
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 1, January-February 2008

Cite this article as follows: Luca Vetti Tagliati, Carlo Caloro: “UML and Object Oriented
Drama”, in Journal of Object Technology, vol. 7, no. 1, January – February 2008, pp. 85-101
http://www.jot.fm/issues/issue_2008_01/article2/

UML and Object Oriented Drama
Luca Vetti Tagliati, PhD Student - Birkbeck University Of London – Senior
Technical Lead – Lehman Brothers (UK)
Carlo Caloro, Accademia d’Arte Drammatica “Silvio D’Amico”, Rome (Italy)

Abstract
Readers of this article have probably seen, at least once, diagrams produced using
the UML (Unified Modeling Language). Some of you have perhaps used UML for
your own work and know that the UML can also be applied to a variety of analytic
disciplines, ranging from economics to electronics, from mathematics to medicine,
etc. However, you are less likely to have encountered UML in the strictly artistic
domain of Theatre. Yes … Right in the theatre.
In this article we illustrate a unique experiment: the application of the UML for
analysis of dramatic words.
Daily interdisciplinary tests and hybridisations occur among the different
contemporary arts; theatre meets new technologies more and more frequently and it
turns out to be a fascinating and complex meeting. As a consequence, the problem
of identifying new tools that the dramatist and/or director can use to analyse a text
arises. Among these tools, it is important to select which is to be used in order to
facilitate the sharing of the project among the different participants (director,
dramatist, actors, etc.). The discipline of computer science can provide us with a
valid solution to this problem, where comparable problems are, typically, solved by
means of UML.

1 ANALYSIS OF DRAMATIC WORDS

Introduction

As a planning unit we chose the episode Ecuador by Aristides Vargas, an Equadorian,
(see appendix A), taken from the play “La Cruzada de los Niños de la Calle”
([CRZ2001]), created by six Latin American dramatists coordinated by the Spanish
dramatist José Sanchis Sinisterra. Its aim is to bring the problem of thousands of
abandoned children wandering the streets of big cities in the Third World, forced to
live a predestined life with no future, helpless victims of child prostitution, drug and
organ dealing, to the attention of the world.

Being a dramatic text, it has to be analysed first using semiotics tools. This is
necessary since, without determining and identifying the subject and main actions,
prossing it using UML becomes increasingly challenging. The aim of this first
analysis, which focus on the innermost structure of the text, is to identify all the
elements of the drama considered important for analysing the surface and phrase
structure of the text. This allows the production of the draft of the direction book, as a

UML AND OBJECT ORIENTED DRAMA

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

point of reference for directing the actors, and also for planning and modelling the
architectural platform for the installation. Applying UML to words becomes, then, the
study of the possibilities of a dramatic interplay which can occur between set and
technological displays, between natural and not-natural language and between action
on stage and systems.

The main problem during the planning stage is the logical distinction between
words, understood as accounts of real life or fiction, and the process of planning the
architectural platform of staging. So, first of all, it is necessary to distinguish between
having recourse to a formal computer science language such as UML, applied only to
the content of the text for analysing the connection between forces and interaction
among the characters of the play by Vargas, and UML used for describing the
architectural platform of staging in detail.

NOTE: To avoid limiting the discussion and consideration about the themes
contained in the text to the area limited by the space of staging, Carlo Caloro
carried out a one-of-a-kind artistic installation. He designed and implemented an
installation where the text by Vargas interacts with the Internet. Starting from the
themes covered in the text and expanding by following hyperlinks to other text files,
images, sounds and videos existing in the net, a new representation of the word is
created. Thus netsurfing is activated by people anytime they start walking on a
treadmill, similar to those usually present in fitness centres.

A mention of requirements analysis

The following section was entirely drawn from the book [LVTUML]

Software engineering is a discipline of engineering that deals with analysis, design,
development and management of systems, aiming at processing information
automatically. In particular, by applying certain processes of developing software, it
allows, starting from a complex set of initial specifications, the production of an
automatic system (software) able to satisfy them. The more formal modern software
development processes include a number of predefined disciplines – such as
requirements analysis, analysis and design, implementation, test, deployment, etc.-
executed in well-defined phases – such as: inception, elaboration, construction and
transition -. Each discipline, as expected, involves different professional figures,
requires well-defined input artefacts and produces others as output. For example, the
design phase is typically assigned to a team of architects, who might be helped by
some senior programmer. An essential artefact of entry is the requirements model,
while some of the main artefacts produced are the architecture design, and the
construction-phase planning, including its delivery (architecture is not only a mere
document, but it includes the mile stone by which the infrastructure of the system is
delivered… The famous 20% of requirements that permit an investigation of 80% of
the architecture), etc.

