
Vol. 6, No. 11, Special Issue on Advances in Quality of Service Management, December 2007

From formal specifications to QoS monitors

Sébastien Saudrais, IRISA France, Triskell Project, ssaudrai@irisa.fr
Olivier Barais, IRISA France, Triskell Project, barais@irisa.fr
Laurence Duchien, INRIA France, ADAM Project,duchien@lifl.fr
Noel Plouzeau, IRISA France, Triskell Project, noel.plouzeau@irisa.fr

In the domain of soft real-time application design, the gap between component-
specification models and the implementations often implies that the implementations
cannot fully take advantage of the specification models. To limit this gap, this paper
proposes an approach to generate a QoS monitor from the timed behavior specifi-
cation. To support this approach, we rely on two different component models: one
focused on formal description and the other on practical implementation. Those mod-
els are interconnected by model transformation, using a Model-Driven Engineering
style.

aThis work was funded by ARTIST2, the Network of Excellence on Embedded Systems
Design

1 INTRODUCTION

Recently, hopes that modeling could take an important role in the software engi-
neering process have been refuelled by so-called MDE (Model-Driven Engineering)
initiatives, most prominently advanced by IBM with EMF, the OMG (Object Man-
agement Group) with the MDA or by Microsoft with Software Factories. The under-
lying idea is to promote models to be the primary artifacts of software development,
making executable code a pure derivative. According to this development paradigm,
software is generated with the aid of suitable transformations from a compact de-
scription (the model) that is more easily read and maintained by humans than any
other form of software specification in use today.

In the soft-real time domain, the industry is interested in abstract component
models to build systems. Such models improve the reusability of software modules
because they provide three main features [8] for designing soft real time applications:
(1) a composition model that provides operators able to compose existent libraries of
components, (2) an abstraction level for defining components and connectors with
only precise and yet abstract properties of the components, (3) a set of analysis
tools to validate architectural descriptions. To enable an architectural analysis, the
specification activity must add a time information within the component interface
specification. Nevertheless, even though the real-time system community and the
software engineering community use the component paradigm, the details are not
necessarily the same. Consequently, although standards such as AUTOSAR [3] and

Cite this document as follows: Sébastien Saudrais, Olivier Barais, Laurence Duchien: From
formal specifications to QoS monitors, in Journal of Object Technology, vol. 6, no. 11,
Special Issue on Advances in Quality of Service Management, December 2007, pages 7–24,
http://www.jot.fm/issues/issues 2007 12/article1

http://www.jot.fm/issues/issues_2007_12/article1


FROM FORMAL SPECIFICATIONS TO QOS MONITORS

sysML [14], for real-time systems, or UML 2.0 [15], for software engineering, promote
the concept of component, there is not currently any component model designed to
specify a real-time application by assembling components with a clear semantic and
a clear mapping with a real-time framework such as Giotto [9] or Simulink [6].

Our work is motivated by the need to provide a bridge between the two com-
munities to take the best of the different approaches: indeed software engineering
provides standards and tools for the design of system and real time system engi-
neering community provides semantic and tools for analysis. Consequently, we aim
at preserving the correctness verification techniques of real-time components, while
supporting component-based software architecture. Our approach aims at apply-
ing formal composition of specifications while supporting conventional source-code-
based implementations. In this way, our paper proposes a Model-Driven Engineering
process to generate a QoS monitor of the component system from timed-behavior
specifications as illustrated in Figure 1.

Timed 
Automaton of 
Component

Timed 
Automaton of 
Component

Timed 
Automaton of 
Component

Timed 
Automaton of 
Component

Timed 
Automaton of 
the System

State Timed 
Automaton of 
the System

Monitor
In Giotto

Model
Transformation

Model
Transformation

Compostion of 
components Implementation

of the System
Monitors

Traditionnal Develpment

Figure 1: Overview of the approach

The rest of this paper is organized as follows. Section 2 provides details on the
languages and metamodels used in our approach. Section 3 details the component
model and the real-time framework used for the implementation layer and explains
the transformation process. Section 4 describes the validation of our aproach with
the monitoring of the quality of of service on a robot. Finally, Section 5 describes
some related work and Section 6 concludes and discusses some future work.

