
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 11, Special Issue on Advances in Quality of Service Management, December 2007

Cite this article as follows: Changzhou Wang, Guijun Wang, Haiqin Wang, Alice Chen and
Rodolfo Santiago: “Quality of Service Contract Specification, Establishment, and Monitoring
for Service Level Management”, in Journal of Object Technology, vol. 6, no. 11, Special Issue
December 2007, pp. 25-44 http://www.jot.fm/issues/issue_2007_12/article2/

Quality of Service Contract
Specification, Establishment, and
Monitoring for Service Level
Management

Changzhou Wang, Boeing Phantom Works, Seattle, WA, USA
Guijun Wang, Boeing Phantom Works, Seattle, WA, USA
Haiqin Wang, Boeing Phantom Works, Seattle, WA, USA
Alice Chen, Boeing Phantom Works, Seattle, WA, USA
Rodolfo Santiago, Boeing Phantom Works, Seattle, WA, USA

Abstract
This paper describes a Quality of Service (QoS) management approach and
architecture as well as a case study for Service Level Management (SLM). Our
approach brings in a new perspective to the SLM probem by using QoS
management and QoS Contract specification, establishment, and monitoring. In
SLM, the service consumer side and the service provider side must share a
common understanding of QoS characteristics and use a common language for
specifying desired QoS parameters in the form of QoS contracts. A service
consumer must negotiate with the service provider to establish mutually agreed QoS
contracts for an interaction session. When establising a new QoS contract, the
service provider must consider both QoS contracts already agreed upon with
existing consumers and system resource conditions. Similarly, a service consumer
must be prepared in revising its contract with the service provider as conditions
change over time. Once a QoS contract is established, SLM must monitor QoS
status to make sure that the service quality is provided at the agreed range. If
necessary, SLM must activate adaptation mechanisms to bring the service quality to
the desired level. A case study is presented in this paper to validate the QoS
contract management design approach and architecture for SLM.

1 INTRODUCTION

Service level management (SLM) is a process that involves the creation of service
level agreements (SLAs), provisioning of system resources, and management of
system performance to meet the demands in the SLAs.

A SLA typically includes description of involving parties (both service
consumers and providers), services, Quality of Service (QoS) contracts, and
obligations [12]. Description of involved parties identifies service consumers and
providers and their relevant properties. Service consumers could be end-users,

QUALITY OF SERVICE CONTRACT SPECIFICATION, ESTABLISHMENT, AND

MONITORING FOR SERVICE LEVEL MANAGEMENT

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 11

applications, or components of an application. Properties may include addresses,
security information, accounting information, etc. Description of services includes the
capabilities of the provided services and their QoS characteristics. QoS contracts
define the QoS parameters agreed upon between service consumers and providers.
Obligations define the guarantees, constraints, and penalties based on measured actual
QoS parameters and those in the QoS contracts.

A traditional approach to SLM is a monitoring based approach where SLA is
negotiated offline and key performance parameters are monitored at runtime. Our
approach is based on a QoS management. QoS management is critical for SLM
because it brings a comprehensive set of services in a QoS management architecture
and provides automated policy management, contract establishment, resource
management, prediction, monitoring, diagnosis, and adaptation towards an autonomic
computing paradigm. In practice, different service consumers often have different
QoS requirements. In addition, both customer satisfaction rate and business operation
cost largely depend on how these QoS requirements are met during runtime. As a
result, effective management of the QoS is a key requirement for the success of the
SLM.

A fundamental issue to the QoS management is the specification, establishment,
and monitoring of QoS contracts. Advanced SLM features like diagnostics and
prognostics, autonomic and dynamic resource management, as well as adaptation are
built on top of QoS contract management. An effective enterprise SLM requires an
integration of these fundamental concepts and advanced features in a QoS framework
and architecture.

In this paper, we discuss the QoS framework and architecture, and in particular
an approach for QoS contract specification, establishment, and monitoring.

The rest of the paper is organized as follows. Section 2 introduces some
background knowledge and overviews the related work. Section 3 presents our QoS
specification framework. Section 4 describes our QoS management architecture and
focuses on QoS contract establishment and resource management to support QoS
management. Section 5 discusses QoS contract monitoring, diagnostics, and
adaptation. Section 6 reports a case study of the proposed QoS contract specification,
establishment and monitoring approach in a publish-and-subscribe based messaging
system. Section 7 concludes the paper and points out some future work.

2 BACKGROUND AND RELATED WORK

Past research in three areas, namely QoS, SLA/SLM, and Service Modeling and
Analysis, provided background concepts and basic frameworks for enterprise SLM.

ISO/IEC QoS Framework [1] [2] defines general QoS management concepts and
guidelines. RM-ODP [3] further defines QoS management concepts for distributed
object-oriented systems in terms of objects and their interactions. Concepts and
guidelines from these standards have provided a conceptual framework for enterprise
QoS management. W3C [4] further specifies reliability characteristics for web
services. Our previous work [5] [6] [7] extended these conceptual frameworks with

VOL. 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 27

architecture and implementation of QoS management for enterprise distributed
computing systems. QoS research in the communication networks has focused on
message delivery QoS issues at the packet level through labeling, scheduling, routing,
and switching mechanisms [8]. [9] [10] extended traditional QoS research from the
network communication area to the end systems (e.g., OS and devices) and
multimedia applications. In particular, [11] proposed a QoS specification language
for multimedia applications to describe the QoS at different levels. In comparison, this
paper focuses on the application level QoS specifications and considers the
transformation from application level QoS to lower level QoS as part of the QoS
management, especially the resource management component.