One of the initial disciplines of each software development process is
requirement analysis. [PKPK2003] The main activities of this phase include:
analysing the real needs of the client/user, the regulations in force within the domain
subject of study, possible business obligations, etc. The aim is to produce an initial
model of the system, named requirement model, necessary to carry out the design and

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 87

implementation of the system. This model, in turn, is made up of other (sub) models,
such as:
Description of requested services, typically designed through the UML notation of use
cases [Jacobson1992];
Representation of the main business entities involved, together with the mutual
relations (domain object model), designed through the UML notation of class
diagrams;
Vocabulary of the domain subject of study;
Documentation of the non-functional requirements: performance requested, security
levels, backup and restore procedures, etc. [IEEE1998]
The requirement model is, typically, produced by a professional figure, the business
analyst, and used by the software architect for designing the system.

Requirement and words analysis

From a detailed analysis of the formal software development processes, it is possible
to underline interesting similarities between the phase of user requirements analysis
and word analysis: they both deal with turning a series of specifications, often
communicated in an informal way (i.e. verbally), into a document/model which the
architect/director can use in order to produce a system design, implemented by other
people (developers/actors).

In the theatre the starting requirements are usually represented by the text of the
author complete with a series of captions and dialogues. First the dramatist and then
the director, at the very beginning, take the role of the business analyst; their task is to
analyse the text in terms of function or from the perspective of staging (see figure 1).

Figure 1. Similarities between requirement analysis and staging production

UML AND OBJECT ORIENTED DRAMA

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

UML and software development processes

According to the specifications [OMGUML], UML is a language to specify,
construct, present and document artefacts of both software systems and business
processes and other systems that are not strictly software. UML allows practitioners to
present, by means of a formal notation, engineering artefacts and also to illustrate
ideas, decisions made and solutions taken. Such a language fosters the spread of
information, being an international standard not linked to single companies. In theory,
an IT practitioner coming from any country, with the knowledge of UML, should be
able to read UML models related to projects and understand them in detail without too
much effort and, above all, without incurring the ambiguities typical of any natural
language. Although this is not always possible, the usage of UML still helps to
minimise the need to write long documentation, inevitably, populated by imprecision,
ambiguities, incompleteness ad inconsistencies difficult to detect and correct.

However, UML is a modelling language and, as such, is “just” a part of the most
general methods for developing software UML is a formalism integrated into
processes to produce, organise and document the artefacts created during the different
process phases. A process, among the various principles, is made up of directives
indicating who, what, when, where and why. A language, obviously, does not include
these guidelines.

Processes have an absolutely essential role in carrying out successful projects,
and not only in computer science. Sometimes, in spite of all the best aims, a project
fails because the development was not underpinned by a well defined process or
because it was not well managed: processes often make the difference between
productive and unsuccessful projects.

Identifying the main actors

After studying the episode Ecuador by Aristides Vargas from Equador (see appendix
A), we carried out a detailed study equivalent to the requirements analysis. In
particular, the first step was to identify the main actors of the “system”. These are the
entities that will use the services described by use cases identified afterwards. In the
use-case notation “An actor specifies a role played by a user or any other system that
interacts with the subject” ([OMGUML]). A “UML” actor is not necessarily a person;
it can also be a system or any physical device. In our context, however, the interest is,
as expected, limited only to people. In general, a (UML) actor is an entity external to
the system that interacts with it. It is the idealisation of a person, a process, or
anything else interacting with the system itself, sending and/or receiving messages;
i.e.: exchanging information. Actors are graphically represented in UML by a
standard notation of a stick figure, with the related name at the bottom, although it is
possible to emphasise the role/behaviour of the actors by using appropriate
stereotypes as shown in the use case diagram (see figure 2).

The actors identified during this analysis were catalogued by means of
appropriate charts allowing the delineation of the main responsibilities.

Below are some modules used to identify the main characters of the episode
subject of our study ([LVT2001]).

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 89

Module 1. Doctor’s actor card

Module 2. (male) Nurse’s actor card

To properly model use cases, we have to define the system precisely (in terms of its
“boundaries”), correctly identify the actors, define the functions of the various
diagrams, determine the links between the use cases and validate the system. This
activity, often complex, requires a careful study of the available material, a high
interaction with the clients, and, often, also with people representing the actors of the
system itself. In the very first stages of study of user requirements, ideas are typically
in draft fromat and can be developed by the actors analysis.

