
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2008

Vol. 7, No. 1, January-February 2008

Cite this article as follows: Patrice Gagnon, Farid Mokhati, Mourad Badri: “Applying Model
Checking to Concurrent UML Models”, in Journal of Object Technology, vol. 7, no. 1, January-
February 2008, pp. 59-84, http://www.jot.fm/issues/issue_2008_01/article1/

Applying Model Checking to
Concurrent UML Models

Patrice Gagnon
Department of Mathematics and Computer Science
University of Québec at Trois-Rivières, Canada
Farid Mokhati
Department of Computer Science
University of Oum-El-Bouaghi, Algeria
Mourad Badri
Department of Mathematics and Computer Science,
University of Québec at Trois-Rivières, Canada

Abstract
We present, in this paper, a framework supporting a formal verification of concurrent
UML models using the Maude language. We consider both static and dynamic
features of concurrent object-oriented systems. We focus on UML class, state and
communication diagrams. The formal and object-oriented language Maude, based
on rewriting logic, supports formal specification and programming of concurrent
systems, as well as model checking. The major motivations of this work are: (1)
translating concurrent UML diagrams into a Maude formal specification and (2)
applying model checking to the generated specifications. The approach is illustrated
using a concrete case study.

1 INTRODUCTION

UML (Unified Modeling Language) is a language for specifying, visualizing and
constructing the artifacts of software systems [OMG05]. Nowadays, it is considered
as the standard for object-oriented modeling. UML allows modeling various aspects
of complex systems. However, UML models can present some ambiguities and
inconsistencies as mentionned in several papers [Bruel00, Jean-Pierre05, Barnett04,
Taibi03, Gallardo02]. UML suffers, in fact, from a lack of formal semantics
[Astesiano98, Reggio04, Taibi03]. This weakness can lead to inconsistencies within
the developed models. Using formal methods, particularly in the case of complex
systems, presents notable advantages [Bruel00, Gallardo02, Taibi03, Meseguer03,
Bowen03], like a simpler design without ambiguities, as well as a more complete
documentation [Bowen03, Taibi03].

Concurrent programming is a powerful paradigm where activities can be
executed concurrently [Garcia02, Gomaa00]. However, this way of programming has
its specific problems. Concurrent threads executing on the same resources can lead to

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

unwanted and unexpected situations. For example, deadlocks, livelocks or data
inconsistencies may occur [Garcia02, Gallardo02]. In [Wegner90], Wegner describes
the general concept of active objects. Contrary to usual objects, which are activated
when receiving a message, active objects may be already executing when receiving a
message. Therefore, these objects have at their disposal a message queue. Wegner
also discusses the concepts of internal and external concurrency [Wegner90]. When
discussing external concurrency, we mean two active objects executing on the same
resource. Those active objects can have a single thread, therefore sequential. A quasi
concurrent active object is an object for which the internal behavior shows concurrent
features. Finally, a fully internal concurrent active object has several threads of
execution. In this paper, we mainly focus on external concurrency, as two objects
attempt to access the same resource.

Furthermore, Model Checking is a type of formal methods using a usually
abstract model of a system to determine whether a series of properties are satisfied
about that system [Chan98a, Chan98b, Cho99, Gallardo02, Merz00, Merz01, Lam04].
According to Gallardo & al. [Gallardo02], Model Checking is one of the most useful
results of research in formal methods to increase the quality of software. A model
checker is an automatic tool that compares two descriptions of the behavior of a
system, one being considered as the requirement and the other the actual design
[Gallardo02]. The main usefulness of such a technique is the fact that the automatic
tool, upon encountering an error state, returns a counterexample illustrating the path
taken to reach that state [Gallardo02, Merz00, Merz01, Lam04]. However, Model
Checking suffers from a major problem, known as the state space explosion problem
[Gallardo02]. Since a model checker confirms the validity of a given property by an
exhaustive analysis of all execution paths, the state space can become very big very
soon. Several solutions to this were proposed, for example symbolic model checking,
abstraction, or on-the-fly analysis [Merz00, Wahl03].

In this paper, we present a formal framework supporting: (1) the translation of
UML diagrams into a formal specification based on the Maude language and (2) the
verification of some LTL properties using Maude’s integrated model checker. We
consider both static and dynamic features of concurrent object-oriented systems. We
focus, in particular, on UML class, state and communication diagrams jointly. The
approach is organized in four major steps. The first step consists of describing both
static and dynamic features of an object-oriented system using UML class diagram
(static structure), state (individual behavior of objects) and communication diagrams
(collective behavior in terms of dynamic interactions between objects). The second
step corresponds to an inter-diagrams validation process. The third step consists of
automatically generating a Maude description from the considered UML diagrams.
The fourth step consists of verifying some LTL properties using Maude’s model
checker [Eker02, Meseguer03, Clavel05]. We focus, in this paper, on applying Maude
model checking techniques to concurrent UML diagrams. The translation process has
been addressed in a previous paper [Mokhati06], but was subject of an extension to
consider the particularities of concurrent object-oriented systems for both internal and
external concurrency.

The remainder of the paper is organized as follows: In Section 2, we give a brief
overview of related work. Section 3 briefly presents the UML diagrams we consider.
Section 4 gives an overview of rewriting logic and Maude. We present, in Section 5,
the main phases of the translation process and illustrate it using a concrete case study

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 61

in Section 6. Section 7 presents how Maude’s model checker can be used to verify
LTL properties. Finally, we give a conclusion and some future work directions in
Section 8.

2 RELATED WORK

Funes & al. [Funes02] have formalized UML class diagrams using the formal
specification language RSL (RAISE Specification Language). Using the same
language, Meng & al. [Meng04] presented a formalization for state diagrams.
Furthermore, Favre [Favre05] has proposed a translation process for class and
package diagrams in the NEREUS language, based on the MDA (Model Driven
Architecture) methodology. The obtained NEREUS specification is transformed into
an object-oriented code (Eiffel language). Joao & al. [Araujo00] proposed a
generation process to obtain Object-Z specifications from UML communication
diagrams. In the same context, other UML diagrams have been considered [Dong00,
MacColl99]. On the other hand, Paige and Brooke presented in [Paige04] a pragmatic
approach integrating the object-oriented methodology BON (an alternative to UML)
and the Object-Z language. Their approach was implemented using the BON-CASE
tool [Paige02]. This tool supports formal specifications through pre-conditions, post-
conditions and class invariants, whether for reasoning or for formal analysis
[Paige02]. The majority of these papers have focused on translating to a formal
specification only one feature of object-oriented systems, whether static or dynamic.

In the same context, other approaches have considered jointly class diagrams to
describe static aspects of object-oriented systems and state diagrams to describe their
dynamic aspects (individual behavior of objects). We can cite, among others, the U2B
tool [Snook04]. U2B is a script file for Rational Rose that allows the conversion to the
B language the Rational Rose model composed of class and state diagrams. However,
the collective behavior of objects, in terms of dynamic interactions between objects, is
not considered. Furthermore, H. Ledang & al. have developed the ArgoUML+B tool
[Ledang03, Tigris02]. Of course, those proposals have considerably forwarded the
domain by integrating static and dynamic features of object-oriented systems and their
translation into formal specifications. However, the dynamic features considered in
those papers, jointly to the static features, are only related to the individual behavior
of objects. The collective behavior is not addressed.