Traditional SLA/SLM focused on enterprise performance, reliability, and
availability issues in a client-server architecture. Recently, work in SLA/SLM for
service-oriented architecture showed the extended scale and complexity of
performance, reliability, and availability management issues. [12] proposed an XML-
based language for expressing quality properties in the web service level agreement
(WSLA). [13] used WSLA and provided an overview of the management elements of
WSLA in a utility computing framework. This framework consists of a WSLA
language, resource provisioning mechanisms, a workload management system that
prioritizes requests according to SLAs, and a system to monitor compliance with
SLAs. [14] described a metering service in utility computing. The metering service is
used to measure performance parameters and compute utility metrics such as resource
utilization and rate. While we believe standards like WSLA are important and should
be used eventually, research and experiments on what essential elements to SLA/SLM
are needed before such standards can be effectively specified and utilized. We believe
a QoS management perspective for various type of applications (e.g., task-based,
message-oriented, or streaming multimedia) is needed.

In the enterprise service modeling and analysis, QoS issues have become critical
aspects of services along with their functional aspects. [15] described an approach to
model non-functional aspects such as security and QoS along with the modeling of
functional properties in a model-driven development. In this approach, two modeling
spaces, the design space and the analysis space, are used for functional design and
quality design, respectively. The two spaces are integrated by means of model
transformations. Non-functional design is to identify suitable QoS metrics and define
the confidence that system designs meet targets expressed in terms of these metrics.
[16] proposed the use of a Probabilistic Computational Tree Logic (PCTL) to express
quality constraints involving time and probabilities, associate constraints with a
software components at design time, and verify these constraints over the
implementation at runtime.

Until recently, research in these areas has been in three separate thrusts. Our
work described in this paper is a step forward in their convergence. We aim to
integrate enterprise service modeling and analysis, QoS, and SLA/SLM in a
comprehensive QoS management architecture and technology for enterprise SLM.

QUALITY OF SERVICE CONTRACT SPECIFICATION, ESTABLISHMENT, AND

MONITORING FOR SERVICE LEVEL MANAGEMENT

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 11

3 QOS SPECIFICATION FRAMEWORK

Our specification framework focuses on providing a specification language and an
associated software tool to define QoS requirements, offers and contracts. The
foundation of this framework relies on the common understanding of various QoS
characteristics and their relationship. Standard bodies such as ISO and OASIS have
defined many commonly-used QoS characteristics [1][2][3][4]. In our framework, we
consider three commonly used types of services: (1) Task: task-oriented services
perform operations on demand (e.g., Web Service); (2) Message: message-oriented
services deliver pieces of information from a source to a destination on demand; and
(3) Streaming Media: streaming media services deliver stream of information
continuously. As a result, we identified important and common QoS characteristics in
these types of services as following:

• Accountability: the correct identification of the service consumer, provider
and involved actions of each party.

• Availability: the fraction of time that the service is available.
• Confidentiality: the secrecy of information, i.e., the message content or the

request parameter cannot be leaked to unauthorized parties.
• Criticality: the importance or value of the request. For example, when contract

violation is inevitable, less critical requests will be sacrificed in order to meet
more critical requests.

• Deadline: the urgency of the service request. Deadline can be hard or soft
depending on the value of the service provided after the deadline.

• Information Accuracy: information content may be compressed or
approximated to certain degree. For example, images can be compressed or
reduced to a lower resolution; movie frames can be selectively dropped.

• Information Throughput: the amount of information transported in a unit of
time.

• Integrity: the correctness of information, i.e., the message content or the
request parameter is not changed during transmission.

• Message Delay: the end-to-end delay in delivering the message from the
source to the destination.

• Message Delivery Guarantee or Loss Ratio: whether the message must be
delivered, if not, an upper bound may be given on the failure probability.

• Message Duplication Elimination: whether a single message can be duplicated
and multiple copies delivered.

• Message Ordering: whether multiple messages shall be delivered to the
destination in the same order as they are received by the service provider. The
order may be imposed on messages from a single message source or a group
of sources.

• Priority: the preference to handle the request in comparison with other
requests.

VOL. 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 29

• Retry Limit: the maximum number of times for the service provider to retry to
deliver messages to or perform tasks for the service consumer when the initial
operation fails.

• Streaming Media Jitter: the variance of the inter-arrival time for consecutive
frames.

• Task Response Time: the time between request submission and response
reception.

A key observation on these QoS characteristics is that they are inter-related. Many
QoS characteristics are independent from each other and any combination is possible.
For example, Delivery Guarantee, Duplication Elimination, Confidentiality and
Throughput are four orthogonal dimensions. Notice that these dimensions are
independent only from the service consumer's point of view. There may be
implementation constraints such as resource limitations that prevent the service
provider from supporting some combinations in these dimensions. For example, high
Throughput requires quick handling of communication messages and hence may not
allow sophisticated encryption methods for high Confidentiality. Indeed, almost all
QoS characteristics supported by a single service provider are related in this sense.