2 ANALYSIS AND DESIGN MODEL

Several works in different domains converge on the use of components, ports, and
connectors to describe a software architecture [12]. Our approach selects a suitable
subset of UML 2.0 with a special emphasis on component-based architecture design
with time-related features.

Furthermore, in our approach, a specification of a system consists in defining its
architecture. This architecture is an abstract system specification consisting primar-
ily of components described in terms of their behaviors, their temporal specification,
their interfaces and the component assembly. This section presents the structural
concepts used to define the architecture and the formalisms used to define the be-
havioral and the temporal properties of components.

8 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 11



2 ANALYSIS AND DESIGN MODEL

Structural elements of the component model

The structural part of our component model is heavily inspired from the UML 2.0
architecture diagram. Nevertheless, contrary to UML 2.0, we define an abstract
model with fewer concepts to limit the complexity of the language that the archi-
tect has to manipulate and to remove all the semantic variation points existing in
UML 2.0.

Consequently, in our component model, a component provides services and may
require some services from other components. Services can only be accessed through
explicitly declared ports. A port is a binding point on a component that defines two
sets of interfaces : provided and required.

Our component model distinguishes two kinds of components: primitives which
will contain the code, and composites which are only used as a mechanism to deal
with a group of components as a whole, while potentially hiding some of the features
of the subcomponents. A primitive component can be seen as a basic building
block in the component assembly. Our component model does not impose any limit
on the levels of composition. The model thus provides two mechanisms to define
the architecture of an application: connector between ports of components, and
encapsulation of a group of components into a composite. A connector associates
a component’s port with a port located on another component. Two ports can be
bound with each other only if the interfaces required by one port are provided by the
other and vice versa. The services provided and required by the child components
of a composite component are accessible through delegated ports, which are the only
entry points of a composite component. A delegated port of a composite component
is connected to only one child component port.

The behavioral part

With the interface and method definitions, a component declares structural elements
about provided and required services. the behavioral part of the component model
adds information about the behavior of a component. The behavior specification
defines the component’s interactions with its environment. This behavior is de-
clared by a timed automaton [2] describing the sequences of messages that may be
exchanged between the component and its environment with timed properties.

A timed automaton is an automaton extended with clocks, which are a set of
variables increasing uniformly with time. We only consider deterministic timed
automaton. Formally a timed automaton is defined as followed :

Definition 1. (Timed Automaton)

A timed automaton is a tuple A =< S,X,L, T, ι > where :

• S is a finite set of locations,

VOL 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 9



FROM FORMAL SPECIFICATIONS TO QOS MONITORS

1

AudioPlayer

IAPoutsound

void launch()
void sound()

Decoder
IDinsound

IDoutsound

void launch()
void sound() void 

getSound()

Extraction
IEinsound

void 
getSound()

Source

ISread IEread

void Read()

void Read()ISlaunch

IElaunch

void 
launch()

void launch()

Launch
void launch()

S0
idle

S1
launched

?launch

S2
waiting

!start;x:=0

S3
receipt

?getSound
;x<4;x:=0

S4
working

x=0;
y:=0

!Sound
;y<2

Figure 2: Example of an audio player component

• X is a finite set of clocks. To each clock, we assign a valuation v ∈ V ,
v(x) ∈ R+ for each x ∈ X.

• L is a finite state of labels,

• T is a finite state of edges. Each edge t is a tuple < s, l, ψ, , s′ > where s, s′ ∈ S,
l ∈ L, ψ ∈ ΨX is the enabling condition. ΨX is the set or predicates on X
defined as x ∼ c or x − y ∼ c where x, y ∈ X and ∼∈ {<,≤,=} and c an
integer.