NOTE. This note is aimed primarily at practitioners of the theatrical profession and
therefore it is not strictly essential to the subsequent discussion. The requirements
analysis, in this context, is very similar, taking into consideration Greimas
generative semiotics, to an important stage of sense generation named “surface”
fiction grammar. The surface fiction deals with attants: fiction entities of a
syntactical kind, unlike the other actors, who are, instead, conversational entities,

UML AND OBJECT ORIENTED DRAMA

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

whose semantic side is important. The attant in Greimas model plays different
attantial roles: Subject, Object, Addresser, Addressee, Opposer, Aide (see
[GREIMAS2001]). So there is a clear equivalence among the actors of UML Use
Cases, whose attantial role is theorised by Greimas, in the same way that a use
case is equivalent to an attantial box. They can be considered as logic functions. An
actor plays a specific role for each use case he/she interacts and exchanges
messages with, as an attant plays the specific attantial role for each attantial box
he/she interacts with. They both belong to the deep structure of the text and both
can be a convenient abstraction (for example, money, a collective character like
children in the street, can be a natural person but also an object). Both the attant
and the Use Case actors can be theatrically absent from the scenes (for example,
the “Yankee” clinic or the children in the street or the baby’s mother). Afterwards
they can also play different attantial roles (for example, the male nurse and the
doctor are both addresser and opposer at the same time, as an actor of a use case
modifies his/her/its own role and position interacting with another use case). In this
stage of text analysis or of the business system described in it, both the attantial
model and the classes and use case diagram focus their attention on the same point,
that is that actions are what matter, not who does them..

The main use cases

The diagram in figure 2 depicts the main use cases, organised in packages, identified
by analysing “The Crusade” section. In this context, packages are used in order to
group “functional areas” together while the time element does not affect the use case
arrangement. For example, although the Doctor’s Wife is “hunted” (by her husband
himself) only after becoming aware of her husband’s awful business (The male
nurse admits his misdeeds), figure 2 depicts the latter before the former.

It all begins with the actor Clinic Manager, manager of the clinic (referred to in
the text as “Yankee Clinic”), who, wanting to satisfy the requests of wealthy clients,
contacts the Doctor in order to receive the goods (the organs): he makes an order,
which afterwards is modified, since more items are required.

The Male Nurse, the actual taskmaster in the street, looks for possible prey. He
wanders through the ill-famed suburbs of the town, trying to contact desperate people.
His tasks include the management, on behalf of the doctor, of the agreements related
to the purchase of organs (Deal with organs purchase), the delivery of the agreed
price and the custody of the preys (Deliver the prey). Once he has found his prey,
the Male Nurse and the Doctor equip the operating room and then remove the
organs (Remove organs) to be sent to the Yankee clinic, in order to satisfy the
requests of wealthy people with no scruples.

The awful business starts tottering when the Male Nurse begins to be tortured by
remorse (He falls prey to remorse). At this point, he confides in the Doctor’s
wife. As a consequence, the Doctor hunts them both. It ends with a crusade: the
children march happily (Take part in the crusade) and then catch the hunter: the
Doctor is put on trial and is pronounced guilty (Try “hunter/prey”).

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 91

draft

orders management

hunting

Place order

Update order

1
1

0..1

0..10..1

0..1
Doctor

11

Hunt preys

Hunt aide nurse Hunt wife

Doctor’s wifeDoctor

Clinic manager

Child

0..10..1

1
1

1 0..1

Hunt children

1

0..1

1
0..1

Child’s mother

1

10..1
0..1

Male Nurse

repentance

Male Nurse

Fall prey to remorse

Confess misdeeds

<<include>>0..11

Doctor’s wife

10..1
0..1

1

Remove organs

Deal with organs
purchase

Deliver the “prey”Male Nurse

Doctor

0..1

0..1

0..1
0..1

Child’s mother

1

0..1

0..1

1

Child

10..1

crusade
Take part in the

crusade

Hunt hunter

<<include>>

Try "hunter/prey"

<<include>>

Child

0..1

0..1

n
n

n
Doctor

0..1

0..1

0..1

1
1
1

1

1
1

1

Figure 2. The main Use Cases.

