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Abstract 
Demand for quality software has undergone with rapid growth during the last few years. This 
is leading to an increase in the development of metrics for measuring the properties of 
software such as coupling, cohesion or inheritance that can be used in early quality 
assessments. Quality models that explore the relationship between these properties and 
quality attributes such as fault proneness, maintainability, effort or productivity are needed to 
use these metrics effectively. The goal of this work is to empirically explore the relationship 
between object-oriented design metrics and fault proneness of object-oriented system 
classes. The study used data collected from Java applications is containing 136 classes. We 
use a set of twenty-six design metrics in our work. Result of this study shows that many 
metrics are based on comparable ideas and provide redundant information. It is shown that 
by using a subset of metrics in the prediction models can be built to identify the faulty 
classes. The proposed model predicts faulty classes with more than 80% accuracy. 
Keywords: Measurement, Metrics, Object-Oriented, Coupling, Cohesion, Inheritance, 
Empirical Analysis. 

1 INTRODUCTION 

There are several metrics proposed in the literature for capturing the quality of Object-
Oriented (OO) design and code, for example, ([Aggarwal05]; [Braind98][Braind99]; 
[Bieman95]; [Cartwright00]; [Chidamber94][Chidamber91]; [Harrison98]; [Henderson96]; 
[Hitz00]; [Lake94]; [Li93]; [Lee95]; [Lorenz94]; [Tegarden95]). These metrics provide ways 
to evaluate the quality of software and their use in earlier phases of software development can 
help organizations in assessing large software development quickly, at a low cost [Braind99]. 
But how do we know which metrics are useful in capturing important quality attributes such 
as fault-proneness, effort, productivity or amount of maintenance modifications. Empirical 
studies of real systems can provide relevant answers. There have been few empirical studies 
evaluating the effect of object-oriented metrics on software quality and constructing models 
that utilize them in predicting quality attributes in the system, such as  (Basili96] 
[Binkley98]; [Braind00][Braind01]; [Cartwright00]; [Chidamber98]; [Emam99][Emam01]; 
[Gyimothy05]; [Harrison98]; [Li93]; [Ping02]). 

More data based by empirical studies, which are capable of being verified by observation 
or experiment are needed. The evidence gathered through these empirical studies is today 
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considered to be the most powerful support possible for testing a given hypothesis. In this 
paper, we empirically investigate and validate a set of OO metrics given by [Chidamber94] 
[Chidamber91] and [Braind99]. These metrics are analyzed by 12 software projects 
containing 136 classes. The study is divided into following parts: 

(i) Principal component method of factor analysis is used to find whether all these 
metrics are independent or are capturing same underlying property of the object 
being measured. 

(ii) Univariate logistic regression analysis is carried out to test the hypothesis that 
size, coupling and inheritance increase fault proneness of a class whereas cohesion 
increase decrease fault proneness of a class and find individual impact of metrics 
on fault proneness. 

(iii) Finally a model using multivariate logistic regression analysis for predicting fault 
proneness of classes is given to predict which classes of a java application 
released in future will be faulty. 

The results show that though the number of OO metrics is large but the number of 
dimensions actually found is much low. Further it was observed that import coupling (that 
count the number of other classes called by a class) metrics are strongly associated with fault 
proneness and predict faulty classes with high accuracy. Based on these results, it is 
reasonable to claim that such a model could help for planning and executing testing by 
focusing resources on fault prone parts of the design and code. 

The paper is organized as follows: Section 2 summarizes the metrics studied, describes 
sources from which data is collected and presents hypothesis to be tested in the study. Section 
3 presents the research methodology followed in this paper. In section 4 the results of the 
study are given. The model is evaluated in section 5. Limitations of the study are presented in 
section 6 and conclusions of the work are presented in section 7. 

2 RESEARCH BACKGROUND 

In this section, we present the summary of metrics studied in this paper (Section 2.1), 
empirical data collection (Section 2.2) and hypotheses to be tested in our work (Section 2.3). 
Our focus in the study is metrics proposed by [Chidamber94][Chidamber91] and [Braind99]. 