• ι is the invariant of A. ι ∈ ΦX where ΦX is the set of functions φ : S → ΨX

mapping each location s to a predicate ψ.

A state of an automaton is a location and a valuation of clocks who satisfies
the invariant of the location. We can change of state by two types of transition :
discrete transition and timed transition.

The timed automaton of composite is the composition of the timed automata of
the components of the assembly. This timed automaton is the expected behaviour
of the assembly with respect of timed QoS. The timed properties in the timed
automaton refer to QoS properties. For example, at the implementation level, if
the QoS wants to have a response in a specified time, the behaviour is correct if
the response arrives in time. If the response is too late, the component does not
stop but the QoS is not good and the user must be inform of this violation. We
will transform automatically the timed behaviour to a monitor which can check the
correct execution of the components.

10 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 11



3 A MODEL ORIENTED APPROACH FOR CODE GENERATION

Example

Fig. 2 illustrates the model with an example of component AudioPlayer. The
AudioPlayer component provides an IAPoutsound interface that contains methods
launch and sound. It is composed of 3 components: Decoder, Extraction and
Source. The left side shows the structural representation of the component in
UML 2.0. The right side of Fig. 2 shows an timed automaton A1 describing all
possible behaviors of the Decoder1. In this automaton A1, we have two clocks: x
and y. The first one is used for representing the response time of ?getSound who has
to be received less than each 4 units of time. The second clock is used for modelling
the execution time of the transformation of ?getSound into !sound which takes less
than 2 units of time.

3 A MODEL ORIENTED APPROACH FOR CODE GENERATION

From the component-based software architecture representation, our approach gen-
erates a QoS monitor based on the Giotto framework [9]. This section presents the
Giotto framework. We also discuss the choice of a model transformation approach to
generate the code from the specification to the implementation. Finally, we provide
details on the transformation of an architecture specification with time constraints
to the Giotto Framework.

The Giotto abstractions

Giotto is a real-time framework for embedded control systems running on possibly
distributed platforms. A Giotto program explicitly specifies the exact real-time
interaction of software components with the physical world. The Giotto compiler
automatically generates timing code that ensures the specified behavior on a given
platform. The Giotto model is based on four main concepts:

• ports,

• tasks,

• drivers,

• and modes.

In Giotto, all communication are performed through ports. Giotto defines five
kinds of ports. Two kinds of port (Sensor - Actuator) manage the input and the
output interactions with the hardware layer. Two others kinds of port (Input -
Output) manage the interactions with the software layer. They are used to exchange

1In Fig. 2, in order to simplify the automaton, we only represent the receipt of message for a method call and
the send of message for a method receipt.

VOL 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 11



FROM FORMAL SPECIFICATIONS TO QOS MONITORS

Figure 3: Giotto meta-model

data between concurrent tasks. Finally, the private ports represent the state of a
task. They are inaccessible outside the task in which they are defined.

In Giotto, a task has a set of inputs and outputs ports, a set of private ports and a
function which infers the outputs from the input ports. This function is implemented
by a sequential program and is written with a common programming language. For
each function, the Giotto framework has to know the worst-case execution time of
the function on each available CPU.

The third type of elements in Giotto is the driver. A driver is a function that
converts the value of sensor ports or outputs ports of the current mode to values
for the input ports. Driver are guarded: this gard is a predicate on a sensors and
output ports of a mode.

The main concept of Giotto is the mode. A mode consists of a period, a set of
output ports for the mode and a set of freq. A freq defines the frequency of an
action during the period. This action can be an actuator update (actFreq), a task
invocation ((taskFreq) or a switch to another mode (ExitFreq). A mode switch
defines a transition from one mode to another mode. For this purpose, a mode
switch specifies a target mode and a driver. The guard of the driver is called the
exit condition, as it determines whether the switch occurs. The Giotto meta-model
is presented in Fig. 3.