Use cases specification

Limiting the requirements model, specifically the system functional requirements,
only to Use Case diagrams (see figure 2) would be too risky a choice. In fact, single
use cases (i.e. ellipses) are too “light” to provide architects and developers with
precise guidelines about service implementation. For example they do not include
descriptions of the list of steps (i.e. the flow of events), the pre-conditions and post-
conditions, or the possible anomalies that can occur including the relative
management procedures, etc. In order to compensate for this problem there are two
possible solutions:
describing the above-mentioned information via other UML diagrams, such as activity
and sequence diagrams;

UML AND OBJECT ORIENTED DRAMA

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

adopting opportune templates (as shown below).
The first solution, although it presents a number of advantages typical of information
represented in a graphical way, suffers from severe limitations; such as the following:
it requires a lot of maintenance. Use cases tend to include a number of scenarios (i.e.
main, alternatives and exceptions) each composed of several flow forks and branches.
Therefore, their diagrammatic representation tends to become confusing and difficult
to manage. A technique often used to reduce the diagram’s complexity consists of
drawing a number of separate diagrams: one for each scenario -one for the main
scenario and others for each alternative and exception scenario. Unfortunately, this
technique generates a huge maintenance effort due to the need to synchronise all the
different diagrams whenever there is a change to one of the flow;
it is difficult to standardise the extra information, such as the pre and post-conditions,
the trigger events, etc.
In order to address the above-mentioned problems, in commercial environments, the
use case description is often defined using an appropriate template (for a detailed
description see [LVTUML], [ARGR2001]), as follows:

Date: 10/01/2006 USE CASE:
UC_TRY_HP

Try “hunter/prey”
Version: 0.00.004

Description: The whole episode “The Crusade” evolves around the desire of the collective subject
(i.e. “Los Niños de La Calle”, Children from La Calle) to have their human rights
recognised and to end the awful organ dealing business. This is achieved when they,
finally, put their main hunter: the Doctor, on trial.

Running time: The duration of pictures 23 and 28 of the episode Ecuador should last minutes.
Children (from the street). Primary Actor:
Their aim is put the doctor on trial, in order to condemn him, and then to continue the
crusade.
Doctor Secondary Actors:
He is the “prey” of the Court of children. His main aim is to save his own life. He vainly
tries to use improbable disquisitions and philosophical-scientific speculations, to justify his
deeds.

Preconditions: The children catch the doctor.
Minimum: the trial takes place Guarantees:
Success: the doctor is found guilty and executed.

Start: The children in the street start the trial.

Use case. Try “hunter/prey” use case specification

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 93

Main scenery of success.
1. Children: surround the doctor in the room where the trial takes place.

 Caption picture 23 – sound of footsteps, laughter, children’s voices, […] suddenly there is a harsh light
illuminating the Doctor. […]

2. Doctor: starts the monologue in his own defence:
 He addresses an unspecified audience which seems to surround him. “The thing is: things had already been

arranged before we came …[…] Can a man refuse to do what God wants him to do?”

3. Children: reply
 (The head of a doll is thrown and falls at the feet of the doctor who, visibly nervous, tries to keep on talking)

4. Doctor: continues his monologue in his own defence:
 “The…The soldiers name it ‘due obedience’, but what I’m saying is…I mean that I’m a good professional…

Why? Because I’m a good person. That’s what it is: goodness precedes us and for this reason …”

5. Children: respond
 A doll made of rope gets to the foot of the Doctor, who gets angrier

6. Doctor: continues the monologue in his own defence:
 “I mean, and I hope you can understand me, that a heart is good independently of who’s got it, as well as a

lung… or eyes, eyes…”
7. Children: reply.

 (One of them throws a piece of a doll violently and hits the doctor)
8. Doctor: continues his monologue:

 “I won’t let you assault me! I’m talking with a scientific and philosophical soul […].I demand the right of silence.”

9. Children: respond
 (Silence for some moments. Then the children, like in a puppet show, say in unison: “Talk, talk!”. Since the

doctor keeps silent, they throw pieces of dolls at him while the light is turned off.)

10. Doctor: continues the monologue in his own defence:
 Picture 28 Caption: (the voice of the Doctor is heard shouting in the dark, he’s very angry) “Can somebody tell

me where you are taking me?”

11. Children: reply
 (their chorus turns into laughter and murmuring)

12. Children: reply
 A piece of a doll is thrown violently and hits the Doctor

13. Doctor: continues the monologue in his own defence:
 “Are you listening to me?”

13. Children reply
 (A soft light illuminates the Doctor: He’s tied to a chair, his white gown is unbuttoned, his t-shirt is dirty. He looks

shattered and neglected)

14. Doctor: continues his monologue:
 “It is… too hot in here […]..You kidnapped me, organised this awful imitation of a trial and you are treating me as

if I were...”

15. Children: reply
 (A little storm of pieces of a doll falls on him and makes him quiet. The children say: “Talk! Talk!”)

16. Doctor: continues the monologue in his own defence:
 “Well… as I was saying... and I hope you understand… the heart is the most expensive […] the whole range,

especially in the low season.”