Metrics Studied 

The metrics of coupling, cohesion, inheritance and size are the independent variables used in 
this study. Our focus is on OO metrics that are used as independent variables in a prediction 
model that is usable at early stages of software development. The metrics selected in this 
paper are summarized in Table 1. These metrics are explained with examples in 
[Aggarwal05][Aggarwal06]. 
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Metric Definition Sources 

Coupling between 
Objects (CBO) 

CBO for a class is count of the number of other classes 
to which it is coupled. 

[Chidamber94]  

Coupling between 
Objects (CBO1) 

Same as CBO, except that inheritance based coupling is 
not counted. 

[Chidamber91]  

Lack of Cohesion 
(LCOM1) 

It counts number of null pairs of methods that do not 
have common attributes. 

[Chidamber91]  

Lack of Cohesion 
(LCOM2) 

It measures the dissimilarity of methods in a class by 
looking at the instance variable or attributes used by 
methods.  

[Chidamber94]  

Number of 
Children (NOC) 

The NOC is the number of immediate subclasses of a 
class in a hierarchy. 

[Chidamber94]  

Depth of 
Inheritance (DIT) 

The depth of a class within the inheritance hierarchy is 
the maximum number of steps from the class node to 
the root of the tree and is measured by the number of 
ancestor classes. 

[Chidamber94]  

Weighted 
Methods per 
Class (WMC) 

The WMC is a count of sum of complexities of all 
methods in a class.  

[Chidamber94]  

Response for a 
Class (RFC) 

The response set of a class (RFC) is defined as set of 
methods that can be potentially executed in response to 
a message received by an object of that class.  

[Chidamber94]  

IFCAIC 
ACAIC 
OCAIC 
FCAEC 
DCAEC 
OCAEC 
IFCMIC 
ACMIC 
DCMIC 
FCMEC 
DCMEC 
OCMEC 
IFMMIC 
AMMIC 
OMMIC 
FMMEC 
DMMEC 
OMMEC 
 

These coupling metrics count number of interactions 
between classes. 
The metrics distinguish the relationship between the 
classes (friendship, inheritance, none), different types 
of interactions, and the locus of impact of the 
interaction. 
The acronyms for the metrics indicates what 
interactions are counted: 
• The first or first two characters indicate the type of 
coupling relationship between classes (A: Ancestor, D: 
Descendents, F: Friend classes, IF: Inverse Friends 
(classes that declare a given class a as their friend), O: 
Others, i.e., none of the above relationships). 
• The next two characters indicate the type of 
interaction: 
CA: There is a Class-Attribute interaction if class x has 
an attribute of type class y. 
CM: There is a Class-Method interaction if class x 
consist of a method that has parameter of type class y. 
MM: There is a Method-Method interaction if class x 
calls method of another class y, or class x has a method 
of class y as a parameter. 
• The last two characters indicate the locus of impact: 

 
 
 
 
 
 
 
 
 
 
[Braind99] 
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IC: Import coupling, counts the number of other classes 
called by class x. 
EC: Export coupling, count number of other classes 
using class y. 

Lines Of Code 
(LOC) 

It is the count of lines in the text of the source code 
excluding comment lines 

 

Table 1: Object-Oriented Metrics 

Empirical Data Collection 

To analyze the metrics chosen for this work, their values are computed for twelve different 
systems. These systems are developed by undergraduate engineering students and Masters of 
Computer Application students at School of Information Technology, of our University. The 
systems were developed using Java programming language over duration of four months. The 
aim was to teach the students system analysis and design techniques as part of their course 
curriculum. All students had experience with Java language and thus they had basic 
knowledge necessary for this study. The students were also taught about algorithmic detail 

The students were divided into 12 teams of four students each. Each team developed a 
medium-sized system such as flight reservation, chat server, proxy server etc. The 
development process used was waterfall model. Documents were produced at each phase of 
software development. Faults were reported to the developers. A separate group of students 
having prior knowledge of system testing under the guidance of senior faculty were assigned 
the task of testing systems according to test plans. 