From the specification to the implementation

From the specification of a component, we generate the skeleton of the business com-
ponent and the configuration descriptors. From the timed automata, we generate
the Giotto layer implementation that controls the respect of the time constraint in

12 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 11



3 A MODEL ORIENTED APPROACH FOR CODE GENERATION

the architecture of the architecture. Indeed, Giotto separates the system’s behaviour
from its implementation. Then we have three levels in the implementation archi-
tecture: functional, time interaction and platform. In the functional level, we find
business components generated from the specification of services and the abstract
implementation. In the time interaction level, we find the Giotto layer generated
from the timed automata and the time constraints. Finally, in the platform level,
we find the specification of the platforms as the topology of CPUs and networks and
the performance. Choosing a MDE approach has two main benefits for the QoS.
The time interaction is decoupled from the functionalities. The framework improves
the separation of concerns. Moreover, the generative approach improves the pro-
ductivity of the development process. To define a MDE approach, we use Kermeta
a model oriented language. It allows the design of the different meta-model of the
generative process and the implementation of the transformation itself.

Kermeta: a model oriented language Kermeta2 is an open source meta-
modeling language developed by the Triskell team at IRISA. It has been designed
as an extension to the EMOF [16]. Kermeta extends EMOF with an action lan-
guage that allows specifying semantics and behavior of meta-models. The action
language is imperative and object-oriented. It is used to provide an implementation
of operations defined in meta-models. A more detailed description of the language
is presented in [13]. The Kermeta action language has been specifically designed to
process models. It includes both Object-Oriented (OO) features and model-specific
features. Kermeta includes traditional OO static typing, multiple inheritance and
behavior redefinition/selection with a late binding semantics.

To implement the transformation process between our component model and
the Giotto, we have chosen Kermeta for four reasons. First, it gives a graphical
and textual representation for designing the different meta-models identified in the
process. Second, the language allows implementing a composition semantic in the
component model by adding the algorithm in the body of the operations defined
in the component metamodel. Third, Kermeta is suitable for model processing. It
also includes specific concepts such as opposite properties (i.e. associations) and
handling of object containment. In addition to this, convenient constructions of the
Object Constraint Language (OCL), such as closures (e.g. each, collect, select), are
also available in Kermeta. Finally, Kermeta tools are compatible with the Eclipse
Modeling Framework (EMF) which allows us to use Eclipse tools to edit, store, and
visualize models. This second argument is more technical than scientific, but it is
very interesting to tool quickly the different meta-model defined in the approach.

Generating the Giotto layer The assembly of components at the specification
level gives a timed automaton describing the behaviour of the complete system.
We will transform this automaton to Giotto to monitor the implementation of the
components. If a component does not have a correct behaviour, Giotto can inform

2http://www.kermeta.org

VOL 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 13



FROM FORMAL SPECIFICATIONS TO QOS MONITORS

the user that the level of QoS is no longer correct. The real components are developed
by traditionnal methods and must only inform Giotto of the arrival of messages.

The first step of the transformation is to transform the timed automaton to a
discrete time automaton. The discrete automaton is an automaton with discrete
time. Each modification of time will be explain on the transitions. From the au-
tomaton A1, we will create the automaton A2 as illustrated in Fig. 4. The second
automaton represents the states of the first automaton with discrete and time tran-
sitions. For the example, locations s0 and s1 have only discrete transitions. The
two clocks are reinitialized before being used so no timed transitions are used before
their initialization. Each timed transition increases the time unit by 1 so for the
state wait, which must hold no more than four units of time, it is transformed to
four states.

