i.

• c1 = 3, c2 = 2, where ci is the number of identical parallel servers at the ith
service station.

• r11 = 0.17, r12 = 0.33, r21 = 0.23, r22 = 0.18, where rij is the probability that a
transaction moves from station i to the station j.

Analytical solution

This is a single-class open network with FCFS multiserver nodes, unlimited waiting
rooms, reliable servers and probabilistic routing. Thus:

•
⎩
⎨
⎧

++=
++=

22211222

22111111

..
..
λλγλ
λλγλ

rr
rr

 Where λ i is the effective rate at node i.

The solution for the previous equation system is: λ 1= 6.2041 and λ 2= 6.8669.
Stations utilization: ρ 1=0.5360, ρ 2=0.7184, which means that the two stations are
stable and hence the whole network. We can now compute the steady state network

Source 01

Source 02

Departure

Departure

r11

r12

r22

r21

µ1 µ2

γ 2

γ 1

 JAPROSIM: A JAVA FRAMEWORK FOR DISCRETE EVENT SIMULATION

112 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

performances. We obtained the results shown bellow in the figure, from the RAQS
software developed at the Center for Computer Integrated Manufacturing (CCIM)
Oklahoma State University. This software performs performance analysis using the
algorithm of two-moments:

RAQS output window

Simulation using JAPROSIM

We can easily identify two resources which represent the two stations of the network.
The first resource has a capacity of 3 and the second has a capacity of 2. Since we
have two input arrivals, we must distinguish between two active entities with distinct
life cycles.

In JAPROSIM we can model each active entity in a separate class derived from
the Entity class, as we can expect a unique class in which the distinction between the
inputs is made in the body() method.

01 import uoeb.japrosim.random.distributions.*;
02 import uoeb.japrosim.kernel.*;
03 public class Transaction extends Entity{
04 static Exponential arrival1 = new Exponential(3.57),
 arrival2 = new Exponential(4.82),
 serv1 = new Exponential(4.15),
 serv2 = new Exponential(5.96);
05 static Queue queue1 = new Queue("Queue 01"),
 queue2 = new Queue("Queue 02");
06 static Resource server1 = new Resource("Station
1",3),
 server2 = new Resource("Station
2",2);
07 static Uniform selection = new Uniform(0.0, 1.0);

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 113

08 int trID;
09 double choice;
10 public Transaction(int id) {
11 trID = id;
 }
12 public void body(){
13 if(trID == 1){
14 new
Transaction(1).beginAfter(arrival1.sample());
15 intoStation1(); } else{
16 new
Transaction(2).beginAfter(arrival2.sample());
17 intoStation2(); }
 }
18 public void intoStation1(){
19 queue1.insert(this);
20 while(server1.getAvailability()<1){
21 passivate(); }
22 seize(server1, 1);
23 queue1.remove(this);
24 hold(serv1.sample());
25 release(server1, 1);
26 choice = selection.sample();
27 if(choice<=0.17){ intoStation1(); }
28 else{ if (choice<=0.5){ intoStation2(); }
 }
 }
29 public void intoStation2(){
30 queue2.insert(this);
31 while(server2.getAvailability()<1){
32 passivate(); }
33 seize(server2, 1);
34 queue2.remove(this);
35 hold(serv2.sample());
36 release(server2, 1);
37 choice = selection.sample();
38 if(choice<=0.18){ intoStation2(); }
39 else{ if (choice<=0.41){ intoStation1(); }
 }
 }
 }

Transaction class

We sustain the last alternative given that all transactions have the same priority. So we
obtained the code source for the unique needed Transaction class shown above.

The class structure consists of the data declarations (lines 4-9) which will define
the characteristics of the simulation entities created from this class. The body()
method (line 12-17) that will modify those entity’s characteristics as the state of the
system changes. Each instance of this class is assigned a set of static, user-defined
attribute identifiers arrival1 and arrival2 for arrival distributions, serv1 and serv2 for
service distributions, queue1 and queue2 are the queues for waiting. So server1 and
server2 are service stations (resources). The selection represents a CDF function
values when choice is the inverse transform function to get the destination according

 JAPROSIM: A JAVA FRAMEWORK FOR DISCRETE EVENT SIMULATION

114 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

to the routing probabilities. The source of the transaction is identified by trID. In the
body() method, distinction is made between transactions according to their trIDs.
They have a little difference in their life cycles. The intoStation1() and intoStation2()
methods model the behavior of an entity in the corresponding station.

While each Transaction instance will have these unique attribute identifiers, all
of its instances will share common static class variables representing either Java or
JAPROSIM objects.

In this example, each Transaction creates (lines 14/16) the next arrival using a
sample from a JAPROSIM Exponential random variable object defined in the data
declaration. The hold() method is used to model a service with the specified time
duration. The delay parameter is then assigned a sample value from the appropriate
service time distribution (lines 24/35). More complex models would likely have
different distributions for different arrivals and services. We can examine the use of
passivate() inside a while() loop to insure waiting until the condition being wrong
(lines 20, 21, 31 and 32).

