
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 10, November-December 2007

Cite this article as follows: K.K Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,
“Investigating effect of Design Metrics on Fault Proneness in Object-Oriented Systems”, in Journal of
Object Technology, vol. 6, no. 10, November-December 2007, pp. 127-141
http://www.jot.fm/issues/issue_2007_10/article5/

Investigating effect of Design Metrics on
Fault Proneness in Object-Oriented
Systems

K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra
University School of Information Technology, Guru Gobind Singh Indraprastha
University, Kashmere Gate, Delhi 110006, India

Abstract
Demand for quality software has undergone with rapid growth during the last few years. This
is leading to an increase in the development of metrics for measuring the properties of
software such as coupling, cohesion or inheritance that can be used in early quality
assessments. Quality models that explore the relationship between these properties and
quality attributes such as fault proneness, maintainability, effort or productivity are needed to
use these metrics effectively. The goal of this work is to empirically explore the relationship
between object-oriented design metrics and fault proneness of object-oriented system
classes. The study used data collected from Java applications is containing 136 classes. We
use a set of twenty-six design metrics in our work. Result of this study shows that many
metrics are based on comparable ideas and provide redundant information. It is shown that
by using a subset of metrics in the prediction models can be built to identify the faulty
classes. The proposed model predicts faulty classes with more than 80% accuracy.
Keywords: Measurement, Metrics, Object-Oriented, Coupling, Cohesion, Inheritance,
Empirical Analysis.

1 INTRODUCTION

There are several metrics proposed in the literature for capturing the quality of Object-
Oriented (OO) design and code, for example, ([Aggarwal05]; [Braind98][Braind99];
[Bieman95]; [Cartwright00]; [Chidamber94][Chidamber91]; [Harrison98]; [Henderson96];
[Hitz00]; [Lake94]; [Li93]; [Lee95]; [Lorenz94]; [Tegarden95]). These metrics provide ways
to evaluate the quality of software and their use in earlier phases of software development can
help organizations in assessing large software development quickly, at a low cost [Braind99].
But how do we know which metrics are useful in capturing important quality attributes such
as fault-proneness, effort, productivity or amount of maintenance modifications. Empirical
studies of real systems can provide relevant answers. There have been few empirical studies
evaluating the effect of object-oriented metrics on software quality and constructing models
that utilize them in predicting quality attributes in the system, such as (Basili96]
[Binkley98]; [Braind00][Braind01]; [Cartwright00]; [Chidamber98]; [Emam99][Emam01];
[Gyimothy05]; [Harrison98]; [Li93]; [Ping02]).

More data based by empirical studies, which are capable of being verified by observation
or experiment are needed. The evidence gathered through these empirical studies is today

INVESTIGATING EFFECT OF DESIGN METRICS ON FAULT PRONENESS IN

OBJECT-ORIENTED SYSTEMS

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

considered to be the most powerful support possible for testing a given hypothesis. In this
paper, we empirically investigate and validate a set of OO metrics given by [Chidamber94]
[Chidamber91] and [Braind99]. These metrics are analyzed by 12 software projects
containing 136 classes. The study is divided into following parts:

(i) Principal component method of factor analysis is used to find whether all these
metrics are independent or are capturing same underlying property of the object
being measured.

(ii) Univariate logistic regression analysis is carried out to test the hypothesis that
size, coupling and inheritance increase fault proneness of a class whereas cohesion
increase decrease fault proneness of a class and find individual impact of metrics
on fault proneness.

(iii) Finally a model using multivariate logistic regression analysis for predicting fault
proneness of classes is given to predict which classes of a java application
released in future will be faulty.

The results show that though the number of OO metrics is large but the number of
dimensions actually found is much low. Further it was observed that import coupling (that
count the number of other classes called by a class) metrics are strongly associated with fault
proneness and predict faulty classes with high accuracy. Based on these results, it is
reasonable to claim that such a model could help for planning and executing testing by
focusing resources on fault prone parts of the design and code.

The paper is organized as follows: Section 2 summarizes the metrics studied, describes
sources from which data is collected and presents hypothesis to be tested in the study. Section
3 presents the research methodology followed in this paper. In section 4 the results of the
study are given. The model is evaluated in section 5. Limitations of the study are presented in
section 6 and conclusions of the work are presented in section 7.

2 RESEARCH BACKGROUND

In this section, we present the summary of metrics studied in this paper (Section 2.1),
empirical data collection (Section 2.2) and hypotheses to be tested in our work (Section 2.3).
Our focus in the study is metrics proposed by [Chidamber94][Chidamber91] and [Braind99].