Model checking issues are nowadays a very active research domain. Several tools
are offered to assist developers in such a task. Some of those tools also support the
formal verification of concurrent systems. SPIN is one of the most renowned model
checkers available. It has been used in several works. In [Merz01, Merz00], SPIN has
been used to model check state machines and collaborations together, and more
particularly concurrent state machines using concurrent regions of a superstate. Their
approach consists of verifying that the collective behavior of the objects specified by
the collaboration diagram can be satisfied by a set of state-transition diagrams. The
authors developed a tool called HUGO which compares the state charts descriptions
defined in PROMELA, the input language of SPIN, to textual representations of
collaborations. HUGO then uses SPIN to complete its verifications. This approach,
however, does not integrate the structural aspects of the system. In [Canals03], the

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

authors present a tool, called NEPTUNE, which contains a module, called Checker,
supporting the verification of UML models including some properties expressed using
the OCL language. Furthermore, the tool BON-CASE [Paige02, Paige04] contains a
reasoning engine which allows the verification of different properties, which is
comparable to NEPTUNE. In [Chan98a, Chan98b], the authors used the RSML
language (which is an alternative to UML to represent state charts) to formalize the
TCAS II program (avionics anti collision software). They then use the SMV model
checker to verify that their system accomplishes its tasks correctly. They also present
a number of ways to reduce the state space explosion problem to acceptable levels.
Their approach is one of symbolic model checking. Cho & al. [Cho99] propose the
use of APromela, an extension of the Promela language designed to abstract actors, to
apply model checking to concurrent systems using the SPIN model checker. Their
approach proposes to translate APromela notations to Promela instead of building an
entirely new tool. Lam & al. [Lam04, Lam05] propose to use the NuSMV model
checker to perform model checking on concurrent systems formalized using π-
Calculus. π-Calculus is a process algebra specifically designed to specify concurrent
systems in which processes communicate through channels. The authors propose to
translate π-Calculus notations, based on the Labelled Transition System (LTS), to
Kripke structures notations on which is based the NuSMV input language. However
interesting, this approach only focuses on the individual behavior of objects by
verifying only formalized state transition diagrams. All these approaches mainly focus
on verifying one or two aspects of object-oriented systems using model checking,
namely the structural aspects and / or the individual behavior of objects. Only the
approach proposed by Merz & al. [Merz01] considered the collective behavior of
objects while leaving out the structural aspects.

We present, in this paper, a more global approach that allows the generation of a
Maude formal specification integrating both static and dynamic (individual and
collective) features of object-oriented systems. We use UML class diagrams to
represent static features of an object-oriented system, and state and communication
diagrams (respectively individual and collective behavior) to represent its dynamic
features. We also focus on some aspects of concurrent object-oriented systems
(external concurrency). The formal and object-oriented language Maude, based on
rewriting logic, supports the formal specification and programming of concurrent
systems [Meseguer92, Clavel99, McCombs03, Eker02, Meseguer03, Clavel05]. It
also offers a model checking environment. Maude is a multi paradigm language
[Meseguer03, Clavel05] that supports the semantics of concurrency (intra and inter-
objects). Furthermore, the Maude language is supported by a tool, which allows
validating the generated formal descriptions through simulation, as we will illustrate it
in the next sections. Maude also integrates a model checker supporting the verification
of Linear Temporal Logic (LTL) properties [Eker02, Meseguer03, Clavel05]. The
Maude environment is still not very used. We wished to explore its possibilities in
both formal specification and model checking aspects of concurrent UML diagrams.

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 63

3 UML DIAGRAMS

Class Diagram

UML class diagrams express the static structure of a system in terms of classes and
relationships between classes. Classes are essentially organized through aggregation,
inheritance or association relationships [Muller00, OMG05].

State Diagram

UML state diagrams [Muller00, OMG05] describe, using finite state machines, the
life cycle of objects. Different types of event are defined by UML. We will focus only
on the events of the “Call” type. State Diagrams can also be concurrent in nature
[Börger00, Börger03, Schmidt99]. In fact, a composite state can have several
orthogonal regions, each active at the same time that the composite state is active.
This form of State Diagram models the internal concurrency of a class and models
how several subtasks can be executed concurrently in the execution of a more global
task accomplished by a class. Each orthogonal region of a composite state is seperated
by a dashed line. Entry in each of these regions is done through the use of an initial
state or through a fork structure (which then in turn requires a join structure when
leaving the composite state).

Communication Diagram

UML Communication diagrams [OMG05], known as Collaboration diagrams in
previous versions of UML [Booch98, Muller00] describe how a set of objects
collaborate to accomplish a specific task. They emphasize the dynamic interactions
between those objects (message exchanges) as well as their synchronization. A
message sent can be so in two different manners: synchronous or asynchronous. The
messages sent between two classes can be sequential (with messages of the same level
having a sequence number incremented, for example 1, 2, 3, …), concurrent (two
concurrent messages will have the same sequence number, differentiated only by an
added name, for example 1a and 1b), or they can be both at the same time. The
concept of synchronization between messages is accomplished using the “/” symbol.
A synchronization point is used to note the necessity of the completion of a particular
message before the execution of another can begin, for example.

4 REWRITING LOGIC AND MAUDE

Rewriting Logic

Rewriting logic, having a sound and complete semantics, was introduced by Meseguer
[Meseguer92]. It allows describing concurrent systems [Meseguer03, McCombs03,
Eker02, Clavel05]. This logic unifies all the formal models that express concurrency
[Meseguer90]. The rewriting rules are of the form R : [t] → [t’] if C, which indicates

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

that, according to rule R, term t becomes t’ if a certain condition C is verified.
Condition C is optional, so rules can be of the unconditional form.

Maude

Maude is a specification and programming language based on rewriting logic
[Meseguer92, Clavel99, Clavel05, McCombs03]. Three types of modules are defined
in Maude. Functional modules allow defining data types and their functions. System
modules allow defining the dynamic behavior of a system. This type of module
augments the functional modules by introducing rewriting rules. Finally, object-
oriented modules, which can be reduced to system modules, offer a more appropriate
syntax to describe the basic entities of the object paradigm. Subsection Model
checking and Maude of Section 7 will deal more specifically on how Maude can be
used for model checking. Fig. 1 shows a small Maude program.

1. sort Configuration .
2. sort Object .
3. sort Msg .
4. subsort Object < Configuration .
5. subsort Msg < Configuration .
6. op null : -> Configuration .
7. op_ _ : Configuration Configuration -> Configuration
 [assoc comm id : null] .

Fig. 1. Short program in Maude

The example shown in Fig. 1 gives the definition of three types: Configuration, Object
and Msg (those two last being subtypes of Configuration). In the case where there is
no floating messages or live objects, the global configuration of the system is empty.
The construction of a new configuration, in terms of other configurations, is done with
the operation given on line 7. This operation satisfies the structural laws of
associability and commutability and possesses a neutral element called null.