S0
idle

S1
launched?launch

S2
waiting

x=0

!start

S2
waiting

x=1

1

S3
receipt

?getSound

?getSound

S2
waiting

x=2

1

S4
working
y=0;x=0

?getSound

S2
waiting

x=3

1

?getSound

!Sound

S4
working
y=1;x=1

1 !Sound

S0
idle

S1
launched

?launch

S2
waiting

!start;x:=0

S3
receipt

?getSound;
x<4;x:=0

S4
working

x=0;
y:=0

!Sound;
y<2

A1 A2

Figure 4: Transformation of automata

Then the discrete automaton is transform to a simulation automaton. A sim-
ulation automaton represents what must be received within a unit of time. He is
construction by finding special paths in the discrete automaton. The paths are cycle
or path finishing with a timed transition. The final automaton is presented by the
automaton A3 of the Fig. 5.

The second step of the transformation is to produce the Giotto code. This step

14 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 11



3 A MODEL ORIENTED APPROACH FOR CODE GENERATION

A3

?launch
!start

?getSound,
!sound

s0

s2

s3

?getSound

s2-1

1

!Sound

?getSound

s2-2 s2-3

1

1

?getSound
?getSound

Figure 5: Simulation automaton

VOL 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 15



FROM FORMAL SPECIFICATIONS TO QOS MONITORS

is made with the help of MDE. A model transformation helps us to create the Giotto
model. A pretty printer was created for the Giotto meta-model. This generates the
textual representation used as input to the Giotto compiler as illustrated in Fig. 7.
The meta-model of timed automata with states is represented in figure Fig. 6. The
main idea of the transformation is to create one mode for each states of the timed
automata and mode switches for transitions. The code produced for the example is:

Figure 6: Meta-model of timed automata with state

The time unit used for our timed automata is second wheras for Giotto it is
millisecond. For example, the state s2 has 3 transitions: two discrete transitions
?getSound and ?getSound−!sound and 1 time transition. The corresponding mode
s2() has 3 mode switches. The discrete transition is transformed to mode switches
exitfreq 1 do s3(Cgetsound − sound) and exitfreq 1 do s3(Cgetsound) where
Cgetsound− sound and Cgetsound check the arrival of messages. The timed tran-
sition is transformed to a mode switch exitfreq 1 do s2 − 2(True) which means
if nothing happen during the period the automaton changes of state with a time
transition. When a state can’t evolve with a time transition, the behaviour can be
violated if nothing occurs during the period. The user must be informed of this
violation. To achieve this, we add a mode switch to an error mode to inform the
user. This case happens in the state s3 and s2− 3 and the mode switch exitfreq 1
do error(True) is added to their corresponding modes.

The addressed domain is QoS so the program will not stop if a message is not
received. For the example, we introduce a single mode error. In reality, different
modes will be introduced depending of the policy of QoS: allowing five kinds of error

16 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 11



3 A MODEL ORIENTED APPROACH FOR CODE GENERATION

start s0{

mode s0() period 1000 {

exitfreq 1 do s2(Claunch-start);

}

mode s2() period 1000 {

exitfreq 1 do s2(Cgetsound-sound);

exitfreq 1 do s3(Cgetsound);

exitfreq 1 do s2-1(True);

}

mode s3() period 1000 {

exitfreq 1 do workingone(Csound);

exitfreq 1 do error(True);

}

mode s2-1() period 1000 {

exitfreq 1 do s3(Cgetsound);

exitfreq 1 do s2-2(True);

}

mode s2-2() period 1000 {

exitfreq 1 do s3(Cgetsound);

exitfreq 1 do s2-3(True);

}

mode s2-3() period 1000 {

exitfreq 1 do s3(Cgetsound);

exitfreq 1 do error(True);

}

mode error() period 1000 {

taskfreq 1 do Error(message);

}

}

Figure 7: generated code

and enabling the reconfiguration of the assembly for example.

Concrete implementation consistency

Our approach aims at removing the gap between the techniques used by the de-
velopers to implement the applications and the model used by the designer/the
architect to specify and analyze their system. The use of model transformation
techniques ensures that the concrete implementation has the same time constraints
than the specification and the abstract implementation. At the concrete implemen-
tation level, the respect of these constraints is checked by the addition of a real time
controller on the component to interact with the QoS monitor. Besides, the use
of Giotto as a concrete implementation target allows the architect to check if the
specification of the platform is constrained enough to obey the time constraints.