Metrics Studied

The metrics of coupling, cohesion, inheritance and size are the independent variables used in
this study. Our focus is on OO metrics that are used as independent variables in a prediction
model that is usable at early stages of software development. The metrics selected in this
paper are summarized in Table 1. These metrics are explained with examples in
[Aggarwal05][Aggarwal06].

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 129

Metric Definition Sources

Coupling between
Objects (CBO)

CBO for a class is count of the number of other classes
to which it is coupled.

[Chidamber94]

Coupling between
Objects (CBO1)

Same as CBO, except that inheritance based coupling is
not counted.

[Chidamber91]

Lack of Cohesion
(LCOM1)

It counts number of null pairs of methods that do not
have common attributes.

[Chidamber91]

Lack of Cohesion
(LCOM2)

It measures the dissimilarity of methods in a class by
looking at the instance variable or attributes used by
methods.

[Chidamber94]

Number of
Children (NOC)

The NOC is the number of immediate subclasses of a
class in a hierarchy.

[Chidamber94]

Depth of
Inheritance (DIT)

The depth of a class within the inheritance hierarchy is
the maximum number of steps from the class node to
the root of the tree and is measured by the number of
ancestor classes.

[Chidamber94]

Weighted
Methods per
Class (WMC)

The WMC is a count of sum of complexities of all
methods in a class.

[Chidamber94]

Response for a
Class (RFC)

The response set of a class (RFC) is defined as set of
methods that can be potentially executed in response to
a message received by an object of that class.

[Chidamber94]

IFCAIC
ACAIC
OCAIC
FCAEC
DCAEC
OCAEC
IFCMIC
ACMIC
DCMIC
FCMEC
DCMEC
OCMEC
IFMMIC
AMMIC
OMMIC
FMMEC
DMMEC
OMMEC

These coupling metrics count number of interactions
between classes.
The metrics distinguish the relationship between the
classes (friendship, inheritance, none), different types
of interactions, and the locus of impact of the
interaction.
The acronyms for the metrics indicates what
interactions are counted:
• The first or first two characters indicate the type of
coupling relationship between classes (A: Ancestor, D:
Descendents, F: Friend classes, IF: Inverse Friends
(classes that declare a given class a as their friend), O:
Others, i.e., none of the above relationships).
• The next two characters indicate the type of
interaction:
CA: There is a Class-Attribute interaction if class x has
an attribute of type class y.
CM: There is a Class-Method interaction if class x
consist of a method that has parameter of type class y.
MM: There is a Method-Method interaction if class x
calls method of another class y, or class x has a method
of class y as a parameter.
• The last two characters indicate the locus of impact:

[Braind99]

INVESTIGATING EFFECT OF DESIGN METRICS ON FAULT PRONENESS IN

OBJECT-ORIENTED SYSTEMS

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

IC: Import coupling, counts the number of other classes
called by class x.
EC: Export coupling, count number of other classes
using class y.

Lines Of Code
(LOC)

It is the count of lines in the text of the source code
excluding comment lines

Table 1: Object-Oriented Metrics

Empirical Data Collection

To analyze the metrics chosen for this work, their values are computed for twelve different
systems. These systems are developed by undergraduate engineering students and Masters of
Computer Application students at School of Information Technology, of our University. The
systems were developed using Java programming language over duration of four months. The
aim was to teach the students system analysis and design techniques as part of their course
curriculum. All students had experience with Java language and thus they had basic
knowledge necessary for this study. The students were also taught about algorithmic detail

The students were divided into 12 teams of four students each. Each team developed a
medium-sized system such as flight reservation, chat server, proxy server etc. The
development process used was waterfall model. Documents were produced at each phase of
software development. Faults were reported to the developers. A separate group of students
having prior knowledge of system testing under the guidance of senior faculty were assigned
the task of testing systems according to test plans.

The following relevant data was collected:
1. The design and source code of the java programs
2. The faulty data found by the testing team.

The 12 systems under study consist of 136 classes (39 KLOC) out of which 85 are system
classes and 51 standard library classes available in java language. These classes contain
functions to manipulate files, strings, lists, hash tables, frames, windows, menus, threads,
socket connection etc.

All metric values are computed on system classes whereas coupling and inheritance
metrics are also calculated between ‘system classes’ and ‘standard library classes’. It was
observed during testing that the classes coupled with standard library classes were less fault
prone than those coupled with system classes. It was also noticed that a large number of
system classes inherited standard library classes. These classes did not need much testing as
compared to the system classes, which inherit some of other system classes. Thus, the values
of metrics for standard library classes are separately shown, as their effect on fault proneness
is different from system classes.