17. Children: reply
 (One of them throws a piece of a doll with violence and hits the doctor)

18. Doctor: continues his monologue:
 “Stop it! I won’t talk anymore!... This way you prove you’re not able to kill, as I am. You’re unable to kill, don’t

deny it. Because you aren’t our children, you don’t join our parties, you don’t... You only look until there, until
darkness, with holes in your eyes... What are you accusing me of? You can buy only what somebody sells, can’t
you? Then?... Somebody sold, I bought and then I sold… It’s a market, I hope you can understand me and I...”

19. Children: reply
 The children’s give a rope to a toy soldier, which begins its march towards the Doctor

20. Doctor: continues his own defence:
 “Are you listening to me? That deal has always been there...(he gets angry) God covered for every detail,

including the possibility of selling your own soul, since it is nothing else than a piece of flesh on scales…”

21. Children: reply
 Their voices, among laughter, murmur: "Pum, Pum, Pum!

22. Doctor: collapses

 Notes:
1. The authors of the text proposed to have no more than three characters for each story and asked that the

children do not physically appear in the scenery, since working in the theatre with children is difficult,
especially with sensitive themes. Therefore, in order to avoid the presence of the children, the above use
case, should be “implemented” within the dialogue between the Doctor (his monologue) and the various
noises offstage and the several objects thrown on stage.

2 The previous treatment of the text by means of semiotics instruments and in particular of the attantial
model allowed a less abstract and more concrete level of the process of generating sense and to develop
oppositions and changes of sense identified and schematised through the semiotic picture. Moreover,
they underlined the fact that the doctor cannot be considered as the attantial subject, though it seems so,
since he has more lines than anyone else and his desire is not to lose what he has got.

UML AND OBJECT ORIENTED DRAMA

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

Variations
Applying a template in use cases like these requires a series of variations: the most
important are described hereafter.

In the analysis of these use cases there are no alternative or error scenarios. As a
matter of fact, in a theatre script, unlike software systems, an actor cannot act in a
different way (there are no business exceptions) nor can the Theatre be affected by
anomalies (there can be no system exceptions). The dramatist and the director make
cuts, and other modifications, but in the end, everything is fixed in the new version of
the script. Scenes are predetermined by the author and they occupy a precise,
prearranged time and place in the dramatic text. The running time of the dramatic
event is fictitious and prearranged according to the text and, unlike real time and the
real world, it develops as a linear and irreversible progression of events.

The description of the use cases was completed using the corresponding passages
from the text. It was necessary both for setting the use case within its theatre context,
and for facilitating its reading, stressing its dramatic features, set by the authors of the
text himself.

Domain Object Model

Once the main services (use cases) of the “system” have been identified and
described, the next task is to produce the Domain Object Model (although often the
two models evolve together providing each other valuable feedback). This is a
fundamental artefact in a software development process, not only because it is
essential for carrying out other activities, such as the analysis and design of the entire
system, the GUI prototype, the database schema, the design of messages, and so on,
but also because it allows us to analyse the system, including the requested services,
from a “data” point of view. It also allows us to review the use case model: the
definition of the data navigation/relationships, typically requires some changes in use
case scenarios.

The domain object model is produced during the requirements analysis stage and,
as its name suggests, is a model dealing with “actually existing” entities in the area of
the study that the software system will have to automate. One of the main aims of the
model is to facilitate a full comprehension of the system context (the domain),
allowing us to focus on the static structure of the data processed. It is a static model
(as a projection independent on the time element) of the business domain,
representing an abstraction in terms of the various existing entities and their relating
interconnections. The entity classes identified at this point are in an embryonic shape,
they will reach the implementation structure, used in the design model, through
refinements taking place in subsequent phases of the software development process.

According to the conclusions of I. Jacobson, G. Booch, J. Rumbaugh
([JBR2000]), the entities in the domain model should belong to the following
categories:
“business” entities, objects representing entities (more or less tangible), present in the
business area of study or that can be derived from them. In an e-commerce business,
these entities represent objects, such as: articles, shopping trolleys, catalogues, etc.;

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 95

objects and concepts belonging to the conceptual world the system needs to automate.
In the above-mentioned example of an e-commerce business they may be discount
regulations, events related to specific conditions required by the user (discounted
prize, halved prize, etc.);
events which can occur, like notification of a new order, or notification of an offer
relating to a specific product to a user, etc.
A typical feature of domain object models is the absence of specification of operations
in the various classes. During this stage, the attention is focused on data and their
interrelationships.

Figure 3. Segment of domain object model of to the main characters (actors), showing the main relationships

The diagram in the figure 3 depicts, using the class diagrams notation, “entities”
present in the domain of study, including their main relationships.