To run a JAPROSIM simulation, we need another class which constitutes a
starting point for any Java program. This class contains a the main() method for stand
alone programs or the init() method for browser-based applets. It is where simulation
model would be initialized, and the scheduler started. In our example, this class is
called OpenNetwork:

import uoeb.japrosim.kernel.*;
public class OpenNetwork {
 public static void main(String[] args) {
 new Transaction(1).beginAfter(0.0);
 new Transaction(2).beginAfter(0.0);
 SimProcess.sched.time = 0.0;
 SimProcess.sched.start();
 }
}

OpenNetwork class

When executing this Java program, the JAPROSIM window occurs. It consists of an
experimental frame where simulation parameters are set. Parameters like the number
of replications, the experiment duration, the RNG used are to be specified by the user.
A button Run/Stop/Continue allows user to start simulation, stop and resume it at any
time during execution. Two other buttons are used for presentation of statistics and
simulation trace. JAPROSIM model of this example was executed for 35000 time
units as shown in the figure below. The high accuracy of results could be compared
with those of analytical tools as seen above with RAQS.

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 115

JAPROSIM experimentation frame

 JAPROSIM: A JAVA FRAMEWORK FOR DISCRETE EVENT SIMULATION

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

Simulation results window

JAPROSIM trace window

6 AUTOMATIC STATISTICS COLLECTION

The first thing we can observe in the code source of the two classes, used to
implement the above example in JAPROSIM, is that no class of the statistics package
is explicitly used. In addition, no Java constructs are clearly used to do so. This is the
key feature of JAPROSIM that all well known and useful performance measurements
are implicitly and automatically handled. This ease to use of JAPROSIM is reflected
by the user comfort in coding simulation models. The user doesn’t worry about how
many, or what kind of statistical variables to use, nor where to place and update them.
Explicit statistical variable handling by the user may lead to undetectable
programming errors and pitfalls. It could ruin simulation programs since the accuracy
of simulation results is crucial. This is why JAPROSIM is said to be easy and safe to
use for all users, including those who aren’t qualified Java programmers.

This mechanism is embedded in the library. The SimProcess class declares a
protected static entitiesList which is a Java HashMap to collect the residence time of
each simulation entity class (a Java class that extends the JAPROSIM Entity class).
The key for the HashMap is the class name and values are DoubleStatVar. In the
Entity constructor, each time a new entity class is created, the above HashMap is
updated. In the run() method of the Entity Class and after the call to the body()
method, the residence time is updated using the simulation time and the arrivalTime
attributes.

If in our previous example we used different Transaction classes, defined each
one in its own Java class (extending the Entity JAPROSIM class), we would obtain
different elements for entitiesList. In addition, each instance has another Java

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 117

HashMap to register all used queues. Hence, calls to insert()/remove() methods update
automatically waiting time in the specified queues.

Each Queue object possesses a statistical variable to hold waiting time in it. This
variable is updated trough insert()/remove() methods. The number of entities in a
queue is handled by a length time-dependent statistical variable. The resource
availability is also a time-dependant variable. It is used to compute resource
utilization. The Queue class has a static Java Vector to register all queues used in the
simulation model. In the same way, the Resource class also has an analogous list to
keep track of all used resources. Those lists have a package visibility; hence they
could be accessed by all the simulation processes. They are updated each time a new
resource or queue instance is created.

Nevertheless, the user is free to use JAPROSIM statistics package classes in his
simulation code. There may be complex systems or situations that need specific
statistics not covered by JAPROSIM.

7 SUMMARY

In this article, some basic facts about JAPROSIM have been presented, including its
theoretical background. Being written in Java, a powerful easy-to-learn language, its
ease to use and results accuracy are proven. It has the major key future of automatic
and implicit collection of statistics over other similar frameworks. These are no doubt
great advantages. In the distribution package, there are included source texts,
compiled classes, documentation and many demonstration examples.

Today, JAPROSIM is a fully functional library which has been tested thoroughly.
It could be used even for academic purposes as it is yet in our universities or for
industrial purposes. Being a consistent kernel for general purpose discrete event
simulation, it provides also a basis for building application-specific environments.

Future improvements will focus on increasing the JAPROSIM performances,
integrating a graphical model building using JavaBeans, providing animations of
simulation models, using xml standards for web-based simulation and ontologies to
give more semantic to modeling and simulation.

REFERENCES

[Arief & Speirs 00] Arief L. B, Speirs N. A: “A UML Tool for an Automatic
Generation of Simulation Programs”, the 2nd International Workshop on
Software Performance (WOSP 2000), September 2000

[Bourouis & Belattar 06] Bourouis Abdelhabib, Belattar Brahim: “Impact du choix de
l’entité active sur les performances d’une simulation orientée processus
multithreds basée sur Java ”, Proceedings of the CIIA 06, Saida, Algeria,
15-16 Mai 2006.