5 TRANSLATING UML DIAGRAMS INTO MAUDE

The adopted translation process consists of systematically deriving a Maude formal
specification from an analysis of the UML class, state and communication diagrams.
Fig. 2 presents the steps of the translation process we elaborated in [Mokhati06]. The
diagrams go through a first verification step to make sure, for example, that each
message sent to a destination object in the communication diagram exists in the state
diagram and that it is accessible. During the translation process of the considered
UML diagrams, several Maude modules are generated. Fig. 3 shows those modules.
Please note that modules in bold are object-oriented modules, while all others are
system modules. As for programming purposes, all object-oriented notations will be
reduced to its system form.

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 65

S ta te T ra n s it io n s
D ia g ra m s

C o lla b o ra tio n D ia g ra m

{
{

In te rn a l
B e h a v io u r

C o lle c tiv e
B e h a v io u r

D y n a m ic A s p e c ts

C la s s D ia g ra m

S tru c tu ra l A s p e c ts

V a lid a tio n a n d T ra n s la tio n

M a u d e F o rm a l D e s c r ip tio n

Fig. 2. Overview of the Translation Process

Fig. 3. Generated modules

The functional module METHOD (see Fig. 4) contains all the types used to describe a
method. Types Parameter and ParameterList are generic. They describe the type of
parameters a method uses. Furthermore, ResultType and Void describe the type of the
result returned by the method. ResultType is generic, and Void is a particular case of
ResultType. The operation (_,_) is a constructor for the parameter list of a function.

fmod METHOD is
 sorts ParamaterList ResultType Paramater Void .
 subsort Paramater < ParamaterList .
 subsort Void < ResultType .
 op EmptyParamaterList : -> ParamaterList .
 op _,_ : Paramater ParamaterList -> ParamaterList .
endfm

Fig. 4. The METHOD module

We associate to each state diagram a functional module for which the name is the
concatenation of the class’ name and the string ‘STATEVALUES’. The functional
module IDENTIFICATION is generated to describe the identification mechanism of
the objects of the communication diagram. For each class of the class diagram, we
associate an object-oriented module bearing the same name as the class, while
adopting a generic form for the classes (Fig. 5). In the case where one of such a class
is in relation to other classes in the class diagram, the module associated to it must

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

import all the other modules associated to those classes. The class is declared in a
module with an attribute called State and for which its type is declared in the
corresponding functional module. This attribute is automatically added to all classes
to model its objects’ state. It has for objective to explicitely note the objects’ state. In
the case of an aggregation class, an identification list of all the aggregated classes
must also be present as attribute to the class. The generic form of classes also shows
an open attribute list and a regional states list, which is explained further on.

class ClassName | State : ClassNameStateValues [, RegSubstateAtt]
[, ComponentList] [, AttributeList] .

Fig. 5. Generic form adopted for the classes, with optional regional substates for concurrent composite states, an
optional component list and an opened list of attributes

The modules in which are declared the classes also contain the declaration of the
class’ methods. Each of the functions are declared using the generic form shown in
Fig. 6. ParameterList and ResultType were introduced in the METHOD module (Fig.
4).

op FunctionName : ParamaterList -> ResultType .

Fig. 6. Form adopted for the methods

The translation process was mainly developed for traditional sequential programs.
However, concurrent systems require slight modifications to the adopted process.
Since Concurrent Object-Oriented Systems (COOS) are based on objects, the basic
structure remains the same and so does the general translation process. The main
element in which more attention is required when translating external concurrency is
the fact that two (ore more) objects are active (executing) at the same time. Therefore,
rewriting rules must be produced accordingly in the COMMUNICATION module.
See below for further details on this module. As for internal concurrency, the best
option is to model the class with more State attributes, one for each of the orthogonal
regions of its concurrent composite state. For example, a class that has a concurrent
composite state with 2 orthogonal regions, aside from the main State attribute
described above, there will be two more. This also means that the ‘STATEVALUES’
module for that class will also define two new sorts with their respective values, in the
same manner defined earlier. We also introduce an Inactive value for those “regional”
substates for when the object is not in its concurrent composite state. All the while an
orthogonal region is active within a concurrent composite state, the object remains in
this composite state, and only the “regional” states’ values vary. When all the
orthogonal regions have completed their execution, the object can now leave its
concurrent composite state. Then, all “regional” states are put in their Inactive state.

The object-oriented module COMMUNICATION is the principal one generated
by our approach. It imports all the other modules. In it, we extend all the other object-
oriented modules by describing the behavior of the different objects involved in the
communication diagram using rewriting rules. Each message exchanged between two
objects of the communication diagram is translated in the form of a ComingMsg (Fig.
7).

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 67

op ComingMsg : ResultType Receiver -> Msg .

Fig. 7. Form adopted for the messages

With this message, we specify two things. On the first hand, we identify the
destination object (Receiver) and, on the other hand, the result type of the operation to
be executed. In fact, each sending of a message in the communication diagram
corresponds to a Call Event, launching a transition in the state diagram of the
destination object. This transition is described in this module whether by an
unconditional rewriting rule in the case where the sending of the message is not linked
to a condition or by a conditional rewriting rule otherwise. To implement the concept
of Synchronization Point of the messages sent within a communication diagram, we
introduce a new message called IsAccomplished (see Fig. 8). The rewriting rule that
implements a transition corresponding to the sending of a message on which depends
other messages must generate a number of IsAccomplished messages equal to the
number of messages to be sent. To better illustrate the use of the IsAccomplished
synchronization message, consider the ProducerSleep message of Fig. 11, where it is
required that message Put be completed for it to be executed.

op IsAccomplished : ResultType Receiver -> Msg

Fig. 8. Form of the synchronisation message

The IsAccomplished message does not represent a message sent between two objects
in the communication diagram. It must be interpreted as an indication that the sending
of the message is terminated. As mentionned previously, we focused in this paper on
external concurrecy. The considered example will not show any internal concurrency.
However, internal concurrency has been considered in our work in others case studies
(not adressed in this paper).

6 CASE STUDY

Presentation

To illustrate our approach, we present a simple, yet concrete case study. In the present
section, only the translation of the example’s UML models to Maude formal
specifications is introduced. The formal verification of the models using Model
Checking techniques is addressed in the next section.

Fig. 9. Class Diagram of the system

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

The example we chose to illustrate our approach is a simple concurrent object-
oriented system. It is based on the classic Producer – Consumer problem. Our
example is an adaptation between the examples presented in [Gomaa00] and
[Meseguer03]. Fig. 9 presents the UML Class Diagram associated to this system. Our
system is then composed of 3 classes. The first class, called Producer, is designed to
have objects generating integer elements (the Produce function) as information to
transmit (through the PutItem function). The class has also a ProducerSleep method
that puts an object into a suspended state while the memory buffer is unavailable to
receive new information. The Consumer class is designed to have objects that will be
getting information from a memory buffer through its GetItem function and use that
information in some manner with the Consume function. This class also possesses a
ConsumerSleep function that, similarly to class Producer, puts the objects of that
class into a suspended mode while the buffer has no new information to transmit. The
last class, Buffer, is the memory buffer of the system. It has an ItemB attribute, which
is the memory buffer in itself, and is of size 1.