The following relevant data was collected: 
1. The design and source code of the java programs 
2. The faulty data found by the testing team. 

The 12 systems under study consist of 136 classes (39 KLOC) out of which 85 are system 
classes and 51 standard library classes available in java language. These classes contain 
functions to manipulate files, strings, lists, hash tables, frames, windows, menus, threads, 
socket connection etc. 

All metric values are computed on system classes whereas coupling and inheritance 
metrics are also calculated between ‘system classes’ and ‘standard library classes’. It was 
observed during testing that the classes coupled with standard library classes were less fault 
prone than those coupled with system classes. It was also noticed that a large number of 
system classes inherited standard library classes. These classes did not need much testing as 
compared to the system classes, which inherit some of other system classes. Thus, the values 
of metrics for standard library classes are separately shown, as their effect on fault proneness 
is different from system classes. 

Hypotheses 

We test the hypotheses given below to find our empirical consequences. 
H1 (for import coupling metrics): A class with more import coupling than its peers is 

more fault-prone as compared to them. (Null hypothesis: A class with more import coupling 
than its peers is less fault-prone prone as compared to them). 
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H2 (for export coupling metrics): A class with more export coupling than its peers is 
more fault-prone as compared to them. (Null hypothesis: A class with more export coupling 
than its peers is less fault-prone as compared to them). 

H3 (for cohesion metrics): A class with lower cohesion than its peers is more fault-
prone as compared to them. . (Null hypothesis: A class with lower cohesion than its peers is 
less fault-prone as compared to them). 

H4 (for DIT metric): A class located lower in a class inheritance hierarchy than its 
peers is more fault-prone as compared to them.  (Null hypothesis: A class located lower in a 
class inheritance hierarchy than its peers is less fault-prone as compared to them.). 

H5 (for NOC metric): A class with a larger number of descendants than its peers is 
more fault-prone as compared to them. (Null hypothesis: A class with a larger number of 
descendants than its peers is less fault-prone as compared to them). 

H6 (for size metrics): A class with a larger size i.e. more information than its peers is 
more fault-prone as compared to them. (Null hypothesis: A class with a larger size i.e. more 
information than its peers is less fault-prone as compared to them). 

3 RESEARCH METHODOLOGY 

In this section, the procedure used to analyze the data collected for each measure is described 
in following stages: 

1. Principal-Component Method: Principal-Component Method (or P.C. method) is used 
to maximize the sum of squared loadings of each factor extracted in turn.  The P.C. 
method aims at constructing new variable (Pi), called Principal Component (P.C.) out 
of a given set of variables ),....,2,1(' kjsXj = .  
The variables with high loadings help identify the dimension P.C. is capturing, but 
this usually requires some degree of interpretation. In order to identify these variables, 
and interpret the P.C.s, we consider the rotated components. As the dimensions are 
independent, orthogonal rotation is used. There are various strategies to perform such 
rotation. We used the varimax rotation, which is the most frequently used strategy in 
literature. Eigenvalue (or latent root) is associated with each P.C. It refers to the sum 
of squared values of loadings relating to dimension, and then the sum is referred to as 
eigenvalue. Eigenvalue indicates the relative importance of each dimension for the 
particular set of variables being analyzed. In our study, the P.C.s with eigenvalue 
greater than 1 is taken for interpretation [Kothari89]. 