The main interest of our approach consists in generating the concrete imple-
mentation time consistency checking from the specification. The Giotto real time
framework guarantee the time correctness. Consequently, the implementation of the
adaptation policy in the case of QoS contract violation does not tangle the func-
tional components. For the moment, the main limitation of the approach is the risk
of state explosion of the timed automata increased by the discretization of the dif-
ferent clocks in the transformation process. This risk is limited with the calculation
of the highest discretization step for each clock.

VOL 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 17



FROM FORMAL SPECIFICATIONS TO QOS MONITORS

Figure 8: Behaviour of the robot

4 EXAMPLE: A LEGO CAR

We validate our approach with the development of a small robot representing the
behaviour of a car. We produce from time specification the monitor and download
it on a Lego Mindstorm robot.

Time specification

We simulate the control part of the car. If the speed is not correct or if the previous
car is too close or too far, the car must slow down or accelerate. The time specifica-
tion of the control part is given by Fig. 8. The car must be at a safety distance of the
previous car and must not overtake the speed limit. When these two properties are
violated, the car must slow down until the end of the violation. The reception of the
message close will make the car slow down until the distance become again correct,
reception of dcorrect. The reception of fast will make the car slow down until the
speed become again correct, reception of scorrect. We had time properties on the
reception of close and fast. The car must be back in a correct distance/speed in
less than three units of time. The properties are represented by the guard on the
automaton. The reception of far or slow will make the car accelerate.

18 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 11



5 RELATED WORK

Figure 9: Time behaviour of the robot

Generation of the monitor

We firstly simplify the behaviour of the car in order to only keep time informations,
guard or reinitialisation of clocks. All the transitions of the timed automaton that
not have a time information are removed. The result of the projection is the Fig. 9.

We apply the algorithm of discretisation on the projected automaton. The result
is the expected behaviour where one state represents one unit of time. From the
discrete automaton the monitor in Giotto is generated. The processus produces files
for the messages notification. The functions of these files can be called by Giotto
and the implementation of the car.

Execution of the robot

We use a Lego Mindstorms to implement the robot. The original operation system is
replaced by the Lejos one. Lejos offer a restricted Java to command the motors and
the different sensors or the robot. We implement the functionalities described in the
timed automaton without taking care of the time. Then the notification of messages
fast, close, scorrect and dcorrect are added into the code. The notification is a
call to the corresponding functions in the files produced at the same time as the
monitor. The monitor and the car code are both Java threads. They are launched
together at the beginning of the execution.

The car robot follows another car robot with a random behaviour, without con-
stant speed. If the quality of service is violated, a light comes on. The picture on
Fig. 10 shows the two robots used for the experimentation. We firstly give a small
slowing down value to the car and a constant speed to the first robot. The violation
of the safety distance occurs so we increase this value in order to have a good safety
distance. Then we put a random behaviour to the first car and the violation can be
observed each time the first brakes too fast. A policy for the quality of service can
be here to inform the brake engine of the second vehicle of the violation. With this
information, the brake engine will be more efficient next time and will maybe avoid
the violation of quality of service.

5 RELATED WORK

Several research results have shown the usefulness of specific languages to describe
the software architecture. Thanks to the precise semantics of such languages, tools
suites have been developed to analyze the consistency of a software architecture
and to prototype it. For example, SOFA [10] provides a specific language that
extends the OMG IDL to specify the architecture of component based software.