Therefore, the Buffer can contain only one integer information at a given time.
Functions Put and Get are used respectively to collect information coming from a
Producer object, and transmit that information to a Consumer object. The public
attribute Semaphore will be used for coordination purposes between the Consumer
and the Producer of the system. It will take only values 0 or 1, interpreted as follows:
when Semaphore == 1, the memory buffer is free and can be used by either a
Producer object to put a new element, or by a Consumer object to get an existing
element. When Semaphore == 0, the memory buffer is already used by an object and
is locked, preventing any other object the possibility of using the shared resource.
Figure 10 presents the corresponding State-Transition Diagrams. Diagram (10.a) is
associated to the Producer class, where the transition associated to a procedure call of
the PutItem function is guarded by a condition on the Buffer object’s Semaphore
attribute. The GetItem procedure call transition of Diagram (10.b) associated to a
Consumer object is similar. Finally, diagram (10.c) is associated to a Buffer object.

The system we consider in our example present concurrent aspects since objects
of classes Producer and Consumer can attempt to access the Buffer object at the same
time. Each object of those two classes will then have its own process within the
system and are considered as Active Objects.

Fig. 10. State-Transition Diagrams for classes (a) Producer, (b) Consumer and (c) Buffer

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 69

In the communication diagram of Fig. 11, we observe a Producer object attempting to
write information in a Buffer object’s memory and at the same time a Consumer
object attempts to read the information contained in the Buffer object. Since the
PutItem and GetItem functions of classes Producer and Consumer respectively are
guarded with the use of Buffer’s Semaphore attribute, simultaneous reading and
writing on the shared resource Buffer is not allowed.

Fig. 11. Communication Diagram of the System

Application of the Translation Process

In this section, we illustrate the application of the translation process (Section 5) to the
example described above. We focus here on the translation to Maude notations. Three
Maude functional modules are introduced to describe the state values of each class
present in the system. Those three modules are named PRODUCER-STATEVALUES,
CONSUMER-STATEVALUES and BUFFER-STATEVALUES, respectively for classes
Producer, Consumer and Buffer. For space limitation reasons, only one of those
modules is shown here, namely PRODUCER-STATEVALUES (Fig. 12).

fmod PRODUCER-STATEVALUES is
 sort ProducerStateValues .
 ops Producing ProducerWaiting : -> ProducerStateValues .
endfm

Fig. 12. Module PRODUCER-STATEVALUES

A module IDENTIFICATION (Fig. 13) imports the predefined CONFIGURATION
module. This module contains the definition of types Poid, Coid and Boid which
describe the identification mechanism of the objects P, C and B, instance of classes
Producer, Consumer and Buffer respectively.

fmod IDENTIFICATION is
 including CONFIGURATION .
 sorts Poid Coid Boid Receiver .
 subsort Poid Coid Boid < Oid .
 subsort Receiver < Poid Coid Boid .
endfm

Fig. 13. Module IDENTIFICATION

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

Knowing that the system we study has 3 classes (Producer, Consumer and Buffer),
three object-oriented modules are generated by our approach, respectively named
PRODUCER, CONSUMER and BUFFER, which will introduce each of the classes
and their respective methods. For space limitation reasons, only one of those modules
is given, namely the object-oriented module PRODUCER in Fig. 14. The Producer
class is defined with 2 attributes, StateP will contain information about the current
state of the object (for which the possible values are given in module PRODUCER-
STATEVALUES of Fig. 12), and an attribute ItemP that will contain the produced
item that the Producer object will transmit to the Buffer. The class has 3 methods. The
first is named Produce and is the method that will create an item of information
destined to be transmitted to the Buffer. The second method is called PutItem and is
the actual method that will transmit the information to the Buffer object by a method
call. The last method is called ProducerSleep, and has for objective to put the
Producer object into a suspended mode when the transmission to the Buffer object is
completed. Finally, the NoItemP operator is actually a new possible value for integer
variables, and will represent the fact that the ItemP attribute of a Producer object
contains no value.

mod PRODUCER is
 protecting METHOD PRODUCER-STATEVALUES INT .
 sort Producer .
 subsort Producer < Cid .
 *** Class and Attributes
 op Producer : -> Producer .
 op StateP :_ : ProducerStateValues -> Attribute .
 op ItemP :_ : Int -> Attribute .
 *** Methods
 op Produce : ParameterList -> Void .
 op PutItem : ParameterList -> Void .
 op ProducerSleep : ParameterList -> Void .
 op NoItemP : -> Int .
endm

Fig. 14. Module PRODUCER

Module COMMUNICATION is the primary module generated. It contains rewriting
rules modeling the behavior of the system concerning the realization of a specific task
given in the communication diagram of Fig. 11. Specifically, the task consists on a
concurrent get and put access to a memory Buffer by two active objects. Fig. 15 shows
part of the COMMUNICATION module. As specified earlier, the module imports all
the other modules defined namely IDENTIFICATION, PRODUCER, CONSUMER
and BUFFER.

mod COMMUNICATION is
 protecting IDENTIFICATION PRODUCER CONSUMER BUFFER .
 subsort Int < Parameter .
 *** Utility Messages *********************************
 op ComingMsg : Event Receiver -> Msg .
 op IsAccomplished : Event Receiver -> Msg .
 *** Variables **
 var P : Poid . var sema : Nat .
 var C : Coid . var item : Int . var B : Boid .
 *** Producer's behavior ******************************
 crl [ProduceItem]: ComingMsg(Produce(EmptyParameterList), P)
 < P : Producer | StateP : ProducerWaiting, ItemP : item >

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 71

 < B : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : sema >
 =>
 < P : Producer | StateP : Producing, ItemP : 5 >
 < B : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : sema >
 IsAccomplished(Produce(EmptyParameterList), P)
 ComingMsg(Put(5), B) if item == NoItemP .
 crl [PutItem]: ComingMsg(Put(5), B)
 IsAccomplished(Produce(EmptyParameterList), P)
 < P : Producer | StateP : Producing, ItemP : 5 >
 < B : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : sema >
 =>
 < P : Producer | StateP : Producing, ItemP : NoItemP >
 < B : Buffer | StateB : Full, ItemB : 5, Semaphore : 0 >
 ComingMsg(ProducerSleep(EmptyParameterList), P)
 IsAccomplished(Put(5), B) if sema == 1 .
... emdm

Fig. 15. Part of the COMMUNICATION module

The part of the module shown in Fig. 15 concerns more closely the behavior of
objects of the Producer class. Maude being particularly developed for the modeling of
concurrent systems (as stated in Section 4), it is therefore appropriate for the modeling
of active objects like we have in the system we consider. Two rewriting rules are
shown in Fig. 15. Rule ’ProduceItem’ shows the behavior of such an object when it
receives a ‘Produce’ message to start producing integer element to transmit to the
Buffer object. This method then generates an integer element and places it in the
ItemP attribute. For the execution to take place, the ItemP attribute must not already
contain an element (condition of the translation rule). A IsAccomplished message is
generated to allow the execution of the second rewriting rule. The second rule,
‘PutItem’ is actually intended to model the execution of the PutItem method. This
method uses the Put function of a Buffer object to transmit the integer element to the
shared memory, while insuring this resource is not already used by another object
(guard condition). A IsAccomplished message is also generated so that the third rule
can be executed (‘ProducerSleep’), effectively putting the Producer object into its
ProducerWaiting state. The Producer object then waits until the shared memory of
Buffer is once again available to receive new information. See Fig. 11 for further
information.