Each Actor plays one or more Character instances. This entity is an abstract
class (in italics in the diagram in accordance with UML notation), and as such it does
not have its own life. Abstract classes need to be extended by specialising classes
called “children”. They are, for example: Doctor, MaleNurse, Mother, etc., which,
being concrete classes, can have their own life. Each Character, as expected, is
made of a series of Organ elements (another abstract class), and, therefore, is a
potential prey. In the class diagram, the Organ entity is specialised (inheritance
relation) in type of organ, a fundamental part of the macabre price lists (see figure 4).

Every Character, has an intrinsic Role: Prey or Hunter. For example, children
are intrinsically prey; the MaleNurse, on the other hand, is by nature a Hunter. In
spite of this, each Character embodies an actual Role only when he/she relates with
the others. In the diagram the Relation class models this aspect. In particular, each
Character is involved in a series of relationships with others, and, in each
relationship, it can embody a different role. (This part of the model is illustrated by an
example in the next object diagram). Moreover, the role adopted by a Character
towards another one is not fixed, but is an entity that can change over time. The most
striking example is the relation Doctor/Child. The Hunter Doctor inevitably

UML AND OBJECT ORIENTED DRAMA

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

becomes Prey of those children he has been hunting for a long time. This element is
described within the Relation class, by specifying its length and the kind of relation
attribute: parent, child, business, hunting, etc.

In order to describe in details the part of the class model relating to the characters
involved in the various relationships, we used an object diagram. A particularly
confusing practise in the software industry is to call “class diagrams” “object
diagrams”. For example a domain object diagram, which contains classes, should be
more appropriately, called business static model.

One of the much appreciated features of UML is the so-called type-instance
dichotomy [ORGUML]. It is a mechanism that allows practitioners to represent both
general aspects and concrete elements derived from them. The classic cases of type-
instance dichotomy are provided by the following pairs: classes-objects, parameters-
values, etc. The object diagram is a variation of the class diagram, and the notation
used in the two diagrams is very similar. Object diagrams represent a snapshot of the
system made in a precise moment in time of a hypothetical configuration. Unlike class
diagrams which are made up of abstract elements like classes and interfaces, object
diagrams are populated by objects (in UML names and type of objects are underlined)
“suspended” in a particular state. This is a dynamic concept which, in a precise
moment, is given by the value of all its attributes and the relations with other objects
(which are, in the end, still particular attributes that store references to other related
objects).

The diagram in figure 4 describes the relationships between two characters:
Doctor and Child, who are, intrinsically, Hunter and Prey. The left side of the
diagram depicts the first relationship involving both characters. It occurs before the
crusade and therefore Doctor and Child obey their own temperament, so the Doctor
is the Hunter and the Child is the Prey. The relationship on the right side of the
diagram, on the other hand, exists after the children rebel, so the values are
diametrically opposite: the children become hunters and the doctor ends up being the
prey.

Figure 4. Object Diagram related to the part of the model inherent in the relation among the characters.

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 97

Figure 5. Representation of the Clinic’s price lists

The diagram in figure 5 depicts the macabre price lists used by the Clinic. In
particular, each PriceList object contains a description, the validity window and,
obviously, the actual price of a series of items, each of them relating to a specific
Organ.

Although the Doctor is a specialist in removing corneas, during his monologues
he makes reference to the “mother piece”: the heart. Furthermore, we may consider
the doctor as a piece of the big picture, a provider of the macabre price list patchwork
of the clinic.

Doctor

. . .

MaleNurse
. . .

Organ
code : String
name : String
description: String
. . .

1..*

Order
code : String
date : Date
totalPayment : Money
discountAmount : Money
. . .

1..*

ClinicManager
codice : String
denominazione : String
. . .

OrderRow
index : int
amount : Money
quantity : int
discount : real
. . .

1

Contact
code : String
date : Date
. . .

Surgery
codice : String
data : Date
descrizione : String
. . .

explants

1..*0..*

establishes

1..*

contains

BuyOrder
. . .

SellOrder
. . .

1

references

1..*

1..*

Character
name : String
surname: String
gender : GenderType
. . .

1

0..*

hunts

follows

carries out

1..*

1

1

Yankee
. . .