More interestingly, some QoS characteristics are closely related to each other.
For example:

• When the maximum Loss Ratio becomes 0, it is equivalent to Guaranteed
Delivery.

• Response Time and Throughput are often inversely correlated, when the
volume of information per request/response is given.

• Time to Live and Deadline might be positively correlated in message
delivering systems.

• Retry Limit seems to be incompatible with Delivery Guarantee. Theoretically,
the service provider should retry unlimited number of times, if necessary, to
guarantee message deliveries. In practice, 100% delivery guarantee is
sometimes impossible to achieve. For example, if a consumer fails for an
extended period of time, the pending messages cannot be held within the
predefined main/secondary memory. In this case, the Guaranteed Delivery
might be interpreted as the fact that the service provider will try a limited
number of times to deliver the message.

• Security dimensions are often positively correlated. Especially, high
Confidentiality and Integrity often require high Accountability.

QoS Specifications in the requirements, offers and contracts are often defined using
these QoS characteristics and their allowed or desired values. The specification of the
allowed and desired values depends on the type of the value domains:

• Nominal (categorical values with no order among them). In this case,
individual values are directly listed, such as TRUE for Delivery Guarantee.

• Ordinal (categorical values with a full order among them). In this case, a range
of values can be given by the lower and/or upper bound. For example,
Confidentiality is MEDIUM or above, or Criticality is between Green and
Orange (assuming Criticality can be Green, Yellow, Orange and Red in the
importance order).

QUALITY OF SERVICE CONTRACT SPECIFICATION, ESTABLISHMENT, AND

MONITORING FOR SERVICE LEVEL MANAGEMENT

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 11

• Numeric. In this case, common statistics such as minimum, maximum, and
average may be applied on the values over a specified window of time. The
time window can be either consecutive or sliding.

In addition, for the same QoS characteristics, multiple sets of the allowed values may
be specified, for example, one for the average situation, and another for some limited
peak period.

In our framework, the QoS specification is defined by an XML Schema due to its
flexibility, expressiveness, and the wide acceptance in the industry. In other words,
our QoS specification language is an XML-based language. The language defines the
appropriate QoS characteristics in the application domain, and the allowed/desired
values for each QoS characteristic. In addition, the language includes the constraints
on QoS characteristics to represent their relationship.

Our framework includes a tool for end users to generate, modify and validate
QoS specifications in the given language. The tool facilitates easy generation of the
QoS specifications without requiring the user to remember the supported set of QoS
characteristics and their value domains. More importantly, it guides the user to create
correct specifications and validates the generated specifications to ensure that the
constraints among different QoS dimensions are met.

In practice, different service consumers often have different QoS requirements
(e.g., various data downloading bandwidths). On the other hand, the service provider
usually supports different QoS offers (e.g., gold or silver service). Before a consumer
subscribes to the provider for actual services, it needs to establish a QoS contract as a
mutual agreement with the provider on the guarantee level of various QoS
characteristics. Once the contract is created, both sides shall stick to the contract. For
example, the consumer shall not issue excessive requests and the provider shall meet
the agreed level of performance. Finally, the contracts may be revised at some later
time due to the dynamic changes in the business and technical environment.

4 QOS CONTRACT ESTABLISHMENT AND RESOURCE
MANAGEMENT

In [5][6][7], we introduced an integrated QoS management architecture to support the
QoS contract negotiation, establishment, revision and maintenance. To facilitate this
support, it also includes functionalities to support admission control, resource
management, prediction, monitoring, and adaptation. Figure 1 illustrates our QoS
management architecture, which consists of component services, their interactions,
and interfaces with external services such as real-time host and network condition
monitoring through Commercial Off-The Shelf (COTS) monitoring tools.

VOL. 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 31

Figure 1. QoS Management Component Services

This architecture includes the following component services.
• QoS Manager. Provide an interface to the client for QoS contract negotiation,

and orchestrate the establishment and maintenance of QoS contracts.
• Establishment Service. Establish QoS contracts based on requirements.
• Policy Manager. Provide admission control, resource management,

monitoring and adaptation strategies as specified in policies.
• Resource Manager. Manage resource lifecycle: reservation, allocation, and

release.
• Prediction Service. Predict future resource usage, for some resources or the

whole system, with or without perturbation.
• Operation Service. Coordinate the services during the execution of a QoS

contract.
• Maintenance Service. Maintain the QoS guarantee level for each contract.
• Adaptation Service. Change resource settings to maintain key QoS parameters

within normal ranges, or provide graceful degradation for contract violations.
• Monitoring Service. Monitor contract health, and system conditions given by

Diagnostic Service.
• Diagnostic Service. Aggregate real-time inputs from external system

monitoring tools to generate high-level system condition information.
Service providers often publish their service offers in some registry. Service
consumers usually initiate the QoS contract negotiation process with the service
providers based on its knowledge of the service offers. The QoS Manager in the
service provider provides public interface to facilitate the QoS contract negotiation
and other contract management functionalities. The follow code snippet highlights
such an interface defined in our QoS management architecture.

interface QosManager {
 QosContract establish(qosRequirement);
 QosContract revise(qosContract, qosRequirement);
 void agree(qosContract);
 void abort(qosContract);
 void release(qosContract);
}

QUALITY OF SERVICE CONTRACT SPECIFICATION, ESTABLISHMENT, AND

MONITORING FOR SERVICE LEVEL MANAGEMENT

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 11

To establish a QoS contract, a service consumer first call the establish method
with its QoS requirements. In the service provider, the QoS Manager will forward the
request to the Establishment Service which will consult the Resource Manager, the
Prediction Service and the Policy Manager to create an initial QoS contract. This
contract may not meet all the required QoS due to policy or resource limitation. It will
be returned to the consumer, which will decide whether it is satisfactory. If so, the
consumer will notify the provider by calling agree. Otherwise, the consumer can
modify its requirements and send the request again by calling revise. This contract
establishment process goes on until both sides agree on the same contract. In this
process, the consumer can choose to abort the negotiation (by calling abort).