Hypotheses

We test the hypotheses given below to find our empirical consequences.
H1 (for import coupling metrics): A class with more import coupling than its peers is

more fault-prone as compared to them. (Null hypothesis: A class with more import coupling
than its peers is less fault-prone prone as compared to them).

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 131

H2 (for export coupling metrics): A class with more export coupling than its peers is
more fault-prone as compared to them. (Null hypothesis: A class with more export coupling
than its peers is less fault-prone as compared to them).

H3 (for cohesion metrics): A class with lower cohesion than its peers is more fault-
prone as compared to them. . (Null hypothesis: A class with lower cohesion than its peers is
less fault-prone as compared to them).

H4 (for DIT metric): A class located lower in a class inheritance hierarchy than its
peers is more fault-prone as compared to them. (Null hypothesis: A class located lower in a
class inheritance hierarchy than its peers is less fault-prone as compared to them.).

H5 (for NOC metric): A class with a larger number of descendants than its peers is
more fault-prone as compared to them. (Null hypothesis: A class with a larger number of
descendants than its peers is less fault-prone as compared to them).

H6 (for size metrics): A class with a larger size i.e. more information than its peers is
more fault-prone as compared to them. (Null hypothesis: A class with a larger size i.e. more
information than its peers is less fault-prone as compared to them).

3 RESEARCH METHODOLOGY

In this section, the procedure used to analyze the data collected for each measure is described
in following stages:

1. Principal-Component Method: Principal-Component Method (or P.C. method) is used
to maximize the sum of squared loadings of each factor extracted in turn. The P.C.
method aims at constructing new variable (Pi), called Principal Component (P.C.) out
of a given set of variables),....,2,1(' kjsXj = .
The variables with high loadings help identify the dimension P.C. is capturing, but
this usually requires some degree of interpretation. In order to identify these variables,
and interpret the P.C.s, we consider the rotated components. As the dimensions are
independent, orthogonal rotation is used. There are various strategies to perform such
rotation. We used the varimax rotation, which is the most frequently used strategy in
literature. Eigenvalue (or latent root) is associated with each P.C. It refers to the sum
of squared values of loadings relating to dimension, and then the sum is referred to as
eigenvalue. Eigenvalue indicates the relative importance of each dimension for the
particular set of variables being analyzed. In our study, the P.C.s with eigenvalue
greater than 1 is taken for interpretation [Kothari89].

2. Logistic Regression (LR) and model prediction: LR is the most widely used technique
[Hosmer89] in literature used to predict dependent variable from set of independent
variables (a detailed description is given by [Basili96] and [Hosmer89]). In our work
independent variable are OO metrics and dependent variable is fault proneness. LR is
of two types: (i) Univariate LR (ii) Multivariate LR
Univariate LR is a statistical method that formulates a mathematical model depicting
relationship among each independent variable and dependent variable. This technique
is used to test hypotheses given in Section 2.3.
Multivariate LR is used to construct a prediction model for the fault-proneness of
classes. In this method combination of metrics are used to determine the effect on
dependent variable.
In LR two stepwise selection methods forward selection and backward elimination are

INVESTIGATING EFFECT OF DESIGN METRICS ON FAULT PRONENESS IN

OBJECT-ORIENTED SYSTEMS

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

used [Hosmer89]. In forward stepwise procedure, stepwise variable entry examines
the variables in the block at each step for entry. The backward elimination method
includes all the independent variables in the model. Variables are deleted one at a
time from the model until a stopping criteria is fulfilled. We have used backward
elimination method using metrics selected in P.C. method and univariate analysis.
For model prediction a test of multicollinearity is performed. The interpretation of
model becomes difficult if multicollinearity is present. Let nXXX ,....., 21 be the
covariates of the model predicted. P.C. method is applied on these variables to find
maximum eigenvalue, emax and minimum eigenvalue, emin. The conditional number is
defined as minmax/ ee=λ . If the value of the conditional number is 30 then
multicollinearity is not tolerable [Belsley80].

The following statistics are reported for each significant metric:

• Odds Ratio: It is the probability of the event divided by the probability of the non-
event. The event in our study is having a fault and nonevent is probability of not
having a fault.

• Maximum Likelihood Estimation (MLE) and Coefficients (Ai's): MLE is a
statistical method for estimating the coefficients of a model. The likelihood function
(L) measures the probability of observing the set of dependent variable values (P1,
P2… Pn). .