[Buss 02] Buss. A : “Component Based Simulation Modeling with SimKit”,
Proceedings of the 2002 Winter Simulation Conference, pages 243-249.

 JAPROSIM: A JAVA FRAMEWORK FOR DISCRETE EVENT SIMULATION

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

[Garrido 01] Garrido J. M : “Object-oriented Discrete Event Simulation with Java”.
Kluwer/Plenum, NY, September 2001.

[Helsgaun 00] Helsgaun Keld: “Discret Event Simulation in Java”, DATALOGISK
SKRIFTER (writings on computer science), Roskilde University, 2000.

[Healy & Kilgore 97] Kevin J. Healy, Richard A. Kilgore: “SilkTM : A Java-Based
Process Simulation Language”, Proceedings of the 1997 Winter
Simulation Conference, pp. 475-482, December 7-10, 1997.

[Howell & McNab 98] Howell Fred and McNab Ross : "simjava: a discrete event
simulation package for Java with applications in computer systems
modelling", First International Conference on Web-based Modelling and
Simulation, San Diego CA, Society for Computer Simulation, Jan 1998.

[Joines & Roberts 98] Jeffrey A. Joines and Stephen D. Roberts: “Fundamentals of
Object –Oriented Simulation”, Proceedings of the 1998 Winter Simulation
Conference, pp. 141-149, December 13-16, 1998.

[Joines & Roberts 96] Jeffrey A. Joines and Stephen D. Roberts: “Design of object
oriented simulations in C++”. Proceedings of the 1996 Winter
Simulation Conference, pp. 65-72. December 1996.

[Kilgore 00] Kilgore Richard: “Silk, Java and Object-Oriented simulation”,
Proceedings of the 2000 Winter Simulation Conference, pp 246-252.
December 2000.

[L’Ecuyer 98] L’ecuyer Pierre: “Uniform Random Number Generator” , Proceedings
of the 1998 Winter Simulation Conference, pp 97-104. December 1998.

[L’Ecuyer 99] L’ecuyer Pierre: “Good parameters and implementations for combined
multiple recursive random number generators”. Operations Research, vol
47(1), pp 159–164. 1999.

[L’Ecuyer & al 02] L’Ecuyer Pierre, Melian. L and Vaucher. J: “SSJ: A framework
for stochastic simulation in Java”. Proceedings of the 2002 Winter
Simulation Conference, pages 234–242. IEEE Press, 2002.

[L’Ecuyer & Panneton 05] L’ecuyer Pierre, Panneton François: “Fast Random
Number Generators Based on Linear Recurrences Modulo 2: Overview
and Comparaison” , Proceedings of the 2005 Winter Simulation
Conference, pp 110-119. December 2005.

[Little 99] Little, M, C: “The JavaSim User's Manual”, Department of Computing
Science, University of Newcastle upon Tyne, 1999.

[Miller & al 98] John A. Miller, Y. Ge and J. Tao : “Component Based Simulation
Environments: JSIM as a Case Study Using Java Beans”, Proceedings of
the 1998 Winter Simulation Conference, pages 373-381, Washington DC.

[Page & al 00] Page. B, Lechler. T and Claassen. S : “Objektorientierte Simulation in
Java mitdem Framework DESMO-J” (“Object-Oriented Simulation in
Java with the Framework DESMO-J”, in German). Libri Book on
Demand, Hamburg, 2000. University of Hamburg, Faculty of Informatics.
DESMO-J, 2004. [Online] http://www.desmoj.de (in December 2006).

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 119

[Page & Kreutzer 05] Bernd Page, Wolfgang Kreutzer: The Java Simulation
Handbook : Simulating Discrete Event Systems with UML and Java,
Shaker Publishing, November 2005.

[Schwetman 95] Schwetman, H : “Object-Oriented simulation modeling with
C++/CSIM17”. Proceedings of the 1995 Winter Simulation Conference,
pp. 529-533. December 1995.

About the authors
BOUROUIS Abdelhabib received his BS degree in Computer
science from the University of Constantine in 1999 and his MS
degree from the University of Batna in 2003 where he is preparing a
PhD degree. He is a lecturer at the University of Oum el Bouaghi
since 2003. His research interests include Artificial intelligence,
performance evaluation, parallel and distributed simulation.

BELATTAR Brahim is a professor at the University of Batna since
1992. He has also taught at the University of Constantine from 1982
to 1985. He received his BS degree in Computer science from the
University of Constantine in 1981 and his MS and PhD degrees from
the University Claude Bernard of Lyon (French) respectively in
1986 and 1991. His research interests include simulation, databases,

semantic web and AI.