After the contract is established (i.e., the consumer's call of agree succeeds), the
consumer will use the service for a period of time, and eventually decides to end the
service. The consumer should release the QoS contract at the end of the service.
Otherwise, the provider needs to detect service termination and release the QoS
contract appropriately. In addition, during the service period, the consumer may also
decide to modify the QoS levels due to the dynamic business and technical
environmental changes. This can be done by a sequence of calls of revise followed
by a single call of agree, similar to the initial establishment phase (except the initial
call of establish).

In order to meet the QoS contract, the service provider must carefully manage the
resources, since many different consumers (using the service at the same time)
compete for the limited resources. This is often the case because service providers
want to maximize their resource utilization and profit or benefit.

Resource can be managed through static or dynamic provisioning. In the static
resource provisioning approach, fixed amount of resources are allocated for each
consumer based on the QoS contract with it. In order to minimize contract violations,
resources are allocated according to the worst case scenario when the service load of
the consumer's requests is maximized. This usually results in waste of large fraction
of resources. In addition, this approach also requires a clear understanding of the exact
relationship between the service requests (with the QoS contract) and the required
resources, often through extensive modeling and simulation.

In the dynamic resource provisioning approach, resources are initially allocated
to meet average requirements on the services with each given QoS contract. After
that, the service load for each QoS contract is monitored to detect change of resource
demand for meeting the QoS requirements. Whenever the service load for a consumer
reaches some threshold level, adaptation mechanisms will be triggered in order to
maintain the QoS level. The details of the monitoring and adaptation will be discussed
in the next section.

A clear advantage of the dynamic provisioning approach is its effective use of
resources. Usually, the service loads for different consumers will not reach the peak at
the same time. The dynamic provisioning approach enables reuse of certain resources
for different consumers at different time: whenever a consumer's service requests
reach the peak load, the reusable resources will be allocated to serve that consumer.
When multiple consumers do reach their peak service request loads at the same time,
the provider may be willing to take some penalty by degrading some QoS contracts

VOL. 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 33

for the moment. The trade-off between the resource utilization ratio and the contract
degradation ratio is a key tuning factor of the dynamic provisioning approach.

5 QOS CONTRACT MONITORING, DIAGNOSTICS AND
ADAPTATION

To determine how well the service provider and the service consumer perform in
compliance to the QoS parameters agreed in a contract, a monitoring service is used to
collect and sort performance data pertaining to a contract and aggregate the data into
metrics that can be used to evaluate the compliance. Should a contract be violated, the
corrective actions are taken on behalf of the management environment.

Monitoring performance parameters in the context of contracts involves
monitoring real-time computational resource usage condition on the service provider
side. It also involves monitoring service consumer's actual usage of the services and
comparing it against the defined threshold in contract. For example in a publish-and-
subscribe based messaging system, the messages sent by a publisher may exceed the
publishing rate defined in the contract, or the end-to-end delay may be longer than
what is agreed.

Some of these QoS parameters, such as task response time and message
publishing rates, especially the resource utilization parameters, can be measured from
inside the service provider. Others like the throughput and the end-to-end delay
require probing the service consumers.

There are various COTS tools for monitoring the system performance. However,
the traditional monitoring tools are not sufficient in QoS management system, as
many concurrent contracts and shared system resources could fluctuate over time, and
system health conditions could change. There is a need for a more comprehensive
monitoring approach that is integrated with diagnostics and adaptations.

As shown in Figure 1, our approach uses monitoring, diagnostic and adaptation
services as an integral part of end-to-end QoS management. The role of Monitoring
Service is to sample and aggregate QoS parameter values. It registers condition
predicates with the Diagnostics Service, which returns with notifications when the
predicates become true due to changes in system conditions. The Diagnostics Service
is a vital service that uses formal reasoning models like causal networks or Bayesian
networks to aggregate low-level system signals into attributes on system conditions. It
takes real-time inputs from monitoring tools, aggregates data on the fly, and stores the
data in a repository. It may also evaluate any predicates on the attributes upon value
changes and trigger notifications to interested parties such as Monitoring Service.
When Monitoring Service receives the notifications of the conditions of interest, it
updates the corresponding data in Maintenance Service, which in turn activates some
adaptation mechanisms, defined in the policy, to take care of the situation. Figure 2
depicts the interactions between Monitoring Service and Diagnostics Service.