• The statistical significance (sig): It is the significance level of the coefficient, larger
the statistical significance less is the estimated impact of the independent variables
(OO metrics). In our study we used 0.05 as the significance threshold.

• The R2 Statistic: It is the proportion of the variance in the dependent variable that is
explained by the variance of the independent variables. The higher the effect of the
model's explanatory variables implies better accuracy of the model.

3. Performance Evaluation: The model is evaluated in following ways:
• The sensitivity and specificity of the model is calculated to predict the correctness

of the model. The percentage of classes correctly predicted to be fault prone is
known as sensitivity of the model. Sensitivity can be formally defined as:

100
pronefault actually Classes

pronefault as predictedcorrectly Classes
S ×=enstivity

(1)

The higher the sensitivity (% correct predictions), the better the model. The percentage of
non-occurrences correctly predicted i.e. classes predicted not to be fault prone is called
specificity of the model.

Specificity can be formally defined as:

100
pronefault not actually Classes

pronefault be not to predictedcorrectly ClassesS ×=pecificity (2)

Ideally both the sensitivity and specificity should be high. A low
sensitivity means that there are many low risk classes that are classified as
faulty. Therefore, the organization would waste resource in focusing

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 133

additional testing effort on these classes. A low specificity means that there
are many high risk classes that are classified as not faulty. Therefore, the
organization would be passing high risk classes to customers.

• To predict the accuracy of model it should be applied on different data sets.

Therefore we performed k-cross validation of model [Stone74]. The data set is
randomly divided into k subsets. Each time one of the k subsets is used as the test
set and the other k-1 subsets are used to form a training set. Thus we get the fault
proneness for all the k classes.

4 ANALYSIS RESULTS

This section presents the analysis results, following the procedure described in Section 3.
P.C. analysis (Section 4.1), univariate analysis (Section 4.2) and multivariate analysis
(Section 4.3) results are presented.

Principal Component (P.C.) Method

The coupling of system classes to system classes is counted separately from coupling of
system classes to standard library classes. SL is suffixed with the metric name when coupling
to standard library classes is counted. For instance CBO metric in such case is named as
CBO_SL. The P.C. extraction method and varimax rotation method is applied on all metrics.
The rotated component matrix is given in Table 2. The values above 0.7 (shown in bold in
Table 2) are the metrics that are used to interpret the P.C.s. For each P.C., we also provide its
eigenvalue, variance percent and cumulative percent. The interpretations of PCs are given as
follows:

• P1: CBO_SL, OCAIC_SL, OCMIC_SL, CBO1_SL and OMMIC_SL measure
coupling from standard library classes.

• P2: LCOM1, LCOM2, WMC and OCMIC. This dimension includes coupling,
cohesion and size metrics. This indicates that import coupling and cohesion metrics
have correlation with size.

• P3: OMMIC, RFC are coupling metrics. These metrics count import coupling from
system classes through method invocations.

• P4: AMMIC_SL, OCAIC are import coupling metrics.
• P5: CBO, CBO1 are coupling metrics that count both import and export coupling.
• P6: NOC is an inheritance metric that counts number of children of a class.

Hence, we see that 5 out of 6 dimensions contain coupling metrics. Two dimensions P4 and
P6 capture inheritance based coupling and inheritance metric. We also see that metrics
capturing different properties are included in the same dimension P2.

Univariate Logistic Regression (LR) Analysis

In this subsection we find the relationship of independent variables (OO metrics) with
dependent variable (fault proneness). Univariate LR analysis is done on 85 system classes.
The table 3 provides the coefficient (B), standard error (SE), statistical significance (sig), R2

INVESTIGATING EFFECT OF DESIGN METRICS ON FAULT PRONENESS IN

OBJECT-ORIENTED SYSTEMS

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

statistic and odds ratio (exp(B)), for each measure. Metrics with no variance or lower
variance are excluded from the table. The metrics with a significant relationship to fault
proneness, that is, below or at the significance (named as Sig. in Table 3) threshold of 0.05
are shown in bold (see Table 3). The metrics that are not shown in bold do not have a
significant relationship with fault proneness.