VOL 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 19



FROM FORMAL SPECIFICATIONS TO QOS MONITORS

Robot with 
random 

behaviour

Distance 
sensor

Light

Robot with 
monitor and 

standard 
behaviour

Figure 10: The two robots

It also provides a process algebra to specify the external behavior of component.
However, using SOFA the architect cannot describe the required and provided QoS
of components. The AADL standard [17] is one of the first ADL that provides
mechanism to specify the QoS level of component interface [4]. However, AADL
is a low abstraction model, strongly connected with the implementation. Besides,
AADL is not yet connected with tools that use the QoS information to analyze the
consistency of the architecture.

At the validation level, the OMEGA project [1] provides formal methods to
check the consistency of UML 2.0 models. The OMEGA approach deals with the
specification level only. It does not provide any global development process that
includes source code development. Uppaal [11] is an integrated tool environment for
modeling, validation and verification of real-time systems modeled as networks of
timed automata. Their results are only on the model level and not linked to imple-
mentation. Consequently, the OMEGA project is complementary to our approach.

At the implementation level, Qinna [19] is a component-based QoS architecture

20 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 11



6 CONCLUSION AND PERSPECTIVES

for open system. They integrate QoS on their architecture but they don’t integrate
QoS specification in their model. Chan et al. proposed a model-oriented framework
for monitoring at runtime extra-functional properties[5]. They address probabilistic
temporal properties. Their monitoring is made at runtime by checking constraints
written in PCTL. They also make a .NET-based implementation of their framework.
The SeCSE[18] project aim to create methods, tools and techniques for systems
integrators and service providers. It will integrate tools and techniques to provide
a SeCSE development environment. Their approach is service-based and they take
care of QoS but they target only web-services.

6 CONCLUSION AND PERSPECTIVES

Correctly designing and implementing a real-time system is usually an error-prone
task. Indeed the gap between the specification model and the implementation

model. This paper is a step toward bridging this gap. It proposes a unified
approach to design and to implement component based systems. This approach
aims at assisting architects in the design and in the implementation of soft-real-time
systems by providing a set of tools that generate the QoS monitors from the speci-
fication of those systems using a Model Driven Engineering style. This approach is
based on an extended UML 2.0 standard to design the services provided by compo-
nent, to specify the component and to give a first abstract implementation of the
systems. It clearly separates the functional level, the timing interaction level at the
implementation level.

We are currently working on a proof of correctness for the transformation pro-
cess. This proof must ensure that the composition mechanism, at the concrete
implementation level, is valid with respect to the composition mechanism at the
abstract level. This is needed to preserve the results gained by validation at the
abstract implementation phase.

Finally, we intend to test our approach in the context of the HRC component
model provided in the SPEEDS project [7].

References

[1] Webpage of the OMEGA IST project. http://www-omega.imag.fr/.

[2] R. Alur and D.L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[3] AUTOSAR partners. AUTomotive Open System ARchitecture, August 2005.
Version 1.5 light version.

[4] A. Beugnard, J-M. Jézéquel, N. Plouzeau, and D. Watkins. Making components
contract aware. Computer, 32(7):38–45, 1999.

VOL 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 21



FROM FORMAL SPECIFICATIONS TO QOS MONITORS

[5] K. Chan, I. Poernomo, H. W. Schmidt, and J. Jayaputera. A model-
oriented framework for runtime monitoring of nonfunctional properties. In
QoSA/SOQUA, volume 3712 of Lecture Notes in Computer Science, pages 38–
52. Springer, 2005.

[6] J. B. Dabney and T. L. Harman. Mastering SIMULINK. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1997.

[7] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and E. Bde.
Boosting re-use of embedded automotive applications through rich components.
In FIT’05 Foundations of Interface Technologies. Elsevier Science, August 2005.

[8] D. Garlan and M. Shaw. An introduction to software architecture. In V. Ambri-
ola and G. Tortora, editors, Advances in Software Engineering and Knowledge
Engineering, volume 1, pages 1–40. World Scientific Publishing Company, 1993.