2. Logistic Regression (LR) and model prediction: LR is the most widely used technique 
[Hosmer89] in literature used to predict dependent variable from set of independent 
variables (a detailed description is given by [Basili96] and [Hosmer89] ). In our work 
independent variable are OO metrics and dependent variable is fault proneness. LR is 
of two types: (i) Univariate LR (ii) Multivariate LR  
Univariate LR is a statistical method that formulates a mathematical model depicting 
relationship among each independent variable and dependent variable. This technique 
is used to test hypotheses given in Section 2.3.  
Multivariate LR is used to construct a prediction model for the fault-proneness of 
classes. In this method combination of metrics are used to determine the effect on 
dependent variable.   
In LR two stepwise selection methods forward selection and backward elimination are 
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used [Hosmer89]. In forward stepwise procedure, stepwise variable entry examines 
the variables in the block at each step for entry. The backward elimination method 
includes all the independent variables in the model. Variables are deleted one at a 
time from the model until a stopping criteria is fulfilled. We have used backward 
elimination method using metrics selected in P.C. method and univariate analysis.  
For model prediction a test of multicollinearity is performed. The interpretation of 
model becomes difficult if multicollinearity is present. Let nXXX ,....., 21 be the 
covariates of the model predicted. P.C. method is applied on these variables to find 
maximum eigenvalue, emax and minimum eigenvalue, emin. The conditional number is 
defined as minmax/ ee=λ . If the value of the conditional number is 30 then 
multicollinearity is not tolerable [Belsley80].  

The following statistics are reported for each significant metric: 

• Odds Ratio: It is the probability of the event divided by the probability of the non-
event. The event in our study is having a fault and nonevent is probability of not 
having a fault.  

• Maximum Likelihood Estimation (MLE) and Coefficients (Ai's): MLE is a 
statistical method for estimating the coefficients of a model. The likelihood function 
(L) measures the probability of observing the set of dependent variable values (P1, 
P2… Pn).         .  

• The statistical significance (sig): It is the significance level of the coefficient, larger 
the statistical significance less is the estimated impact of the independent variables 
(OO metrics). In our study we used 0.05 as the significance threshold. 

• The R2 Statistic: It is the proportion of the variance in the dependent variable that is 
explained by the variance of the independent variables. The higher the effect of the 
model's explanatory variables implies better accuracy of the model.  

3. Performance Evaluation: The model is evaluated in following ways: 
• The sensitivity and specificity of the model is calculated to predict the correctness 

of the model. The percentage of classes correctly predicted to be fault prone is 
known as sensitivity of the model. Sensitivity can be formally defined as: 

 

100
pronefault actually  Classes

pronefault  as predictedcorrectly  Classes
S ×=enstivity   

(1)

The higher the sensitivity (% correct predictions), the better the model. The percentage of 
non-occurrences correctly predicted i.e. classes predicted not to be fault prone is called 
specificity of the model. 

Specificity can be formally defined as: 
 

100
pronefault not actually  Classes

pronefault  be not to predictedcorrectly  ClassesS ×=pecificity    (2) 

Ideally both the sensitivity and specificity should be high. A low 
sensitivity means that there are many low risk classes that are classified as 
faulty. Therefore, the organization would waste resource in focusing 
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additional testing effort on these classes. A low specificity means that there 
are many high risk classes that are classified as not faulty. Therefore, the 
organization would be passing high risk classes to customers. 

 
• To predict the accuracy of model it should be applied on different data sets. 

Therefore we performed k-cross validation of model [Stone74]. The data set is 
randomly divided into k subsets. Each time one of the k subsets is used as the test 
set and the other k-1 subsets are used to form a training set. Thus we get the fault 
proneness for all the k classes. 

4 ANALYSIS RESULTS 

This section presents the analysis results, following the procedure described in Section 3. 
P.C. analysis (Section 4.1), univariate analysis (Section 4.2) and multivariate analysis 
(Section 4.3) results are presented. 