QUALITY OF SERVICE CONTRACT SPECIFICATION, ESTABLISHMENT, AND

MONITORING FOR SERVICE LEVEL MANAGEMENT

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 11

Our Adaptation Service focuses on the service provider side resource management
since QoS Manager does not have control over the client side resources. Therefore,
the adaptation mechanisms are defined in the QoS manager's resource management
policies using an XML-based language and are transparent to service consumers. In
systems that some kind of resources may be negotiated or priced, the adaptation
mechanism can also be defined in QoS contract. For example, if a publisher violates
contract by sending messages at a more than agreed publishing rate, it needs to pay
more on the service, and the unit price for the extra messages are often higher than
normal.

The knowledge from monitoring and diagnostics services enables our system to
support contract reuse, a feature particularly useful for mobile ad-hoc environments.
As mobile ad hoc and wireless networks become more popular, integrated monitoring,
diagnostics and adaptation services become more important for QoS management
system. In the ad hoc network environment, clients can join and leave the network at
any time. Similarly in wireless networks, clients may lose network connection
accidentally when communication signal fades. As a result, the network topology
changes frequently. In such environments, monitoring and diagnostics services can
help detect the abrupt drop-off of the clients. After the drop-off is detected, the
existing contract can be held for a certain period of time and be reused without
renegotiation when the clients return. The major benefit of this contract reuse is that it
reduces the load of unnecessary resource reallocation and improves the efficiency of
resource management.

Diagnostic
Model Engine

QoS Data
Repository

Traffic/ Sys
Monitoring

Tools

Network Traffic
System Status

Diagnostic Models

Abstracted Variable/
Raw Parameter
Definitions & Tables

Message
(Transaction / Packet)
Definitions & System
Resource Definitions

Dx Outputs

QoS
Abstracted
Variables

Dx Triggers

QoS Raw
Parameters

QoS Raw
Parameters to

Monitor

Dx Output Def.

Offline In/Out
Online In/Out

Online Dataflow

Offline Dataflow

Prediction
Service

Monitoring
 Service

Alarms and
Condition Data

QoS Data Query

Register alarms and predicates

Figure 2 Interactions between Monitoring Service and
Diagnostics Service.

VOL. 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 35

6 CASE STUDY

To verify and validate our QoS contract specification, establishment and monitoring
framework, we created a few prototypes and conducted many experiments. This
section describes a case study in details to illustrate the application of the proposed
framework.

We selected a publish-and-subscribe based messaging system. In this system,
there are two types of service consumers, namely the publishers and the subscribers.

Publishers send messages to the service provider, namely InfoBroker, in certain
channels provided by the InfoBroker. Subscribers subscribe to certain channels and
receive all messages published to those channels. The publishers are totally decoupled
from the subscribers through channels in the InfoBroker. The selected system is very
powerful as it also supports message filtering, transformation, fusion and persistency
and other functionalities. Unfortunately, this system as well as other similar
commercial publish-and-subscribe based messaging systems (e.g., those based on
Java Message Service) do not provide service differentiation among consumers.
Indeed, they do not support the concept of service level management at all.

We integrated a QoS management prototype into this system to provide service
level management, as illustrated in Figure 3. The QoS management prototype
provides essential service level management functionalities including QoS contract
specification, negotiation, establishment, operation, monitoring, diagnostics and
adaptation. The integration efforts mainly include:

Customize QoS Specification Language

Identify applicable and appropriate QoS characterisitics for the publish-and-subscribe
based messaging system. These include the message reliabilities, securities and
transportation performance. An important observation is that Criticality is a high level
QoS characteristic commonly used in mission-critical applications. Other QoS
characteristics may be derived using Criticality based on the consumers' roles and

InfoBroker

QoS Manager

P
ub

lis
he

r

Su
bs

cr
ib

er

Pu
bl

is
he

r
P

ub
lis

he
r

Su
bs

cr
ib

er
S

ub
sc

rib
er

Contract Negotiation
Messages Flow

Admission
Control ...

R
es

ou
rc

e
M

an
ag

em
en

t

Ad
ap

tio
n

P
re

di
ct

io
n

M
on

ito
rin

g

Pu
bl

ic
at

io
n

S
ub

sc
rip

tio
n

Fu
si

on

D
is

tri
bu

tio
n

Pe
rs

is
te

nc
e

Fi
lte

rin
g

Discovery Security

...

Figure 3 Integrate QoS Manager with a Publish Subscribe System

QUALITY OF SERVICE CONTRACT SPECIFICATION, ESTABLISHMENT, AND

MONITORING FOR SERVICE LEVEL MANAGEMENT

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 11

domains. These QoS characteristics are used in specifying the QoS specification XML
schema.

The QoS specification XML Schema needs to support the specificaiton of each
identified QoS characteristics and potential constraints among them. A snippet of the
schema is shown below.

<xs:schema …>
 <xs:element name="qos-requirement">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="criticality" …/>
 <xs:element ref="performance" …/>
 <xs:element ref="reliability" …/>
 <xs:element ref="security" …/> …
 <xs:element ref="constraints" …/>
 <xs:element ref="monitoring" …/>
 </xs:sequence> …
 </xs:complexType>
 </xs:element>
 <xs:element name="reliability">
 <xs:complexType>
 <xs:attribute name="guaranteed-delivery" …/>
 <xs:attribute name="duplication-elimination"…/>
 <xs:attribute name="message-ordering" …/>
 </xs:complexType>
 </xs:element>
…
</xs:schema>

Implement the Application Dependent Resource Management Code

Modify the resource management code in the existing publish-and-subscribe based
messaging system so that critical resources are managed in accordance to QoS
contracts. For example, the existing unlimited-sized single channel FIFO queue is
replaced by a new multi-channel FIFO queue whose size is configurable and
modifiable by the Resource Manager (see Figure 1).

