
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 10, November-December 2007

Cite this article as follows: Jing Dong, Sheng Yang, Yongtao Sun: “A Classification of Design
Pattern Evolutions”, in Journal of Object Technology, vol. 6, no. 10, November – December
2007, pp. 95-109 http://www.jot.fm/issues/issue_2007_10/article3/

A Classification of Design Pattern
Evolutions

Jing Dong, Department of Computer Science, University of Texas at Dallas
Sheng Yang, Department of Computer Science, University of Texas at
Dallas
Yongtao Sun, Information Technology Service, American Airlines

Abstract
Design for change is one of the important themes of design patterns. Each
design pattern normally embeds some specific ways for future changes.
Currently, such evolution information is typically documented in each design
pattern implicitly. In this paper, we classify design pattern evolutions into two
levels: the primitive-level and pattern-level evolutions. Each pattern-level
evolution is represented by several primitive-level evolutions. In this way, we
can describe the possible changes of each design pattern in terms of a
number of pattern-level evolutions.

1 INTRODUCTION

Software systems are generally not fixed and may evolve over time because of
constant changes of user requirements, platforms, technologies and environments.
Unlike other engineering products, such as automobiles and electronic devices,
software systems are normally more amenable to changes. It can be a disaster if a
single change may cause huge impact in the software systems. It is important to
localize the changes such that minimum efforts are needed. This requires the initial
designers of a software system to be aware of potential changes. Thus, the resulting
software systems are flexible and agile to future evolutions.

Designing a software system is hard. Designing a changeable software system is
even harder. Design patterns [8] capture expert design experience by partitioning
software designs into stable part and changeable part. By separating and encapsulating
both parts, the change impact of a software design can be minimized. One of the
important goals of design patterns is design for change. Thus, most of design patterns
encapsulate future changes that may only affect limited part of a design pattern. This
evolution process can be achieved by adding or removing design elements in existing
design patterns. In the document of each design pattern, however, the evolution
information is generally not explicitly specified. When changes are needed, a designer
has to read between the lines of the document of a design pattern to figure out the
correct ways of changing the design. More importantly, the evolution process of a

A CLASSIFICATION OF DESIGN PATTERN EOVOLUTIONS

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

design pattern may involve the addition or removal of several parts of a design
pattern. Misunderstanding of a design pattern may result in missing parts of the
evolution process. The addition and removal of system parts should not violate the
constraints and properties of design patterns. Thus, it is important to have, in the
documentation of the design pattern, information about the evolution of the patterns.
The evolution of a software system at the design level is less costly than it is at the
implementation level.

In this paper, we explicitly capture the evolution information of each design
pattern in two levels: the primitive level and the pattern level. The primitive-level
evolutions are the addition or removal of modeling elements, such as classes and
relationships. The pattern-level evolutions characterize the recurring evolutions of
design patterns based on the primitive-level evolutions. Thus, this classification
allows us to describe the evolution process of each design pattern in terms of a
number of pre-defined pattern-level evolutions. In this way, designers no longer need
to extract the implicit evolution information from pattern document. Both levels of
evolution processes are also amendable for automation with tool support.

The reminder of this paper is organized as follows: the next section presents an
example to motivate our approach. Section 3 describes the primitive-level and pattern-
level evolutions. The last two sections are related work and conclusions.

2 MOTIVATING EXAMPLE

In this section, we use an example to present the motivation of our approach. Let us
consider an example of the Abstract Factory pattern as shown in Figure 1. It originally
includes two concrete factories: ConcreteFactory1 and ConcreteFactory2. These two
concrete factories may create two families of concrete products. Thus, there are two
create operations in each concrete factory class: createProductA and createProductB.
The createProductA operation is used to create the ProductA family, whereas the
createProductB operation is for the ProductB family. In particular, the createProductA
and createProductB operations in the ConcreteFactory1 class are used to create the
ProductA1 and ProductB1, respectively. Similarly, these two operations in the
ConcreteFactory2 class are for ProductA2 and ProductB2, respectively.

In the Abstract Factory pattern, there are two possible ways to evolve the design.
One way is to add a different kind of concrete product in each product family. For
example, we may add the ProductA3 and ProductB3 classes in the ProductA and
ProductB families, respectively. The other way is to put in a new product family:
ProductC. Both ways of changes have some impact on the factory class hierarchy. The
first way of evolution may require the addition of a new concrete factory class
(ConcreteFactory3), whereas the second way may result in the insertion of a new
create operation (createProductC) in each of the existing concrete factories. Both
changes are shown in Figure 2 and Figure 3, respectively.