Principal Component (P.C.) Method 

The coupling of system classes to system classes is counted separately from coupling of 
system classes to standard library classes. SL is suffixed with the metric name when coupling 
to standard library classes is counted. For instance CBO metric in such case is named as 
CBO_SL. The P.C. extraction method and varimax rotation method is applied on all metrics. 
The rotated component matrix is given in Table 2. The values above 0.7 (shown in bold in 
Table 2) are the metrics that are used to interpret the P.C.s. For each P.C., we also provide its 
eigenvalue, variance percent and cumulative percent. The interpretations of PCs are given as 
follows: 

• P1: CBO_SL, OCAIC_SL, OCMIC_SL, CBO1_SL and OMMIC_SL measure 
coupling from standard library classes.  

• P2: LCOM1, LCOM2, WMC and OCMIC. This dimension includes coupling, 
cohesion and size metrics.  This indicates that import coupling and cohesion metrics 
have correlation with size. 

• P3: OMMIC, RFC are coupling metrics. These metrics count import coupling from 
system classes through method invocations. 

• P4: AMMIC_SL, OCAIC are import coupling metrics. 
• P5: CBO, CBO1 are coupling metrics that count both import and export coupling. 
• P6: NOC is an inheritance metric that counts number of children of a class. 

Hence, we see that 5 out of 6 dimensions contain coupling metrics. Two dimensions P4 and 
P6 capture inheritance based coupling and inheritance metric. We also see that metrics 
capturing different properties are included in the same dimension P2. 

Univariate Logistic Regression (LR) Analysis 

In this subsection we find the relationship of independent variables (OO metrics) with 
dependent variable (fault proneness). Univariate LR analysis is done on 85 system classes. 
The table 3 provides the coefficient (B), standard error (SE), statistical significance (sig), R2 
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statistic and odds ratio (exp(B)), for each measure. Metrics with no variance or lower 
variance are excluded from the table. The metrics with a significant relationship to fault 
proneness, that is, below or at the significance (named as Sig. in Table 3) threshold of 0.05 
are shown in bold (see Table 3). The metrics that are not shown in bold do not have a 
significant relationship with fault proneness. 
 

P.C. P1 P2 P3 P4 P5 P6 
Cumulative % 32.608 44.97 56.010 63.676 70.424 75.603 

Variance% 32.608 12.3 11.03 7.665 6.748 5.1788 
Eigenvalue 6.84 2.59 2.31 1.60 1.41 1.08 

AMMIC_SL 0.04 -0.02 0.11 0.77 0.08 -0.14 
CBO 0.12 0.00 0.18 0.14 0.91 -0.05 

CBO_SL 0.80 0.15 0.07 0.37 0.12 0.16 
CBO1 0.03 -0.03 0.18 -0.11 0.94 -0.01 
DIT -0.25 -0.14 0.36 -0.29 -0.28 -0.25 

DIT_SL 0.15 -0.126 -0.13 0.51 -0.08 -0.08 
LCOM1 0.28 0.87 0.26 0.06 -0.07 0.01 
LCOM2 0.28 0.88 0.21 0.01 -0.08 0.00 

LOC 0.27 0.41 0.68 0.02 0.05 0.17 
WMC 0.35 0.74 0.49 0.16 0.01 0.17 
NOC 0.10 -0.07 0.17 -0.04 -0.08 0.80 

OCAEC 0.48 -0.00 -0.04 0.41 -0.09 -0.41 
OCAIC 0.10 0.19 0.08 0.74 0.04 0.39 

OCAIC_SL 0.91 0.15 0.00 -0.01 -0.02 -0.02 
OCMIC -0.04 0.79 -0.22 -0.17 0.11 -0.13 

OCMIC_SL 0.71 0.46 0.21 0.15 0.04 -0.01 
OCMEC 0.05 -0.45 0.25 -0.15 0.15 --0.02 
OMMEC 0.11 -0.09 0.66 -0.10 0.25 -0.20 
OMMIC 0.01 0.04 0.74 0.00 0.15 0.23 