Our QoS management prototype already supports generic management of
resources in the abstract Resource Management service. However, it does not
understand the actual resources used in the application domain and hence cannot
create the resources. The concrete implementation needs to provide resource
allocation and release mechanisms. On the other hand, our QoS management
prototype does provide a library of common resources such as FIFO queues. Hence,
the concrete implementation can reuse these resources for different purposes, e.g., a
FIFO queue to hold messages for each channel.

VOL. 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 37

Develop Monitoring, Diagnostics and Adaptation Strategies

Identify critical attributes of the QoS contracts that need to be monitored, and
determine possible adaptation strategies for detected changes in these attributes.
Sometimes, adaptaions may be triggered not because of the changes of directly
monitored attributes, but due to changes in the interaction among the monitored
attributes. The latter changes are detected by the Diagnostics Service based on
configured diagnosis models. For example, in this case study, we also created
diagnosis models to determine whether a client is slow based on the monitored
network condition and other clients running on the same host.

Adaptations can be triggered when the changes result in a violation of the QoS
contract, or is likely to result in a violation in the near future (e.g., reaching a warning
threshold). The violation can be either on the InfoBroker side or the clients
(publishers and subscribers) side. If the violation is on the InfoBroker side,
adaptations are triggered to bring the attributes back to normal range (in the QoS
Contracts). If the violation is on the client side, adaptations are triggered to degrade
services according to SLAs.

For example, when the publishing speed is greater than the agreed QoS contract,
the service provider may reduce the priority of the publisher and hence decrease the
serving speed if there is resource contention. For another example, if a message
payload is larger than the agreed QoS contract, the service provider may drop the
message even though the message is guaranteed to be delivered according to the
contract.

In addition to configuring the monitoring points and creating the diagnosis
models, we also need to develop adaptation code according to the determined
strategies. Our QoS management prototype provides generic code to register
adaptation mechanims as plugins and trigger adaptations according to policy. To
intergrate with the publish-and-subscribe messaging system, we need to implement
the adaptation strategies as plugins. Unlike the generic Adaptation Service code, these
plugins understands the application domain and can modify the internal logic of
InfoBroker. For demonstration purpose, adaptation actions are displayed in an Admin
window. Figure 4 gives an example.

Figure 4. An example screen dump of the adaptation messages.

QUALITY OF SERVICE CONTRACT SPECIFICATION, ESTABLISHMENT, AND

MONITORING FOR SERVICE LEVEL MANAGEMENT

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 11

Develop Policies

As shown in Figure 1 and discussed in Section 4, our QoS management architecture
uses policies to support admission controls, resource management as well as
monitoring and adaptations. In this case study, we created two types of policies in the
XML-based policy languages interpreted by the Policy Manager in the QoS
management architecture.

The first type of policies is for admission control. These policies determine the
allowed QoS requirements at the application level using the QoS specification
language. The following is a snippet of an example policy which assigns 1 second
response time for any red (criticality) publisher and agree on the delivery guarantee
requirement.

<?xml version="1.0"?>
<qos-policy name="…" version="1"
 target="qos-requirement">
 <variable name=”role”><path>…/@role</path></variable>
 …
 <node description="Publishing critical (red) message">
 <condition><function name="and">
 <function name="is">

<varref name="role"/><constant>publisher</constant>
 </function>
 <function name="is">

<varref name="criticality"/><constant>red</constant>
 </function>
 </function></condition>
 <copy source="/qos-message/profile"/>
 <create name="performance">
 <quote><response-time period="1" unit="second"/>…</quote>
 <copy source="/qos-message/performance/volume-rate"/>
 …</create>
 <create name="reliability">
 <copy source="/qos-message/reliability/delivery"/>
 …</create>
 …</node>
 <node description="Publishing yellow message">…</node>
…</qos-policy>

The second type of policies is for resource allocation, monitoring and adaptation.
These policies determine how to allocate resources for the agree QoS contracts, which
monitoring points need to be installed, and which adapatation mechanisms needed to
be triggered in response to monitored changes. This type of policies depends on the
exact resource types, supported monitoring points and adaptation mechanisms
supported in the application. The following is a snippet of an example policy which
assigns create a message queue resource (and others which are not shown here) whose
length depends on the message payload size. It also installs an adaptation mechanism
to be triggered when the payload size exceeds an upper bound and another adapation
mechanism to be triggered when the payload size returns normal.