In current document of design patterns, unfortunately, such evolution
information is not explicitly specified. Thus, the designers may not immediately
identify, e.g., the two possible ways of evolutions in the Abstract Factory pattern.
Even though the designers may know the two possible ways of changes, they still can
make mistakes since the changes of factories and products are correlated, especially
when the Abstract Factory pattern is applied in a large software design with many

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 97

classes. Such correlated changes may be mis-conducted. In the following sections, we
introduce a solution to this problem in terms of two-level evolutions: primitive level
and pattern level. As a result, the evolution processes of each design pattern can be
classified in terms of a number of pattern-level evolutions.

ConcreteFactory1
createProductA()
createProductB()

ProductA1 ProductA2

AbstractProductA

AbstractFactory

ConcreteFactory2
createProductA()
createProductB()

AbstractProductB

ProductB1 ProductB2

Figure 1 Abstract Factory Pattern with Two Kinds of Products Created by Two Concrete Factories

AbstractProductA

ConcreteFactory1
createProductA()
createProductB()

ProductA1 ProductA2

AbstractFactory

ConcreteFactory2
createProductA()
createProductB()

AbstractProductB

ProductB1 ProductB2

ConcreteFactory3
createProductA()
createProductB()

ProductA3 ProductB3

Figure 2 Abstract Factory Pattern with Three Kinds of Concrete Products Created by Three Concrete

Factories

A CLASSIFICATION OF DESIGN PATTERN EOVOLUTIONS

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

ConcreteFactory1
createProductA()
createProductB()
createProductC()

ProductA1 ProductA2

AbstractProductA

AbstractFactory

ConcreteFactory2
createProductA()
createProductB()
createProductC()

AbstractProductB

ProductB1 ProductB2

AbstractProductC

ProductC1 ProductC2

Figure 3 Abstract Factory Pattern with Three Kinds of Products Created by Two Concrete Factories

Model Elements Parameter List Descriptions
Class className Add or remove a class with name “className” into a

pattern
Attribute attributeName, className,

type, accessibility
Add or remove an attribute with name
“attributeName”, type of “type”, accessibility of
“accessibility” into the class “className”

Operation operationName, className,
returnType, accessibility,
para1, paraType1…

Add or remove an operation with name
“operationName”, type of “type”, accessibility of
“accessibility”, and arguments list para1 with type
“paraType1” into the class “className”

Association className1, className2 Add or remove an association between classes
“className1” and “className2” into a pattern

Generalization child, parent Add or remove a generalization relationship into a
pattern, with subclass “child” and superclass “parent”

Aggregation part, whole Add or remove an aggregation relationship into a
pattern, “part” class is a part of “whole” class

Composition part, whole Add or remove a composition relationship into a
pattern, “part” class is a part of “whole” class

Realization fromName, toName Add or remove a realization relationship from class
“fromName” to class “toName” into a pattern

Dependency fromName, toName Add or remove a dependency relationship from class
“fromName” to class “toName” into a pattern

Table 1 Primitive-Level Evolutions

3 CLASSIFICATION OF DESIGN PATTERN EVOLUTIONS

In this section, we investigate different kinds of evolutions in design patterns and
provide a classification of these evolutions. We describe these evolutions in terms of
two-level evolutions: the primitive-level evolution and the pattern-level evolution.

The primitive-level evolution describes the basic transformations that can be
performed during the evolution process of a design pattern. These basic
transformations include the addition or removal of a modeling element, such as class,
operation, attribute, association, generalization, aggregation, composition, realization,

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 99

and dependency. These basic transformations become the building blocks of the
pattern-level evolution.

The pattern-level evolution characterizes the recurring evolution processes
which occur in many design patterns. It is described in terms of a sequence of the
basic transformations. Each design pattern may perform some of the pattern-level
evolutions, which can be added in the document of the pattern. Thus, the designer
may choose a potential pattern-level evolution and apply the corresponding
transformations when changes are required.

Primitive-Level Evolutions

We identify nine modeling elements that can be added or deleted as the basic
transformations in the pattern evolution processes. The general format of adding a
modeling element is Add (ME (PL)). The model elements (ME) and the parameter list
(PL) are shown in Table 1. For example, adding a class named “Leaf” can be
specified: Add (Class (Leaf)). Similarly, the removal of a modeling element can be
specified: Delete (ME (PL)). The replacement of a model element with another is
conducted by first removing the modeling element and then adding a new modeling
element. It can be defined: Delete (ME1 (PL1)) + Add (ME2 (PL2)).

Pattern-Level Evolutions

In this section, we characterize five pattern-level evolutions which are recurring in
different design patterns. Each design pattern may encapsulate some of the pattern-
level evolutions, which can be explicitly documented in the descriptions of the
pattern. Thus, a designer can simply follow the prescribed evolution processes when
the corresponding changes are needed. Note that we do not claim this is a complete
list of all possible pattern-level evolutions. Nevertheless, new pattern-level evolutions
can be easily added into the list specified by the primitive-level evolutions.