Validation of the Generated Description

Concerning the verification of the developed models, rewriting logic and Maude are
very versatile with simulations, since it allows the selection of a personalized initial
configuration from which to start the simulation. It is very useful when attempting to
verify part of a system while not compromising the rest of it. The first verification we
attempt is started from the initial configuration shown in Fig. 16. This configuration is
composed of two objects, P and B of classes Producer and Buffer respectively, both
containing no item. We also have a Produce message sent to P. The results of this
verification are given in Fig. 17.

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

 < P : Producer | StateP : ProducerWaiting, ItemP : NoItemP >
 < B : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : 1 >
 ComingMsg(Produce(EmptyParameterList), P)

Fig. 16. Initial configuration

The results (Fig. 17) can be interpreted as follows. Following the execution of
message Produce, object P has produced an integer element, here 5, and transmitted it
to the shared memory of a Buffer object. P is then in its ProducerWaiting state and
awaits the next time B is available and in its Empty state. Finding a new ComingMsg
to produce a new item is correct knowing that the classic Producer – Consumer
problem is a perpetual process that goes on until stopped.

 ComingMsg(Produce(EmptyParameterList), P)
 < P : Producer | StateP : ProducerWaiting, ItemP : NoItemP >
 < B : Buffer | StateB : Full, ItemB : 5, Semaphore : 1 >

Fig. 17. Result of the unlimited rewriting of the initial configuration of Fig. 16

We will now attempt to verify the behavior of a Consumer object. To perform this
verificaiton, the initial configuration of Fig. 18 is used, and the results are given in
Fig. 19. This initial configuration is composed of a C object and a ComingMsg to try
and get an element available from the Buffer. The initial configuration also shows a B
object of the Buffer class, already contaniting an element (here, 5). Its StateB attribute
is set to Full, and Semaphore to 1 to signify B is not currently used by another thread.

 ComingMsg(Get(5), B)
 < C : Consumer | StateC : ConsumerWaiting, ItemC : NoItemC >
 < B : Buffer | StateB : Full, ItemB : 5, Semaphore : 1 > .

Fig. 18. An initial configuration

The results of the rewriting of Fig. 18’s initial configuration can be interjpreted as
follows. C, after getting and consuming an element of information from Buffer is in its
ConsumerWaiting state, awaiting a new integer information available in the Buffer. B
is now Empty, since the information it contained was taken by C, and the system
generates a new ComingMsg destined to C to try and get new information from the
Buffer, conforming to the perpetual execution untill stopped idea. Having verified the
behavior of objects of the Producer and Consumer classes respectively, we can now
proceed on to the verificaiton of the behavior of the entire system altogether.

 ComingMsg(Get(5), B)
 < B : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : 1 >
 < C : Consumer | StateC : ConsumerWaiting, ItemC : NoItemC >

Fig. 19. Result of the unlimited rewriting of the initial configuration of Fig. 18

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 73

Fig. 20. Part of the developed code

Fig. 20 shows part of the Maude code we developed. It shows, on the first hand,
rewriting rules ‘PutItem’ and ‘ProducerSleep’ that model part of the behavior of the
Producer objects and, on the second hand, one rewriting command issued to the
Maude environment. This simulation is started from an initial configuration where we
have three different objects, P, C and B, respectively of classes Producer, Consumer
and Buffer, in their initial states, as well as incoming messages Produce and Get as
shown in the communication diagram of Fig. 11. The number of rewriting steps is
limited to 6 since the system is modelled as an infinite loop, and is therefore not
terminating.

Fig. 21. Results of the rewriting of Fig. 20

Fig. 21 shows the results of this rewriting command. The limited rewriting grants us
the possibility of visualizing that the system behaves properly. As we can see, the
system eventually returns to its actual initial state, which is exactly what it should do
according to the classic Producer – Consumer problem.

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

7 APPLYING MODEL CHECKING

In our opinion, the verification of the collective behavior of a group of objects that are
collaborating to accomplish a specific task begins with the verification of the
individual behavior of the objects. We propose, in what follows, an incremental
process for the definition and verification of properties to be verified within our
system. The properties we propose are defined in LTL. The next subsection exposes
the generic process to use Maude’s model checker. We then propose 4 properties
relevant to the individual behavior of objects P, C and B, instances of classes
Producer, Consumer and Buffer respectively. The following subsection proposes 3
properties related to the collective behavior of those same objects. The final
subsection describes the adopted process to verify the proposed properties.

Model Checking and Maude

As was illustrated in Section 6, an object-oriented system can be described with
relative ease using the Maude language. With the help of a single rewriting rule, we
can express many things: the consumption of floating messages, the sending of new
messages, the destruction of objects, the creation of new objects, as well as state
changes. However, Maude offers another important tool in the verification of a
system: it has an integrated model checker that verifies LTL properties in the system
under development [Clavel05, Eker02, MacColl99, Meseguer90, Meseguer92,
Meseguer03]. However, using that model checker implies the use of a technique,
which we introduce briefly in this subsection. We then use it to perform more
advanced verifications on our example. Maude supports model checking with LTL
properties mainly for its simplicity and the well defined decision procedures it offers
[Clavel05, McCombs03]. Fig. 22 illustrates the defined LTL operators. Other
operators exist, but can be derived from those primary operators.

fmod LTL is ... *** defined LTL operators
 op _->_ : Formula Formula -> Formula . *** implication
 op _<->_ : Formula Formula -> Formula . *** equivalence
 op <>_ : Formula -> Formula . *** eventually
 op []_ : Formula -> Formula . *** always
 op _W_ : Formula Formula -> Formula . *** unless
 op _|->_ : Formula Formula -> Formula . *** leads-to
 op _=>_ : Formula Formula -> Formula . *** strong
implication
 op _<=>_ : Formula Formula -> Formula . *** strong
equivalence
... endfm

Fig. 22. A module in Maude implementing the operators of LTL logic

For the definition of LTL properties, we need an operator to determine the result, True
or False, of a property in a certain system state. For that, the |= operator is introduced
in the predefined SATISFACTION module (Fig. 23).