CBO1_SL 0.80 0.15 0.07 0.37 0.12 0.16 
OMMIC_SL 0.82 0.09 0.38 -0.13 0.14 0.00 

RFC 0.20 0.34 0.76 0.15 0.07 0.17 
 

Table 2: Rotated Principal Component  

The following observations are made based on the results given in Table 3: 
• CBO and CBO1 metrics that count the both import and export coupling are related to 

fault proneness supporting hypotheses H1. Hence we reject the null hypothesis. 
• But metrics OMMEC, OCMEC and OCAEC are not strongly related to fault 

proneness i.e. for instance if a classA is coupled to classB this will not make classB 
fault prone. Similar results have been shown in [Braind00]. Hence null hypothesis is 
accepted for export coupling metrics and hypothesis H2 is rejected. 
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• LCOM1 and LCOM2 metrics show positive coefficients. This indicates that the 
probability of fault proneness increases as the cohesion of a class decreases. Thus we 
accept the hypotheses H3 and reject null hypothesis. 

• The results indicate that inheritance metric DIT measuring depth of inheritance tree is 
not related to fault proneness. This shows that student programmers give more 
attention to classes being inherited (i.e super classes) and follow a well-defined 
strategy. Hence null hypothesis is accepted for DIT metrics and hypothesis H4 is 
rejected. 

• Metric NOC counting number of children of a class is not related to fault proneness. 
Hence null hypothesis is accepted for NOC metric and hypothesis H5 is rejected. 

 

Metric B S.E. Sig. R2 Exp(B) 
CBO 0.8436 0.2802 0.0026 0.1206 2.3246 
CBO1 0.6180 0.2491 0.0131 0.077 1.8553 

CBO_SL 0.4696   0.1513 0.0019 0.112 1.5993 
CBO1_SL 0.4696   0.1513 0.0019 0.112 1.5993 
LCOM1 0.0612 0.0244 0.0121 0. 2155 0.0631 
LCOM2 0.0800 0.0347 0.0212 0.1982 1.0832 

DIT -0.7518 0.4279 0.0789 0.0344 0.4715 
NOC 0.3147 0.2666 0.2379 0.0172 1.3698 

DIT_SL -0.2760 0.7655 0.7185 0.0000 0.7588 
LOC 0.0100 0.0033 0.0025 0.273 1.0101 
RFC 0.1817 0.0410 0.0000 0.536 1.1993 

WMC 0.2466 0.0646 0.0001 0.375 1.2796 
OCAEC 0.0731 0.2552 0.7746 0.0000 1.0758 
OCAIC 0.9381 0.3594 0.0090 0.077 2.5552 
OCMEC 0.1956   0.2393 0.4138 0.0086 1.2160 
OCMIC 0.2065 0.4001 0.6058 0.0000 1.2293 
OMMEC 0.0358 0.0262 0.1721 0.0172 1.0364 
OMMIC 0.458 0.1121 0.000 0.362 1.5809 

OCAIC_SL 0.3240   0.1258 0.0100 0.0862 1.3827 
OCMIC_SL 0.3170   0.1129 0.0050 0.1206 1.3730 
OMMIC_SL 0.1754   0.0625 0.0050 0.1724 1.1917 
AMMIC_SL 3.2265   10.5891 0.7606 0.0431 25.1906 

 
Table 3: Univariate LR Analysis of Metrics 

• Size metric WMC is related to fault proneness and thus hypothesis H6 is accepted. 

Multivariate Logistic Regression (LR) Analysis 

In this section we predict model to identify the faulty classes. Metrics are pre selected using 
results from P.C. and univariate analysis using backward elimination method. The model 
includes an intercept referred to as constant. 

The model includes two coupling metrics OMMIC and RFC. One size metric WMC is 
also included in the model. OMMIC and RFC metrics were covered in dimension P3 and also 
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found strongly related to fault proneness in univariate analysis. WMC metric is captured in 
dimension P2. The summary of Model statistics is presented in Table 4. The conditional 
number is 46.1003453.0/781.3 = that does not indicate any problem.  