The first pattern-level evolution is called independent change which is a simple
addition or removal of one independent class and the corresponding relationships
between this class and the classes in the original pattern. This class is independent in
the sense that the addition or removal of the class does not cause any effects on the
existing classes of the design. This kind of pattern-level evolution can be expressed in
the primitive level evolutions as follows1:

where className is the name of the class which is added into the pattern.
Relationship includes association, generalization, aggregation, composition,
realization, and dependency. The existingClassName is the name of the class from the
original pattern. There may be multiple relationships added into the pattern with the
addition of a class.

This kind of evolution appears in several design patterns as, for example, in the
Mediator and Facade patterns. Figure 4 is the class diagram of the Mediator pattern

1 Since the addition and removal have the same format and the only difference is the transformation
names (Add and Delete), we omit the evolutions of removing modeling elements.

Add (Class (className)) +
Add (Relationship (className, existingClassName))

A CLASSIFICATION OF DESIGN PATTERN EOVOLUTIONS

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

describing a possible application containing two ConcreteColleague classes. A
potential evolution of this pattern application is to add a new ConcreteColleague class,
which can be defined as the following transformation in terms of the primitive-level
evolutions:

Add (Class (ConcreteColleague)) +
Add (Generalization (ConcreteColleague, Colleague)) +
Add (Dependency (ConcreteMediator, ConcreteColleague))

where a new ConcreteColleague class is added with two new relationships:
generalization and dependency. The generalization relationship is with the Colleague
class. The dependency relationship is on the ConcreteMediator class. The result of
this evolution is shown in Figure 5.

ColleagueMediator

ConcreteColleague1

ConcreteMediator
ConcreteColleague2

Figure 4 Mediator Pattern with Two Concrete Colleagues

ColleagueMediator

ConcreteColleague1

ConcreteColleague2ConcreteMediator

ConcreteColleague3

Figure 5 Mediator Pattern with Three Concrete Colleagues

The second pattern-level evolution is called packaged change which is the addition or
removal of one independent class and the corresponding relationships between this
class and the classes in the original pattern. In addition, certain attributes and/or
operations of this class are added and removed accordingly. This kind of pattern-level
evolution can be expressed in the primitive level evolutions as follows:

Add (Class (className)) +
Add (Relationship (className, existingClassName)) +
Add (Attribute (attributeName, className, type, accessibility)) +
Add (Operation (operationName, className, returnType, accessibility,…))

where className is the name of the class which is added into the pattern.
Relationship includes association, generalization, aggregation, composition,

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 101

realization, and dependency. The existingClassName is the name of the class from the
original pattern. The attributeName is the name of the attribute of the class to be
added whereas the operationName is the name of the operation of the class. There
may be multiple relationships, attributes and/or operations added into the pattern with
the addition of a class.

This kind of evolution can be found in several design patterns as, for example, in
the Composite, Bridge, State, Strategy, Chain of Responsibility, and Observer
patterns. Figure 6 is the class diagram of the Observer pattern describing a possible
application containing one ConcreteSubject and two ConcreteObserver classes. A
potential evolution of this pattern application is to add a new ConcreteObserver class
(ConcreteObserver3) with its attributes (s1 and s2) as shown in Figure 7, which can be
defined as the following transformation in terms of the primitive-level evolutions:

Add (Class (ConcreteObserver3)) +
Add (Generalization (ConcreteObserver3, Observer)) +
Add (Attribute (s1, ConcreteObserver3, Undefined, private)) +
Add (Attribute (s2, ConcreteObserver3, Undefined, private))

where a new concrete observer (ConcreteObserver3) is added with a generalization
relationship between this new class and the Observer class. Two attributes (s1 and s2)
of this new class are also added accordingly, where “Undefined” refers to the
unknown types of these two attributes.

ConcreteSubject
s1
s2

ConcreteObserver1
s1
s2

ConcreteObserver2
s1
s2

ObserverSubject

Figure 6 Observer Pattern with Two Concrete Observers

ConcreteSubject
s1
s2

ConcreteObserver1
s1
s2

ConcreteObserver2
s1
s2

Subject Observer

ConcreteObserver3
s1
s2

Figure 7 Observer Pattern with Three Concrete Observers

A CLASSIFICATION OF DESIGN PATTERN EOVOLUTIONS

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

ConcreteSubject
s1
s2
s3

ConcreteObserver1
s1
s2
s3

ConcreteObserver2
s1
s2
s3

ObserverSubject

Figure 8 Observer Pattern with Three Attributes

The third kind of pattern-level evolution is called class group change which is the
addition or removal of one attribute/operation in several different classes consistently.
In this case, a certain set of classes, instead of a single class, are affected by the
addition or removal of the attribute or operation. This kind of pattern-level evolution
can be expressed in the primitive level evolutions as follows:

where attributeName is the name of the attribute of the adding class named
classNamei whereas operationName is the name of the operation of the adding class
named classNamej. There may be multiple relationships, attributes and/or operations
added into the pattern with the addition of a class.