1..* 1..*

1..*

1..*

1..*

11

1..*

seals with

0..*1

places

is made of

agrees

1..*

assists

1..*

need

1

has

Figure 6. Representation of the order object graphs

UML AND OBJECT ORIENTED DRAMA

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

The diagram in figure 6 depicts the entity Order. This is another abstract class, made
up of a series of OrderRow elements. Each of them includes some information and the
agreed price for each requested Organ. Order is represented by an abstract class, since
there are two specialisations: BuyOrder and SellOrder. The former sanctions the
agreements between the Clinic and Yankee entities (wealthy subjects with no scruples
convinced that their money can buy anything... even their own health). The latter is,
instead, the result of the agreements that the ClinicManager makes with other parties.
In this context, he contacts the Doctor several times to get certain organs with well-
defined requirements. Each purchase order is then followed by one or more
operations, made by the doctor, aided by the MaleNurse. They are necessary to
remove organs from their prey, typically children... But each person is a hunter or a
prey!

State Machine Diagrams

During the requirements analysis stage, Business Analysts often need to fully specify
the complete life cycle of well-defined entities. In order to achieve this result, they use
the UML statechart diagram which allows them to show the different stages that an
entity passes through during its existence and the events that trigger the passage from
one state to the next. For example, a cash machine includes the following states: out
of service, initialisation, card waiting, PIN acquisition, stand-by, etc.

In the context of a theatrical script, for example, modelling the life cycle of some
characters could be useful, such as the doctor or the male nurse as shown in the
following figures.

Figure 7. Life cycle of the Male Nurse and Doctor entities (characters)

Each character has its own role by nature, but when it builds relations with others, it
might change its nature. For example, the male nurse, belonging to the circle of
hunters, ends up being hunted by a stronger hunter: the doctor!

Conclusions

This experiment was a one-of-a-kind experience… Although UML, since its
inception, was designed to be used in a number of different domains, probably even
Grady Booch, James Rumbaugh e Ivar Jacobson, who designed the first version of
UML, could never have imagined that it could have been applied to art, as this study
proposes.

find preys

Hunter

assists the doctor

Transiction

Prey

The child’s made does not come
to the meeting to deliver the child

Falls prey of remorse and the
doctor hunts him

Hunter

explants organs

Prey

The Children catch him during the
Cruzade

Is judged guilty

Defendant

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 99

The experiment, though stirring, captivating and worthwhile, raises several
issues, with implications and lessons for the classic software development project. It
was a tough journey, beset with difficulties, mainly due to the fact of two different
realities getting close to each other, given that the artistic tradition is intrinsically and
deliberately uncomfortable with systems, schemes and rules, in their formality and
precision more typical of the discipline of engineering. It was necessary to include the
creativity in the classic UML elements and to develop the paradigm according to the
Object Oriented laws.

However, the exuberant artistic stream led to creative diagrams, after some
initially unsatisfactory experiments. They have the advantage of alluding to places,
people and events mentioned in the text and at the same time to manipulate thousands
of daily reality variants, inviting the viewers, each with his or her own personal
knowledge about the theme that the text deals with, to think over and interpret the
diagrams able to synthetically reveal the incomparable efficiency of the criminal
system. The diagrams are able to describe certain situations as a whole or precise
moments of the event, providing the spectator/beneficiary the necessary instruments
to reconstruct on his or her own the dramatic progress of the fictitious or real text.

The formal analysis of the text using UML formalism, then, is not limited to mere
productions of diagrams and modules as an end in itself, only able to raise unfruitful
mental lucubration. Far from it… This experiment allowed us to show that many
aspects of the use of UML, as in the case of theatre semiology, facilitate a better
understanding of words, free from dogmatisms, and away from any emotional
involvement and, at the same time, flexible enough to leave room for creative
expression of the people taking part in the development of the project. UML/O.O. and
semiology allow us to analyse a dramatic script using different stages of abstractions,
from the deep structure to the surface structure and/or vice versa. So identifying the
discourse by which it is possible to set the system of textual signals necessary to the
dramatist and to the director to make a meaningful system, is easier. Moreover, they
are the basis for studying the existence of possible information systems used as
integral part of staging. Carlo Caloro tested the hypothesis by carrying out an
installation in which the spectator is let free to interact with the dramatic side of the
text by using special information systems. The innovative scenery provided new
stimuli and incentives for the traditional methods of analysing words... However, this
is subject of another article.

Use cases, including their specification, produced during the first stage of text
analysis are limited only by the structure of the text. These descriptions, once
completed, provide an excellent reference to those who, afterwards, manage the
direction of a play. This information can be used to analyse the surface and discourse
structures of the text facilitating the writing of a script and providing a point of
reference for directing actors. So, it contains all the instructions deduced from the
static and dynamic modelling of the text architectural platform, producing a
distinction between the list of related instructions necessary for actors interacting
amongst themselves and the list of other codes composing the performance.