P.C. P1 P2 P3 P4 P5 P6
Cumulative % 32.608 44.97 56.010 63.676 70.424 75.603

Variance% 32.608 12.3 11.03 7.665 6.748 5.1788
Eigenvalue 6.84 2.59 2.31 1.60 1.41 1.08

AMMIC_SL 0.04 -0.02 0.11 0.77 0.08 -0.14
CBO 0.12 0.00 0.18 0.14 0.91 -0.05

CBO_SL 0.80 0.15 0.07 0.37 0.12 0.16
CBO1 0.03 -0.03 0.18 -0.11 0.94 -0.01
DIT -0.25 -0.14 0.36 -0.29 -0.28 -0.25

DIT_SL 0.15 -0.126 -0.13 0.51 -0.08 -0.08
LCOM1 0.28 0.87 0.26 0.06 -0.07 0.01
LCOM2 0.28 0.88 0.21 0.01 -0.08 0.00

LOC 0.27 0.41 0.68 0.02 0.05 0.17
WMC 0.35 0.74 0.49 0.16 0.01 0.17
NOC 0.10 -0.07 0.17 -0.04 -0.08 0.80

OCAEC 0.48 -0.00 -0.04 0.41 -0.09 -0.41
OCAIC 0.10 0.19 0.08 0.74 0.04 0.39

OCAIC_SL 0.91 0.15 0.00 -0.01 -0.02 -0.02
OCMIC -0.04 0.79 -0.22 -0.17 0.11 -0.13

OCMIC_SL 0.71 0.46 0.21 0.15 0.04 -0.01
OCMEC 0.05 -0.45 0.25 -0.15 0.15 --0.02
OMMEC 0.11 -0.09 0.66 -0.10 0.25 -0.20
OMMIC 0.01 0.04 0.74 0.00 0.15 0.23

CBO1_SL 0.80 0.15 0.07 0.37 0.12 0.16
OMMIC_SL 0.82 0.09 0.38 -0.13 0.14 0.00

RFC 0.20 0.34 0.76 0.15 0.07 0.17

Table 2: Rotated Principal Component

The following observations are made based on the results given in Table 3:
• CBO and CBO1 metrics that count the both import and export coupling are related to

fault proneness supporting hypotheses H1. Hence we reject the null hypothesis.
• But metrics OMMEC, OCMEC and OCAEC are not strongly related to fault

proneness i.e. for instance if a classA is coupled to classB this will not make classB
fault prone. Similar results have been shown in [Braind00]. Hence null hypothesis is
accepted for export coupling metrics and hypothesis H2 is rejected.

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 135

• LCOM1 and LCOM2 metrics show positive coefficients. This indicates that the
probability of fault proneness increases as the cohesion of a class decreases. Thus we
accept the hypotheses H3 and reject null hypothesis.

• The results indicate that inheritance metric DIT measuring depth of inheritance tree is
not related to fault proneness. This shows that student programmers give more
attention to classes being inherited (i.e super classes) and follow a well-defined
strategy. Hence null hypothesis is accepted for DIT metrics and hypothesis H4 is
rejected.

• Metric NOC counting number of children of a class is not related to fault proneness.
Hence null hypothesis is accepted for NOC metric and hypothesis H5 is rejected.

Metric B S.E. Sig. R2 Exp(B)
CBO 0.8436 0.2802 0.0026 0.1206 2.3246
CBO1 0.6180 0.2491 0.0131 0.077 1.8553

CBO_SL 0.4696 0.1513 0.0019 0.112 1.5993
CBO1_SL 0.4696 0.1513 0.0019 0.112 1.5993
LCOM1 0.0612 0.0244 0.0121 0. 2155 0.0631
LCOM2 0.0800 0.0347 0.0212 0.1982 1.0832

DIT -0.7518 0.4279 0.0789 0.0344 0.4715
NOC 0.3147 0.2666 0.2379 0.0172 1.3698

DIT_SL -0.2760 0.7655 0.7185 0.0000 0.7588
LOC 0.0100 0.0033 0.0025 0.273 1.0101
RFC 0.1817 0.0410 0.0000 0.536 1.1993

WMC 0.2466 0.0646 0.0001 0.375 1.2796
OCAEC 0.0731 0.2552 0.7746 0.0000 1.0758
OCAIC 0.9381 0.3594 0.0090 0.077 2.5552
OCMEC 0.1956 0.2393 0.4138 0.0086 1.2160
OCMIC 0.2065 0.4001 0.6058 0.0000 1.2293
OMMEC 0.0358 0.0262 0.1721 0.0172 1.0364
OMMIC 0.458 0.1121 0.000 0.362 1.5809

OCAIC_SL 0.3240 0.1258 0.0100 0.0862 1.3827
OCMIC_SL 0.3170 0.1129 0.0050 0.1206 1.3730
OMMIC_SL 0.1754 0.0625 0.0050 0.1724 1.1917
AMMIC_SL 3.2265 10.5891 0.7606 0.0431 25.1906

Table 3: Univariate LR Analysis of Metrics

• Size metric WMC is related to fault proneness and thus hypothesis H6 is accepted.