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 75

fmod SATISFACTION is
 protecting LTL .
 sort State .
 op _|=_ : State Formula ~> Bool .
endfm

Fig. 23. The SATISFACTION module

It is then possible to define diverse system properties in a new module that imports
both the SATISFACTION module and the module or modules defining the system to
be studied. Fig. 24 shows the M-PREDS module, in which predicates about the system
are defined. Those predicates will be used to later define LTL properties about the
system. Also note that M symbolizes a module in which the studied system is
modelled.

mod M-PREDS is
 protecting M .
 including SATISFACTION .
 subsort Configuration < State .
 ... endm

Fig. 24. The M-PREDS module

The next step in the model checking process of Maude consists on the definition of a
final module called M-CHECK in which all the elements are bound together for the
verification. We also introduce all the initial configurations used in the verification
process in this module. Figure 25 shows the M-CHECK module.

mod M-CHECK is
 including M-PREDS .
 including MODEL-CHECKER .
 including LTL-SIMPLIFIER .
 ... endm

Fig. 25. The M-CHECK module

The final step consists on launching the verification calls into the Maude system using
the modelCheck function of module MODEL-CHECKER. (Fig. 26).

fmod MODEL-CHECKER is
 including SATISFACTION
 op counterexample : TransitionList TransitionList ->
 ModelCheckResult [ctor] .
 op modelCheck : State Formula ~> ModelCheckResult .
 ... endfm

Fig. 26. The MODEL-CHECKER module

To give a small overview of a typical model checking call using Maude, Fig. 27
shows the generic form used to launch a verification. In this call, initial_state
represents an initial configuration of the system where the verification should start,
and LTL_property expresses a desirable or non desirable requirement that the system
should verify. This LTL property is the one that is getting verified with this call.

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

modelCheck(initial_state, LTL_property) .

Fig. 27. A typical model checking call

Properties Related to the Individual Behavior of Objects

In this section, we propose 4 properties related to the individual behavior of objects P
and C. Properties 1 and 2 concern the behavior of P, and properties 3 and 4 are
relevant to the behavior of C.

• Property 1: [] PutingItem("P")
Starting the verification from initial configuration initial1 (see Fig. 28), this
property expresses that the Producer is always in its critical section, namely
transmitting its information to the Buffer. [] is the Always temporal operator.
This property specifies that P is always in its critical section and not leaving it
and represents a non desirable characteristic.

• Property 2: ~ [] ProducerSleeping("P")
Starting the verification from initial configuration initial1 (see Fig. 28), this
property verifies that the Producer object is not always in its ProducerWaiting
state. ~ is the Not temporal operator. The Producer not always in its waiting
state is a desirable characteristics since it insures that it eventually does
accomplish the task it was assigned.

• Property 3 : [] GetingItem("C")
Starting the verification from initial configuration initial1 (see Fig. 28), this
property expresses that the Consumer is always in its critical section, namely
getting information from the Buffer. This property specifies that C is always in
its critical section and not leaving it and represents a non desirable
characteristic.

• Property 4: ~ [] ConsumerSleeping("C")
Starting the verification from initial configuration initial1 (see Fig. 28), this
property verifies that the Consumer object is not always in its
ConsumerWaiting state. The Consumer not always in its waiting state is a
desirable characteristics since it insures that it eventually does accomplish the
task it was assigned.

Properties Related to the Collective Behavior

In the previous section, we introduced properties of the individual behavior of objects
P and C. We now introduce 3 other properties to verify the collective behavior of
those same objects.

• Property 5: [] ~(PutingItem("P") /\ GetingItem("C"))
Starting the verification from the initial configuration initial1 (see Fig. 28),
this property verifies that mutual exclusion is satisfied. Namely, this means
that it is not possible to find both the Producer and Consumer in their critical
section (respectively transmitting and getting information) at the same time.

• Property 6: [] <> (PutingItem("P") -> ConsumerSleeping("C"))
Starting the verification from the initial configuration initial1 (see Fig. 28),
this property is infinitely often true: when the Producer is transmitting
information to the Buffer, the Consumer is in its ConsumerWaiting state. <> is
the Eventually temporal operator. This property insures the correct behavior of
objects when transmitting information to the Buffer.

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 77

• Property 7: [] <> (GetingItem("C") -> ProducerSleeping("P"))
This property is the counterpart of Property 6. Starting the verification from
the initial configuration initial1 (see Fig. 28), this property is infinitely often
true: when the Consumer is getting information from the Buffer, the Producer
is in its ProducerWaiting state. This property insures the correct behavior of
objects when transmitting information to the Buffer.

Fig. 27 presents a part of the COMMUNICATION-PREDICATES module, in which
we define the predicates relative to the Producer - Consumer system we are studying.
We define, in this module, the necessary operators that we used in the definition of the
properties that we wish to verify. We limit the shown predicates to the ones relative to
the class Producer. Lines 1 and 2 show respectively the predicate associated to the
Producing state of class Producer and the one associated to the ProducerSleep state.
The predicates relevant to the other class are omitted since they are very similar to the
ones presented here.

mod COMMUNICATION-PREDICATES is
 protecting COMMUNICATION . including SATISFACTION .
 subsort Configuration < State . var Cf : Configuration .
 ops PutingItem ProducerSleeping : Poid -> Prop .
 ops GetingItem ConsumerSleeping : Coid -> Prop .
 eq < "P" : Producer | StateP : Producing, ItemP : 5 >
 < "B" : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : 1 >
 Cf |= PutingItem ("P") = true . *** 1
 eq < "P" : Producer | StateP : ProducerWaiting, ItemP : NoItemP >
 Cf |= ProducerSleeping("P") = true . *** 2
... endm

Fig. 27. The COMMUNICATION-PREDICATES module

Properties Verification

As mentioned previously, the Maude environment has an integrated model checker, in
the form of the modelCheck function of module MODEL-CHECKER. Fig. 28 shows
the module COMMUNICATION-CHECK in which is defined the initial configuration
used: initial1. It is the same initial configuration used for the simulation of the entire
system in Subsection Validation of the Generated Descriptions of Section 6.

mod COMMUNICATION-CHECK is
 including COMMUNICATION-PREDICATES MODEL-CHECKER LTL-SIMPLIFIER .
 op initial1 : -> Configuration .
 eq initial1 = ComingMsg(Produce(EmptyParameterList), "P")
 ComingMsg(Get(5), "B")
 < "P" : Producer | StateP : ProducerWaiting, ItemP : NoItemP >
 < "C" : Consumer | StateC : ConsumerWaiting, ItemC : NoItemC >
 < "B" : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : 1
> .
endm

Fig. 28. The COMMUNICATION-CHECK module describing the initial state used

All the necessary elements to proceed to the verification are now defined. Fig. 29
shows the calls to the modelCheck function of Maude, seven in all, one for each of the
properties that were defined previously. Fig. 30 shows part of the results obtained
with Maude. Maude evaluated all the properties in less than a second. Table 1 shows a
summary of the results of the evaluation of the 7 properties. They are as follows: on

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

the 7 properties evaluated, 5 have a positive result (True) meaning that those
properties are verified within our system. Two of the properties, however, show a
Counterexample result, meaning that they were not verified, and the Counterexample
shows the exact path the Maude modelCheck algorithm took to reach the error state.
The two properties showing a negative result are relevant to the individual behavior of
objects, one for Producer and one for Consumer.