 
Variable    B     S.E.        Sig. 
OMMIC     0.5668 0.1662 0.0006 
WMC 0.3047 0.1140 0.0075 
RFC 0.1046 0.0433 0.0156 

Constant -4.6962 1.0297 0.0000 
-2 Log likelihood: 35.577 
R2 Statistic: 0.7 

 
Table 4: Model Statistics 

The model was applied to 85 system classes and accuracy of the model is presented in Table 
5. The R2 statistic and log likelihood of the model is fairly high. Out of 37 classes actually 
fault prone, 32 classes were predicted to be fault prone. The sensitivity of the model is 
86.49%. Similarly 45 out of 48 classes were predicted not to be fault prone. Thus specificity 
of the model is 93.75%. 
 

                                                 Predicted 

 Not Faulty Faulty 

 Po<=0.5 Po>0.5 

Not Faulty 45 3 

 

 

Observed 

Faulty 5 32 
 

Table 5: Predicted Correctness of Model  

5 MODEL EVALUATION 

The sensitivity and specificity of model predicted in previous section is quite high but it is 
somewhat optimistic since the model is applied on same data set from which it is derived 
from. To predict accuracy of model it should be applied on the different data sets. Thus we 
performed 9-cross validation of model following the procedure given in Section 3. For the 9-
cross validation, the classes were randomly divided into 9 parts of approximately equal (5 
partitions of 9 data points each and 4 partitions of 10 data points each). 
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                                            Predicted 

 Not Faulty  Faulty 

 Po<=0.5 Po>0.5 

Not Faulty 45 3 

 

 

Observed 

Faulty 7 30 
 

Table 6: Results of 9-cross validation of Model  

Table 6 shows that 30 out of 37 classes are correctly predicted to be fault prone. The 
sensitivity of the model is 81.89%. Similarly 45 out of 48 classes were predicted not to be 
fault prone. Thus specificity of the model is 93.75%. This shows that the model also predicts 
classes with similar data set other than from which it is derived from with high accuracy. 

6 THREATS TO VALIDITY 

The study has a number of limitations that are not unique to our study but are common with 
most of the empirical studies in the literature. However, it is necessary to repeat them here. 

The degree to which the results of our study can be generalized to other research settings 
is questionable. The reason is that the systems developed are small-sized. The developers are 
students and hence are not well trained as professional developers. 

In this study the severity of faults is not taken into account. There can be number of 
faults which can leave the system in various states e.g. a failure that is caused by a fault may 
lead to a system crash or an inability to open a file. The former failure is more severe than 
latter, thus the types of fault is not the same. The same limitation is also reported in 
[Emam99]. 

Though these results provide guidance for future research on the impact of OO metrics 
on fault proneness, further validations are needed with different systems to draw stronger 
conclusions. 

7 CONCLUSIONS 

We have conducted an empirical validation of twenty six metrics. The systems under study 
are medium sized systems written in Java and have a testing record including number of 
faults found in each class. In this study we first find the interrelationships among selected 
metrics and then found the individual and combined effect of selected metrics on fault 
proneness. 
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The number of dimensions captured in P.C. analysis is only 6, which are much lower 
than the number of metrics. This simply supports the fact that many of the metrics proposed 
are based on comparable ideas and therefore provide somewhat redundant information.  

The results of univariate LR analysis show that most of the import coupling and 
cohesion metrics are found related to fault proneness. On the other hand inheritance metrics 
were not found related to fault proneness.  

The results of multivariate LR analysis show that import coupling and size metrics 
measure fault proneness with high accuracy. As far as cohesion metrics are concerned they 
were found highly related to fault proneness in univariate LR analysis but none was found 
significantly related to fault proneness in multivariate LR analysis. The model has sensitivity 
86.5% and specificity above 90%. 

The metrics could not be evaluated over a large data set but this is a problem that has 
plagued much of empirical software engineering research. More similar type of studies must 
be carried out with different data sets to give generalized results across different 
organizations. We plan to replicate our study on large data set and industrial OO software 
system. We further plan to predict the models based on early analysis and design artifacts. 
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