[9] T.A. Henzinger, C.M. Kirsch, and B. Horowitz. Giotto: A time-triggered lan-
guage for embedded programming. Proceedings of the IEEE, 91(1):84–99, Jan-
uary 2003.

[10] T. Kalibera and P. Tuma. Distributed component system based on architec-
ture description: The sofa experience. In On the Move to Meaningful Internet
Systems - DOA, CoopIS and ODBASE, pages 981–994, London, UK, October
2002. Springer-Verlag. ISBN: 3-540-00106-9.

[11] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1–2):134–152, October
1997.

[12] N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. In IEEE Transactions on Software
Engineering, volume 26, page 23, January 2000.

[13] P-A. Muller, F. Fleurey, and J-M. Jézéquel. Weaving executability into object-
oriented meta-languages. In Lionel C. Briand and Clay Williams, editors,
MoDELS, volume 3713 of Lecture Notes in Computer Science, pages 264–278.
Springer, 2005.

[14] OMG. Systems modeling language (sysml) specification. May 2006.

[15] Object Management Group OMG. Unified Modeling Language: Superstructure,
August 2003. Version 2.0.

[16] Object Management Group OMG. Meta-Object Facility (MOF) Specification,
2005. Version 2.0.

[17] As-2 Embedded Computing Systems Committee SAE. Architecture Analysis
& Design Language (AADL). SAE Standards no AS5506, November 2004.

22 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 11



6 CONCLUSION AND PERSPECTIVES

[18] P. Sawyer, J. Hutchison, J. Walkerdine, and I. Sommerville. Faceted service
specification. In Proceedings of Workshop on Service-Oriented Computing Re-
quirements (SOCCER), August 2005.

[19] J.C. Tournier, J.P. Babau, and V. Olive. Qinna, a component-based QoS ar-
chitecture. In G.T. Heineman, I.Crnkovic, H.W. Schmidt, J.A. Stafford, C.A.
Szyperski, and K.C. Wallnau, editors, CBSE, volume 3489 of Lecture Notes in
Computer Science, pages 107–122. Springer, 2005.

ABOUT THE AUTHORS

Sébastien Saudrais is a PhD student at the Irisa at Rennes,
France.His research interests are Time Quality of Service and Com-
ponent Based Software Engineering. He can be reached at se-
bastien.saudrais@irisa.fr.

Olivier Barais received the engineering degree from the Ecole des
Mines de Douai, France in 2002 and the PhD in computer science
from the University of Lille 1, France in 2005. He is an associate
professor at the University of Rennes 1, France. His research in-
terests are Component Based Software Design, Model-Driven En-
gineering and Aspect Oriented Modelling. He can be reached at
olivier.barais@irisa.fr.

Laurence Duchien obtained her Ph.D degree from University
Paris 6 LIP6 laboratory in 1988. She is currently full professor at the
department of computer science at University of Lille, France since
2001 and she is the head of the INRIA team-project ADAM (Adap-
tive Distributed Applications and Middleware) http://adam.lifl.fr.
Her research interests are centered on the area of component-
based architecture design, software evolution and model driven
engineering. She currently involves in ERCIM Group Software
Evolution and in AOSD-Europe NoE. She can be reached at lau-
rence.duchien@lifl.fr.

VOL 6, NO. 11 JOURNAL OF OBJECT TECHNOLOGY 23

mailto:sebastien.saudrais@irisa.fr
mailto:sebastien.saudrais@irisa.fr
mailto:olivier.barais@irisa.fr
mailto:laurence.duchien@lifl.fr
mailto:laurence.duchien@lifl.fr


FROM FORMAL SPECIFICATIONS TO QOS MONITORS

Noel Plouzeau is an associate professor of Computer Science at the
Rennes 1 University. His research topics currently include software
components, model-driven design processes, management of perfor-
mance and quantitative aspects in component-based applications.
He can be reached at noel.plouzeau@irisa.fr.

24 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 11

mailto:noel.plouzeau@irisa.fr