VOL. 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 39

<?xml version="1.0"?>
<qos-policy name="…" version="1" target="resource-
management">
 …
 <node description="Contract for the Publisher">
 <condition><function name="and">
 <function name="is">

<varref name="role"/><constant>publisher</constant>
 </function>
 <function name="is">

<varref name="criticality"/><constant>red</constant>
 </function>
 </function></condition>
 <create name="resources">
 <create name="message-queue">
 <create name="queue-size">
 <create name="target">
 <node>
 <condition><function name="lt">
 <varref name="pay-load"/><constant>5120</constant>
 </function></condition>
 <constant>100</constant>
 </node>
 <node>
 <condition><function name="lt">
 <varref name="pay-load"/><constant>10240</constant>
 </function></condition>
 <constant>50</constant>
 </node>
 … <!-- other conditions-->
 <node><constant>3</constant></node>

 </create> <!-- queue-size -->
 </create> <!—message-queue -->

… <!-- other resources -->
 </create> <!—resources -->
 <create name="monitoring-points">

<create name="monitoring-point">
 <create name=”source”>
 <constant>receiver</constant>
 </create>
 <create name=”name”>
 <constant>payload-size</constant>
 </create>
 <create name=”facet”>
 <create name=”target”><varref name=”target”/></create>

 <create name="threshold">
 <create name=”name”><constant>upper-
bound</…></create>
 <create name=”value”><function name=”multiply”>
 <varref name=”target”/><constant>1.2</constant>
 </function></create>
 <create name="cross-up”>
 <create name=”action”><create name=”class”>
 <constant>….AdaptationChangeDeliveryGuarantee</…>
 </create></create></create>

QUALITY OF SERVICE CONTRACT SPECIFICATION, ESTABLISHMENT, AND

MONITORING FOR SERVICE LEVEL MANAGEMENT

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 11

 <create name="cross-down”>
 <create name=”action”><create name=”class”>
 <constant>….AdaptationRestoreDeliveryGuarantee</…>
 </create></create></create>
 …</create> <!-- other facet such as average -->
 …</create> <!-- other monitoring point -->
 </node> <!-- Publisher Contract -->
 … <!-- other clients -->
</qos-policy>

Case Study Summary

The integrated system now offers service differentiation for different service
consumers. Publishers and subscribers should first establish a QoS contract with the
InfoBroker, and then send or receive messages according to the QoS contract. To
accommodate existing legacy applications, a default QoS contract will be created by
the modified InfoBroker if a publisher or subscriber does not explicitly negotiate a
QoS contract with the InfoBroker. These default QoS contracts depend on the service
consumers' identities and domains. This feature promotes customer acceptation and
smoothes transition from existing system to the enhanced system.

A snippet of an example QoS contract including QoS parameters as a part of a
consumer's SLA is shown below.

<qos-requirement …>
 <performance>
 <volume-rate unit='second'>100</volume-rate>
 <pay-load volume='32' unit='kilobyte'/>
 </performance>
 <reliability>
 <guaranteed-delivery>yes</guaranteed-delivery>
 </reliability>
 <criticality>green</criticality>
</qos-requirement>

The service level agreement in this study is relatively simple. It includes the
consumer's profile (include identity and domain), the message channel, the message
profile (including size and rate), and the QoS contract. Nevertheless, this study
verified and demonstrated key components of the service level management including
QoS contract specifications, negotiation, establishment, maintenance, revision,
monitoring, diagnostics and adaptation. It also helped us gain insights in enhancing
existing legacy systems to support service level agreements. Using a generic QoS
management implementation, this enhancement effort requires some additional work
that is specific to the legacy system. The additional work includes both modifying
existing implementation for resource management and developing new components
such as QoS characteristics, policies and adaptation mechanisms.

7 CONCLUSION

VOL. 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 41

In this paper, we discussed QoS management to support service level management
and described a QoS contract specification, establishment and monitoring framework.
Our work focuses on a common understanding of QoS characteristics and their
relationships between service providers and service consumers. Our QoS management
architecture provides clean and reusable concepts and processes to facilitate QoS
contract establishment and monitoring through contract negotiation, resource
management, diagnostics and adaptation.

Our future work will focus on two areas. One is the derivation of service QoS
characteristics from enterprise service modeling and analysis, in particular, the QoS
aspects of services. The other area is the research and development of dynamic QoS-
driven resource management algorithms for SLM.

8 ACKNOWLEDGMENT

The authors acknowledge Stephen Uczekaj for his tremendous support, and thank
Casey K. Fung, Yichi C Pierce and Paul Z. Thunemann for their invaluable help. The
authors also thank Klara Nahrstedt and Chui Sian Ong for their insights in this work.
This paper is an extended version of a paper presented to the IEEE EDOC 2006
Advances in Quality of Service Management (AQuSerm) workshop.

REFERENCES

[1] International Organization for Standardization. ISO/IEC JTC1/SC21
Working Draft for Open Distributed Processing - Reference Model -
Quality of Service. July 1997.

[2] International Organization for Standardization. ISO/IEC International
Standard 13236: Information Technology - Quality of Service:
Framework. First edition, Dec 1998.

[3] International Organization for Standardization. ISO/IEC Technical Report
13243: Information Technology - Quality of Service: Guide to Methods
and Mechanisms. First edition, Nov 1999.

[4] OASIS Web Services Reliable Message TC. WS-Reliability 1.1. OASIS
Standard, available at http://docs.oasis-open.org/wsrm/ws-
reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf. November 2004.

[5] Guijun Wang, Alice Chen, Changzhou Wang, Casey Fung and Stephen
Uczekaj. “Integrated Quality of Service (QoS) Management in Service-
Oriented Enterprise Architectures”. Eighth IEEE International Enterprise
Distributed Object Computing Conference (EDOC), 2004.

[6] Changzhou Wang, Guijun Wang, Alice Chen and Haiqin Wang. “A
Policy-Based Approach for QoS Specification and Enforcement in
Distributed Service-Oriented Architecture”. The IEEE International
Conference on Services Computing (SCC), 2005.