Multivariate Logistic Regression (LR) Analysis

In this section we predict model to identify the faulty classes. Metrics are pre selected using
results from P.C. and univariate analysis using backward elimination method. The model
includes an intercept referred to as constant.

The model includes two coupling metrics OMMIC and RFC. One size metric WMC is
also included in the model. OMMIC and RFC metrics were covered in dimension P3 and also

INVESTIGATING EFFECT OF DESIGN METRICS ON FAULT PRONENESS IN

OBJECT-ORIENTED SYSTEMS

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

found strongly related to fault proneness in univariate analysis. WMC metric is captured in
dimension P2. The summary of Model statistics is presented in Table 4. The conditional
number is 46.1003453.0/781.3 = that does not indicate any problem.

Variable B S.E. Sig.
OMMIC 0.5668 0.1662 0.0006
WMC 0.3047 0.1140 0.0075
RFC 0.1046 0.0433 0.0156

Constant -4.6962 1.0297 0.0000
-2 Log likelihood: 35.577
R2 Statistic: 0.7

Table 4: Model Statistics

The model was applied to 85 system classes and accuracy of the model is presented in Table
5. The R2 statistic and log likelihood of the model is fairly high. Out of 37 classes actually
fault prone, 32 classes were predicted to be fault prone. The sensitivity of the model is
86.49%. Similarly 45 out of 48 classes were predicted not to be fault prone. Thus specificity
of the model is 93.75%.

 Predicted

 Not Faulty Faulty

 Po<=0.5 Po>0.5

Not Faulty 45 3

Observed

Faulty 5 32

Table 5: Predicted Correctness of Model

5 MODEL EVALUATION

The sensitivity and specificity of model predicted in previous section is quite high but it is
somewhat optimistic since the model is applied on same data set from which it is derived
from. To predict accuracy of model it should be applied on the different data sets. Thus we
performed 9-cross validation of model following the procedure given in Section 3. For the 9-
cross validation, the classes were randomly divided into 9 parts of approximately equal (5
partitions of 9 data points each and 4 partitions of 10 data points each).

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 137

 Predicted

 Not Faulty Faulty

 Po<=0.5 Po>0.5

Not Faulty 45 3

Observed

Faulty 7 30

Table 6: Results of 9-cross validation of Model

Table 6 shows that 30 out of 37 classes are correctly predicted to be fault prone. The
sensitivity of the model is 81.89%. Similarly 45 out of 48 classes were predicted not to be
fault prone. Thus specificity of the model is 93.75%. This shows that the model also predicts
classes with similar data set other than from which it is derived from with high accuracy.

6 THREATS TO VALIDITY

The study has a number of limitations that are not unique to our study but are common with
most of the empirical studies in the literature. However, it is necessary to repeat them here.

The degree to which the results of our study can be generalized to other research settings
is questionable. The reason is that the systems developed are small-sized. The developers are
students and hence are not well trained as professional developers.

In this study the severity of faults is not taken into account. There can be number of
faults which can leave the system in various states e.g. a failure that is caused by a fault may
lead to a system crash or an inability to open a file. The former failure is more severe than
latter, thus the types of fault is not the same. The same limitation is also reported in
[Emam99].

Though these results provide guidance for future research on the impact of OO metrics
on fault proneness, further validations are needed with different systems to draw stronger
conclusions.

7 CONCLUSIONS

We have conducted an empirical validation of twenty six metrics. The systems under study
are medium sized systems written in Java and have a testing record including number of
faults found in each class. In this study we first find the interrelationships among selected
metrics and then found the individual and combined effect of selected metrics on fault
proneness.

INVESTIGATING EFFECT OF DESIGN METRICS ON FAULT PRONENESS IN

OBJECT-ORIENTED SYSTEMS

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

The number of dimensions captured in P.C. analysis is only 6, which are much lower
than the number of metrics. This simply supports the fact that many of the metrics proposed
are based on comparable ideas and therefore provide somewhat redundant information.

The results of univariate LR analysis show that most of the import coupling and
cohesion metrics are found related to fault proneness. On the other hand inheritance metrics
were not found related to fault proneness.

The results of multivariate LR analysis show that import coupling and size metrics
measure fault proneness with high accuracy. As far as cohesion metrics are concerned they
were found highly related to fault proneness in univariate LR analysis but none was found
significantly related to fault proneness in multivariate LR analysis. The model has sensitivity
86.5% and specificity above 90%.