The formality of the various models, such as the domain object model, while on
one hand is constraining because of the intrinsic formality of the O.O. notions,
encapsulated in each graphic element; on the other hand, allows us to investigate in
details entities existing in the text, characters, corresponding relations, etc. They are

UML AND OBJECT ORIENTED DRAMA

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

excellent tool of investigation, though often not uncomplicated and requiring a
considerable initial time investment... However, the time spent would likely be spent
in just the same ways, maybe less formal and less easily reusable, in order to deepen
the knowledge of the script. In the end it would probably require more time, as often
happens in designing software systems, where wrong or late examinations mean more
time is wasted. It takes time to produce the various models, but, once carried out, they
help to clearly and unambiguously underline the different projections which can be
used to analyse the same object.

Appendix A

The following brief paragraph is a short description of the text [CRZ2001].

A doctor, helped by his male nurse, trades in human organs, removed mainly from
innocent children. These organs are sold to him by their desperate parents. The
doctor, after striking the bargain, immediately takes the knife. He has his own
philosophy of life, according to which the world is a huge market place crowded
with sellers and buyers and nothing else. The world is, then, a huge hunting
ground, the street “is” the hunting ground and children in the street are “prey” at
the mercy of whoever catches them. He reduced his knowledge to hunting, merely a
job to him, catching and dismembering his prey on at a much higher price.
Children are “prey”, “goods”, a heart is the “big shot” and cornea are in demand
in European and American markets. He feels similar to the Nazi accountants
counting deportees’ teeth and hair; his actions are based only on money and
ideology: money makes the world go round and his knife is nothing else than a
small cog in a wider and more complex mechanism... This self-justification would
seem to save his conscience.

The male nurse, on the other hand, does not have the same ability of philosophical
abstraction: he is poor and miserable, though with a grain of conscience left… So
the inevitable happens: a sudden mixture of fear and uncurbed remorse end up
reviving in his mind the sad look of the hare-children he immobilizes on the couch
before being cruelly torn apart by the knife. He can hear the joyful sound of hares
emerging from the drains and feels that something is changing. Soon, maybe, the
chips will be down. The male nurse, then, tells everything to the doctor’s wife, who,
unaware until that moment and deliberately blinded by wellness, demands to know
about her husband’s awful job. He tells her that he has already taken measures
against the male nurse, since you can be either “hunters” or “preys”. If you stop
being a hunter, you automatically become a prey.

At the end, this law of contrappasso (i.e. retaliation) is applied also to the doctor
himself. He ends up being a prey in his turn. Before the Court of children, he uses
disquisitions and philosophical-scientific speculations, in order to justify his deeds,
but it is no use.

VOL. 7, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 101

REFERENCES

[CRZ2001] “La Cruzada de los Niños de la Calle” - Claudia Barrionuevo,
Dolores Espinoza, Christiane Jatahy, Iván Nogales, José Sanchis
Sinisterra (coord), Arístides Vargas, Víctor Viviescas - Sociedad
General de Autores, Madrid 2001

[PKPK2003] Philippe Krutchten, Per Kroll, Contributor Grady Booch:.”The
Rational Unified Process Made Easy: a practitioner's guide to the
RUP”, 2003

[Jacobson1992] Ivar Jacobson –“Object Oriented Software Engineering. A Use
Case Approach”, Addison Wesley

[IEEE1998] IEEE Recommended Practise for Software Requirements
Specifications IEEE Std 830-1998

[OMGUML] http://www.uml.org/

[LVT2001] Luca Vetti Tagliati: “UML e ingegneria del software. Dalla teoria
alla pratica”, Tecniche Nuove, 2001

[Greimas2001] Algirdas Julien Greimas : “Del Senso”, Bompiani, Milani 2001

[JBR2000] Ivar Jacobson, Grady Booch, James Rumbaugh: “The Unified
Software development process” – Addison Wesley, 2000

[ARGR2001] Frank Armour, Granville Miller – “Advanced Use Case Modelling.
Software Systems”, Addison Wesley

About the authors
Carlo Caloro collaborates, as an actor and director assistant with
different theatre companies, and as a professor with different
institutions in Italy and abroad. In 2001 he got a diploma in
audiovisual medias with KHM, Medial Arts Academy in Cologne
(Germany). In 2004, he got a diploma in direction with Accademia
d’Arte Drammatica “Silvio D’Amico” in Rome, where now he is

collaborating to the course of Direction given by the M.o Domenico Polidoro, as a
researcher in the field of new technologies applied to plays.

Luca Vetti Tagliati works in the City of London as a Senior
Technical Lead at Lehman Brothers UK and he is a part-time PhD
student at the Birkbeck University of London. His professional
career spans more than 15 years, the last 7 have been devoted to the
financial domain. Over the last few years he had specialised in
component based software systems and SOA.