QUALITY OF SERVICE CONTRACT SPECIFICATION, ESTABLISHMENT, AND

MONITORING FOR SERVICE LEVEL MANAGEMENT

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 11

[7] Guijun Wang, Changzhou Wang, Alice Chen, Haiqin Wang, Casey Fung,
Stephen Uczekaj, Yi-Liang Chen, Wayne Guthmiller and Joseph Lee.
“Service level management using QoS monitoring, diagnostics, and
adaptation for networked enterprise systems”. Ninth IEEE International
Enterprise Distributed Object Computing Conference (EDOC), 2005.

[8] Zheng Wang. Internet QoS: Architectures & Mechanisms for Quality of
Service. Morgan Kaufmann Publishers, ISBN 1-55860-608-4, 2001.

[9] Klara Nahrstedt and Jonathan Smith. “The QoS Broker”. IEEE
Multimedia Magazine, Vol. 2, No 1, 1995.

[10] Jingwen Jin and Klara Nahrstedt. Classification and Comparison of QoS
Specification Languages for Distributed Multimedia Applications.
Technical Report UIUCDCS-R-2002-2302/UILU-ENG-2002-1745,
Department of Computer Science, University of Illinois at Urbana-
Champaign, November, 2002.

[11] Xiaohui Gu, Klara Nahrstedt, Wanghong Yuan, Duangdao Wichadakul,
Dongyan Xu. An XML-based Quality of Service Enabling Language for
the Web. Journal of Visual Language and Computing (JVLC), special
issue on Multimedia Languages for the Web, vol. 13, num. 1, pp. 61-95,
Academic Press, February, 2002.

[12] A. Keller and H. Ludwig. “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services”. Journal of
Network and System Management, Special Issue on E-Business
Management, Vol. 11, No. 1, March 2003.

[13] A. Dan, D. Davis, etc. “Web Services on Demand: WSLA-driven
Automated Management”. IBM Systems Journal, Vol. 43, No. 1, 2004, pp.
136-158.

[14] V. Albaugh and H. Madduri. “The Utility Metering Service of the
Universal Management Infrastructure”. IBM Systems Journal, Vol. 43,
No. 1, 2004, pp. 179-189.

[15] H. Jonkers, M. Iacob, M. Lankhorst and P. Straiting. “Integration and
Analysis of Functional and Non-Functional Aspects in Model-Driven E-
Service Development”. IEEE International Enterprise Distributed Object
Computing (EDOC) conference, Enschede, Netherlands, September 19-
23, 2005.

[16] I. Poernomo, J. Jayaputera and H. Schmidt. “Timed Probabilistic
Constraints over the Distributed Management Taskforce Common
Information Model”. IEEE International Enterprise Distributed Object
Computing (EDOC) conference, Enschede, Netherlands, September 19-
23, 2005.

VOL. 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 43

About the authors
Changzhou Wang is an Advanced Computing Technologist in the
Boeing Company. He received his Ph.D. in Information Technology
from George Mason University, Fairfax, Virgina in 2000. His current
research interest includes information management, data mining, and
software quality of services. He can be reach by email under
changzhou.wang@boeing.com

Guijun Wang is a Technical Fellow of the Boeing Company. He
received his Ph.D. in Computer Science from the University of
Kansas. His current research interests include service-oriented
architecture for system of systems, quality of service management for
network centric operations, enterprise distributed computing
technologies and systems, systems and software engineering. In

addition to research work, he has been an architect for several large scale distributed
systems. He has been on the steering committee of the IEEE Enterprise Distributed
Object Computing (EDOC) conferences since 2002. He was the Program Co-Chair,
General Chair, and Panel Chair for EDOC 2000, 2001, 2002, respectively.

Haiqin Wang holds Ph.D and MS degrees from Intelligent Systems Program at the
University of Pittsburgh. She also received MS degree in Pattern Recognition &
Artificial Intelligence from the Institute of Automation at Chinese Academy of
Sciences (1996) and BS degree in computer science from the University of Science &
Technology of China (1992). She is currently working in the Adaptive Systems group
of Boeing Phantom Works, the central research and development organization of The
Boeing Company. Her research interests include Bayesian belief networks,
uncertainty reasoning, sensitivity analysis, machine learning, data mining, and user
interfaces to decision support systems.

Alice Chen is a Technical Fellow of the Boeing Company in the
areas of Communications/Network and Information Assurance (IA)
technologies. She holds a M.S. degree in Computer Science from
Memphis University in 1975. Her recent research interests are the
OSI upper layer issues such as embedding IA in Service Oriented
Architecture, Middleware QoS, and policy-based processes flow

control/collaboration. Coaching junior researchers and transferring research
technologies to enterprise production environments are also her interests.

Rodolfo Santiago is an advanced computing technologist at Boeing
Phantom Works' Mathematics and Computing Technology division.
His research interests has been on distributed computing, networking
and embedded systems. He has an MS degree in Computer Science
from the George Washington University and a BS degree in
Electronics and Communications Engineering from De La Salle

QUALITY OF SERVICE CONTRACT SPECIFICATION, ESTABLISHMENT, AND

MONITORING FOR SERVICE LEVEL MANAGEMENT

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 11

University.