Fig. 29. Model Checking calls

Property Result
1 Counterexample
2 True
3 Counterexample
4 True
5 True
6 True
7 True

Table 1: Results of the evaluation of the properties

The results can be interpreted as follows. Let us firstly consider the results relevant to
the individual behavior of objects. For object P of the Producer class, for which 2
properties were defined to verify its behavior (properties 1 and 2), the results confirm
that the object behaves correctly. In fact, Property 1, aimed at verifying if the object
was always in its critical section of transmitting information to the Buffer, the result
obtained is a Counterexample. However, obtaining a negative result actually means
the system does not allow the Producer to eternally be in its critical section, which is
the intended behavior. The second property, defined to verify the possibility of the
Producer not being in its ProducerSleeping state forever returned a positive result
(True). This property being verified means the system does not allow this situation.
The properties concerning the behavior of the Consumer are very similar in nature to
the ones relevant to the Producer. Properties 3 and 4 are then analogous to Properties
1 and 2. Property 3 attempted to verify if the system allowed the Consumer to be in its
critical section (getting information from the Buffer) forever. The result was a
Counterexample, meaning that such a situation was not possible. Property 4, on its
part, attempted to verify that the system did not allow the Consumer to be locked in its
ConsumerWaiting state. Because this property was defined using the combination ~ []
combination of temporal operators and that the result was True, this characteristic is
not allowed by the system.

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 79

Finally, the three last properties, relevant to the collective behavior of objects P,
C and B, were all evaluated to True, meaning they all have been verified. Property 5
was intended to verify if the system allowed for P and C to be in their respective
critical section at the same time. The positive result knowing that the ~ temporal
operator was used proves that this situation is impossible within our system (mutual
exclusion is then satisfied). Properties 6 and 7 were used to insure that it is infinitely
often true that while one thread is in its critical section, the other is not. Property 6
verified that if a Producer object is in active mode, the Consumer object is sleeping,
while Property 7 verified the counterpart (namely if a Consumer object is in active
mode, the Producer object is sleeping). Those two properties were both evaluated to
True.

Fig. 30. Part of the results of the Model Checking calls of Fig. 29

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

8 CONCLUSIONS AND FUTURE WORK

The translation of UML diagrams in formal languages has been addressed in
numerous papers. Several tools helping the translation process have been developed.
However, the majority of those approaches did not consider the collective behavior of
objects. In this paper, we proposed a generic approach that allows the translation of
static aspects (described by UML class diagram) and dynamic aspects (described by
UML state and communication diagrams) of object-oriented systems into a Maude
formal specification. More particularly, we applied the translation process we
developed in [Mokhati06] to a concurrent object-oriented system. Such a specification
integrates both static and dynamic features of the described system. However, our
approach is limited to basic state and communication diagrams, modelling the most
common features. The Maude language is supported by a tool, which allowed us to
validate the generated code by simulation. Moreover, Maude offers a model checker
in its environment, which uses Linear Temporal Logic (LTL) to verify properties
among the models developed [Eker02, Meseguer03, Clavel05]. We defined some LTL
properties about our system and used Maude’s model checker to verify them. It is to
be noted that the example used is small and simple and is aimded to test the notations
we developed. The properties we defined included inherent problems known to
concurrent systems, such as deadlocks. Among future directions to this work, we plan
on testing the approach on larger scale examples and integrating other UML diagrams.

REFERENCES

[Araujo00] J. Araujo and A. Moreira. “Specifying the Behavior of UML
Collaborations Using Object-Z”. Departamento de Infomatica, Faculdade
de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal, 2000.

[Astesiano98] E. Astesiano. “UML as Heterogeneous Multiview Notation. Strategie
for a Formal Foundation”. In Proceedings of OOPSLA’98 – Workshop on
Formalizing UML. Why? How?, L. Andrade, A. Moreira, A. deshpande,
and S. Kent, editors, , Canada, 1998.

[Barnett04] M. Barnett, R. DeLine, M. Fahndrich, K. Rustan, M. Leino, and W.
Schulte. “Verification of object-oriented programs with invariants”, In
Journal of Object Technology, vol. 3, no. 6, June 2004, Special issue:
ECOOP 2003 workshop on FTfJP, pp. 27–56,

http://www.jot.fm/issues/issue_2004_06/article2

[Booch98] G. Booch, J. Rumbaugh et I. Jacobson. The Unified Modeling Language
User Guide, Addition-Wesley, Object Technology Series, 1998.

[Börger00] E. Börger, A. Cavarra, and E. Riccobene. “Modeling the Dynamics of
UML State Machines”. In ASM ’00 : Proceedings of the International
Workshop on Abstract State Machines, Theory and Applications, pages
223–241, London, UK, 2000. Springer-Verlag.

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 81

[Börger03] E. Börger, A. Cavarra, and E. Riccobene. “The Meaning of Concurrent
States in UML State Diagrams”. Presentation Slides for SAC 2003.

[Bowen03] J. Bowen. Formal Specification and Documentation Using Z: A Case
Study Approach, 2003.

[Bruel00] J.M. Bruel, J. Lilius, A. Moreira, and B. Robert. “Defining Precise
Semantics for UML”. In ECOOP'2000 Workshop Reader, Cannes,
France, number 1964 in Lecture Notes in Computer Science. Springer-
Verlag, November 2000.

[Canals03] Canals et al. “How You Could Use NEPTUNE in the Modelling Process”.
In Journal of Object Technology, vol. 2 num. 1, pages 69–83, 2003,
http://www.jot.fm/issues/issue_2003_01/article1

[Chan98a] W. Chan, et al. “Model checking large software specifications”. In IEEE
TSE, vol. 24, num. 7, pp 498–520, July 1998.

[Chan98b] W. Chan et al. “Improving efficiency of symbolic model checking for
state-based system Requirements”. In ISSTA 98 : Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis.
Michal Young, editor, , pp 102–112, Clearwater Beach, USA, March
1998.

[Cho99] S. M. Cho, D. Hwan Bae, S. Deok Cha, Y. Gon Kim, B. Kyu Yoo, and S.
Taek Kim. “Applying model checking to concurrent object-oriented
software”. In ISADS ’99: Proceedings of the The Fourth International
Symposium on Autonomous Decentralized Systems, page 380,
Washington, DC, USA, 1999. IEEE Computer Society.

[Clavel99] M. Clavel and al. “Maude: Specification and Programming in Rewriting
Logic”. Internal report, SRI International, 1999.

[Clavel05] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Mesenguer,
and C. Talcott. Maude Manual (Version 2.1.1), April 2005.

 [Dong00] Dong J. S. “Formal Specification and Design Techniques”. Lecture Notes,
2000.

[Eker02] S. Eker, J. Meseguer, A. Sridharanarayanan. “The Maude LTL Model
Checker”. Elsevier Science B. V., 2002, 27 pages. URL:
http://www.elsevier.nl/locate/entcs /volume71.html

[Favre05] L. Favre: “Foundations for MDA-based Forward Engineering”, in Journal
of Object Technology, vol. 4, no. 1, January-February 2005, pp. 129-153.
http://www.jot.fm/issues/issue_2005_01/article4/

[Funes02] A. Funes and C. George. ”Formal Foundations in RSL for UML Class
Diagrams“. Technical Report 253, UNU/IIST, May 2002.