The metrics could not be evaluated over a large data set but this is a problem that has
plagued much of empirical software engineering research. More similar type of studies must
be carried out with different data sets to give generalized results across different
organizations. We plan to replicate our study on large data set and industrial OO software
system. We further plan to predict the models based on early analysis and design artifacts.

REFERENCES

[Binkley98] A.Binkley and S.Schach, “Validation of the Coupling Dependency Metric as a
risk Predictor”, International Conference on Software Engineering (ICSE), 452-
455, 1998.

[Lake94] A.Lake, C.Cook, “Use of factor analysis to develop OOP software complexity
metrics”, Proc. 6th Annual Oregon Workshop on Software Metrics, Silver Falls,
Oregon, 1994.

[Henderson96] B.Henderson-sellers, “Object-Oriented Metrics, Measures of Complexity”,
Prentice Hall, 1996.

[Kothari89] C.R.Kothari, “Research Methodology. Methods and Techniques”, New Age
International Limited.

[Belsley80] D.Belsley, E. Kuh, R. Welsch, “Regression Diagnostics: Identifying Influential
Data and Sources of Collinearity”, John Wiley & Sons, 1980.

[Hosmer89] D.Hosmer, S.Lemeshow, “Applied Logistic regression”, John Wiley and Sons,
1989.

[Tegarden95] D.Tegarden, S. Sheetz, D.Monarchi, “A Software Complexity Model of
Object- Oriented Systems”, Decision Support Systems, vol. 13 no.3-4, 241-262,
1995.

[Bieman95] J.Bieman, B.Kang, “Cohesion and Reuse in an Object-Oriented System”, Proc.
CM Symp. Software Reusability (SSR’94), 259-262, 1995.

[Emam99] K..El Emam, S. Benlarbi, N.Goel , S. Rai, “A Validation of Object-Oriented
Metrics”, Technical Report ERB-1063, National Research Council of Canada
(NRC), 1999.

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 139

[Emam01] K.El Emam, W. Melo, J. Machado, “The Prediction of Faulty Classes Using
Object-Oriented Design Metrics”, Journal of Systems and Software, vol. 56, 63-
75, 2001.

[Aggarwal05] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra, “Analysis of
Object-Oriented Metrics”, International Workshop on Software Measurement
(IWSM), Montréal, Canada , 2005.

[Aggarwal06] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra, “Empirical
Study of Object-Oriented Metrics”, Journal of Object-Technology, vol. 5, no. 8,
149-173, 2006.

[Aggarwal05] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra, “Software
Reuse Metrics for Object-Oriented Systems”, Third ACIS Int'l Conference on
Software Engineering Research, Management and Applications (SERA’05), IEEE
Computer Society, 48-55, 2005.

[Braind98] L.Briand, J.Daly and J. Wust, “A Unified Framework for Cohesion Measurement
in Object-Oriented Systems”, Empirical Software Engineering, 3, 65-117, 1998.

[Braind99] L.Briand , J.Daly and J. Wust, “A Unified Framework for Coupling
Measurement in Object-Oriented Systems”, IEEE Transactions on software
Engineering, vol. 25, 91-121, 1999.

[Braind00] L.Briand , J.Daly, V.Porter, J. Wust, “Exploring the relationships between design
measures and software quality”, Journal of Systems and Software, vol. 5, 245-
273, 2000.

[Braind01] L. Briand, J. Wüst, H. Lounis, “Replicated Case Studies for Investigating Quality
Factors in Object-Oriented Designs, Empirical Software Engineering: An
International Journal, vol 6, no 1, 11-58, 2001.

[Cartwright00] M.Cartwright, M.Shepperd, “An Empirical Investigation of an Object-
Oriented Software System”, IEEE Transactions of Software Engineering. vol.26,
Issue 8, 786 – 796, Aug. 2000.

[Hitz00] M.Hitz, B. Montazeri, “Measuring Coupling and Cohesion in Object-Oriented
Systems”, Proc. Int. Symposium on Applied Corporate Computing, Monterrey,
Mexico, 1995.

[Lorenz94] M.Lorenz, J.Kidd, “ Object-Oriented Software Metrics”, Prentice-Hall, 1994.

[Stone74] M.Stone, “Cross-validatory choice and assessment of statistical predictions”, J.
Royal Stat. Soc., 36, 111-147, 1974.

[Harrison98] R.Harrison, S.J.Counsell, R.V.Nithi, “An Evaluation of MOOD set of Object-
Oriented Software Metrics”, IEEE Trans. Software Engineering, vol. SE-24,
no.6, 491-496, 1998.