[Gallardo02] M. del Mar Gallardo, P. Merino, and E. Pimentel. “Debugging UML
designs with model checking”. In Journal of Object Technology, Vol.
1(No. 2): pages 101–117, 2002. http://www.jot.fm/issues/issue_2002_07/
article1/

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

[Garcia02] E. García-Roselló et al: “Design Principles for Highly Reusable
Concurrent Object-Oriented Systems”, in Journal of Object Technology,
vol. 1, no. 1, May -June 2002, pages 107-123, http://www.jot.fm/issues/
issue_2002_05/article3/

[Gomaa00] H. Gomaa. Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[Jean-Pierre05] S.V. Jean-Pierre, H. Malgouyres et G. Motet. ”Identification de
règles de cohérence d'UML 2.0“, Journée SEE ”Systèmes Informatiques
de Confiance“ on the theme of ”Vérification de la cohérence de modèles
UML“, France (Mars 2005).

[Ledang03] H. Ledang. J. Souquières et S. Charles. “ArgoUML+B : un Outil de
Transformation Systématique de Spécifications UML en B”. In Actes de
la conférence AFADL’03, INRIA, pages 15-17, Rennes, France, Janvier
2003.

[MacColl99] I. MacColl and D. Carrington. “Specifying Interactive Systems in
Object-Z and CSP”. Software Verification Center, Department of
Computer Science & Electrical Engineering, University of Queensland,
Australia, 1999.

[McCombs03] T. McCombs. “Maude 2.0 Primer, Version 1.0”. Internal report, SRI
International, 2003.

[Meng04] S. Meng, Z. Naixiao and B. K. Aichernig. “The Formal Foundations in
RSL for UML Statechart Diagrams”. Technical Report 299, UNU/IIST,
July 2004.

[Merz00] S. Merz. “Model checking : A Tutorial Overview”. In MOVEP, volume
2067 of Lecture notes in Computer Science Franck Cassez, Claude Jard,
Brigitte Rozoy, and Mark Dermot Ryan, editors, pages 3–38. Springer,
2000.

[Merz01] S. Merz, T. Schäfer and A. Knapp. “Model checking UML state machines
and collaborations”. Electronic Notes in Theoretical Computer Science,
volume 55 (no. 3), 13 pages, 2001.

[Lam04] V. S. W. Lam and J. A. Padget. “Symbolic Model Checking of UML
Statechart Diagrams With an Integrated Approach”. In ECBS, pages 337–
347, 2004.

[Lam05] V. S. W. Lam and J. A. Padget. “An Integrated Environment for
Communicating UML Statechart Diagrams”. IEEE Computer Society,
2005.

[Meseguer90] J. Meseguer. “Rewriting as a unified model of concurrency”. In
Proceedings of the Concur’90 Conference, Amsterdam, Pages 384-400,
Springer LNCS Vol. 458, 1990.

[Meseguer92] J. Meseguer. “A Logical Theory of Concurrent Objects and its
Realization in the Maude Language”. In Research Directions in Object-

VOL. 7, NO. 1. JOURNAL OF OBJECT TECHNOLOGY 83

Based Concurrency, G. Agha, P. Wegner, and A. Yonezawa, Editors. MIT
Press, 1992.

[Meseguer03] J. Meseguer. “Software Specification and Verification in Rewriting
Logic”. Unpublished work. Computer Science Department, University of
Illinois at Urbana-Champaign, 2003.

[Mokhati06] F. Mokhati, M. Badri and P. Gagnon. “Translating UML Diagrams into
Maude Formal Specification: A Systematic Approach”. In SEKE’06:
Proceedings of the 18th International Conference of Software
Engineering and Knowledge Engineering, San Francisco, 2006.

[Muller00] P.A. Muller et N. Gaertner. Modélisation objet avec UML, Deuxième
Edition, Paris, 2000.

[OMG05] Object Modeling Group. “Unified Modeling Language Specification”,
version 2.0, July 2005.

[Paige02] R.F. Paige, L. Kaminskaya, J.S. Ostroff and J. Lancaric. “BON-CASE: an
Extensible CASE Tool for Formal Specification and Reasoning”. In
Journal of Object Technology, volume 1 no. 3, pages 65-87, August 2002.
http://www.jot.fm/issues/issue_2002_08/article5/

[Paige04] R.F. Paige and P.J. Brooke. “Integrating BON and Object-Z”. in Journal
of Object Technology Vol. 3, No. 3, pages 121-141, March-April 2004.
http://www.jot.fm/issues/issues_2004_03/article3/

[Reggio04] G. Reggio and R. Wieringa. “Thirty one Problems in the Semantics of
UML 1.3 Dynamics”. In OOPSLA’99 – Workshop “Rigorous Modeling
an Analysis of the UML Challenges and Limitations”, 1999.

[Schmidt99] J. W. Schmidt and F. Matthes. “State Diagrams”. Presentation Slides,
1999.

[Snook04] C. Snook, and M. Butler. “U2B - A tool for translating UML-B models
into B”, In UML-B Specification for Proven Embedded Systems Design,
Springer (In press), 2004.

[Taibi03] T. Taibi, D. Check Ling Ngo. “Formal Specification of Design Patterns –
A Balanced Approach”, in Journal of Object Technology, vol. 2, no. 4,
2003, pp. 127-140. URL: http://www.jot.fm/issues/issue_2003_07/
article4/

[Tigris02] ArgoUML Tigris Organisation. (2002): ArgoUML User Manual 2002,
URL: http://argouml.tigris.org/ documentation /defaulthtml/manual/.

[Wahl03] Thomas Wahl. “(Yet Another) Introduction to Model Checking”.
Presentation Slides, Spring 2003.

[Wegner90] Peter Wegner. “Concepts and Paradigms of Object-Oriented
Programming”. In SIGPLAN OOPS Mess., Vol. 1(No. 1) : pages 7–87,
1990.

APPLYING MODEL CHECKING TO CONCURRENT UML MODELS

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1

About the authors
Patrice Gagnon (Patrice.Gagnon@uqtr.ca) is a Master’s Degree
student at the University of Québec at Trois-Rivières (Quebec,
Canada). His field of study is Software Engineering, and more
specifically Formal Methods. His Master’s thesis is on the formal
verification of UML diagrams.

Farid Mokhati (Mokhati@yahoo.fr) is an assistant professor of
computer science at the Department of Computer Science of the
University of Oum El-Bouaghi in Algeria. He holds a Ph.D. in
computer science (Distributed Artificial Intelligence) from the
University of Annaba in Algeria. His main areas of interest include
object and agent-oriented software engineering, and formal methods.

Mourad Badri (Mourad.Badri@uqtr.ca) is professor of computer
science at the Department of Mathematics and Computer Science of
the University of Quebec at Trois-Rivières (Quebec, Canada). He
holds a Ph.D. in computer science (software engineering) from the
National Institute of Applied Sciences in Lyon (France). His main
areas of interest include object and aspect-oriented software

engineering, software quality assurance, and formal methods.