[Chidamber94] S.Chidamber and C.Kemerer, “A metrics Suite for Object-Oriented Design”,
IEEE Trans. Software Engineering, vol. SE-20, no.6, 476-493, 1994.

[Chidamber91] S.Chidamber, C. Kemerer, “Towards a Metrics Suite for Object Oriented
design”, Proc. Conference on Object-Oriented Programming: Systems,

INVESTIGATING EFFECT OF DESIGN METRICS ON FAULT PRONENESS IN

OBJECT-ORIENTED SYSTEMS

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

Languages and Applications (OOPSLA’91), Published in SIGPLAN Notices, vol
26 no. 11, 197-211, 1991.

[Chidamber98] S.Chidamber, D. Darcy, C. Kemerer, “Managerial use of Metrics for Object-
Oriented Software: An Exploratory Analysis”, IEEE Transactions on Software
Engineering, vol.24, no.8, 629-639, 1998.

[Gyimothy05] T.Gyimothy, R. Ferenc I. Siket, “Empirical validation of object-oriented
metrics on open source software for fault prediction”, IEEE Trans. Software
Engineering, vol. 31, Issue 10, 897 – 910, Oct. 2005.

[Basili96] V.Basili, L.Briand, W.Melo, “A Validation of Object-Oriented Design Metrics as
Quality Indicators”, IEEE Transactions on Software Engineering, vol. 22 no.10,
751-761, 1996.

[Li93] W.Li, S.Henry, “Object-Oriented Metrics that Predict Maintainability’, Journal of
Systems and Software, vol. 23, no.2, 111-122, 1993.

[Lee95] Y.Lee, B.Liang, S.Wu, F.Wang, “Measuring the Coupling and Cohesion of an
Object-Oriented program based on Information flow”, International Conference
on Software Quality, Maribor, Slovenia 1995.

[Ping02] Yu Ping, Ma Xiaoxing, Lu Jian “Predicting Fault-Proneness using OO Metrics: An
Industrial Case Study, CSMR 2002, Budapest, Hungary, 99-107.

About the authors

K. K. Aggarwal is vice chancellor at the Guru Gobind Singh Indraprastha
University, India. He received his doctorate from Kurushetra University. He
was president of the Institution of Electronics and Telecommunication
Engineers (IETE) from 2002 through 2004. Recently he was awarded
“Delhi Ratan Bhuddhijeevi Samman” by the All India Conference of
Intellectuals (AICI). Prof. Aggarwal has written few books and many of his

articles have appeared in several books published by IEEE of USA. He is coauthor of a book
on software engineering and has published more than 300 publications in national and
international journals and conferences. He can be reached by e-mail at kka@ipu.edu.

Yogesh Singh is a professor with the University School of Information
Technology, Guru Gobind Singh Indraprastha University, Kashmere Gate,
India. He is also controller of examination with Guru Gobind Singh
Indraprastha University, Kashmere Gate, India. He received his master’s
degree and doctorate from the National Institute of Technology,
Kurukshetra. His area of research is Software Engineering focusing on

Planning, Testing, Metrics and Neural Networks. He is coauthor of a book on software
engineering, and is a Fellow of IETE and member of IEEE. He has more than 150
publications in international and national journals and conferences. Singh can be contacted by
e-mail at ys66@rediffmail.com.

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 141

Arvinder Kaur is a Reader with the University School of Information
Technology. She obtained her doctorate from Guru Gobind Singh
Indraprastha University and her master’s degree in computer science from
Thapar Institute of Engg. and Tech. Her research interests include software
engineering, object-oriented software engineering, software metrics,
microprocessors, and operating systems. She is also a lifetime member of

ISTE and CSI. Kaur has published more than 30 research papers in national and international
journals and conferences. Her paper titled “Analysis of object oriented Metrics” was
published as a chapter in the book Innovations in Software Measurement (Shaker -Verlag,
Aachen 2005). She can be reached by e-mail at arvinderkaurtakkar@yahoo.com.

Ruchika Malhotra is a research scholar with the University School of
Information Technology, Guru Gobind Singh Indraprastha University,
India. She received her master’s degree in software engineering from the
University School of Information Technology, Guru Gobind Singh
Indraprastha University, India. Her research interests are in improving
software quality, statistical and adaptive prediction models for software

metrics, neural nets modeling, and the definition and validation of software metrics. She has
more than 10 publications in international journals and conferences. Her paper titled
“Analysis of object oriented Metrics” was published as a chapter in the book Innovations in
Software Measurement (Shaker -Verlag, Aachen 2005). She can be contacted by e-mail at
ruchikamalhotra2004@yahoo.com.