This kind of evolution is common in several design patterns as, for example, in
the Decorator and Observer patterns. Figure 6, for instance, shows an application of
the Observer pattern with one ConcreteSubject and two ConcreteObserver classes.
One potential evolution is to add one attribute called s3 as a new data to be observed
by the observers. Thus, this attribute needs to be added in all ConcreteSubject and
ConcreteObserver classes, which can be defined as the following transformation in
terms of the primitive-level evolutions:

Add (Attribute(s3, ConcreteSubject, Undefined, private)) +
Add (Attribute(s3, ConcreteObserver1, Undefined, private)) +
Add (Attribute(s3, ConcreteObserver2, Undefined, private))

which indicates the attribute s3 is added into the ConcreteSubject,
ConcreteObserver1, and ConcreteObserver2 classes. The resulting class diagram of
this evolution is shown in Figure 8.

The fourth kind of pattern-level evolution is called correlated classes change
which is the addition or removal of a group of correlated classes. When certain classes
are added or removed, some other classes have to be added or removed accordingly.
These correspondence relations are important since missing transformations may
cause inconsistency. In addition, the corresponding relationships between this group
of classes and other classes are added or removed. The attributes and operations of
this group of classes are also added or removed. The addition or removal of this group

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 103

of classes may not affect the internal of other classes in the original design pattern
applications. This kind of pattern-level evolution can be expressed in the primitive
level evolutions as follows:

∑ Add (Operation(operationNamei, classNamej, returnTypei, accessibilityi,…))

∑ Add (Attribute(attributeNamei, classNamej, typei, accessibilityi)) +

i
∑ Add (Class(classNamei)) +

∑ Add (Relationship (classNamei, classNamej)) +i,j

i,j

i,j

where Class(classNamei) refers to the ith class is added with the name of classNamei.
Similarly, relationships are also added between the classes classNamei and
classNamej. The attributeNamei is the name of the ith attribute of the adding class
named classNamej whereas operationNamei is the name of the ith operation of the
added class named classNamej. There may be multiple relationship, attributes and/or
operations added into the pattern with the addition of a class.

This kind of evolution can be seen in several design patterns as, for example, in
the Builder, Factory Method, Command, Interpretor, Iterator, Visitor, Abstract
Factory patterns. Figure 1 shows an application of the Abstract Factory pattern with
two kinds of products (AbstractProductA and AbstractProductB). Each kind of
products has two concrete products: ProductA1/ProductB1 and ProductA2/ProductB2,
respectively. Thus, there are two concrete factories: ConcreteFactory1 and
ConcreteFactory2. A potential evolution can be the addition of a new kind of concrete
products (ProductA3 and ProductB3). This requires the addition of a new concrete
factory (ConcreteFactory3) to create the corresponding newly added concrete
products. This new concrete factory class also has the same operations
(createProductA and createProductB) as the other two concrete factory classes as
shown in Figure 2. This evolution can be defined in terms of the primitive-level
transformations as follows:

Add (Class (ConcreteFactory3)) +
Add (Class (ProductA3)) +
Add (Class (ProductB3)) +
Add (Generalization (ProductA3, AbstractProductA)) +
Add (Generalization (ProductB3, AbstractProductB)) +
Add (Generalization (ConcreteFactory3,AbstractFactory)) +
Add (Realization (ConcreteFactory3, ProductA3)) +
Add (Realization (ConcreteFactory3, ProductB3)) +
Add (Operation (createProductA, ConcreteFactory3, null, public)) +
Add (Operation (createProductB, ConcreteFactory3, null, public))

which indicates that three classes, ConcreteFacotory3, ProductA3, and ProductB3 are
added into the pattern application. ProductA3 and ProductB3 are subclasses of
AbstractProductA and AbstractProductB, respectively. ConcreteFacotory3 is a
subclass of AbstractFactory. The realization relationships are also added between the

A CLASSIFICATION OF DESIGN PATTERN EOVOLUTIONS

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

ConcreteFactory3 and ProductA3/ProductB3 classes. These relationships show that
ConcreteFactory3 creates ProductA3 and ProductB3. The createProductA() and
createProductB() operations are added into the ConcreteFactory3 classes.

The fifth kind of pattern-level evolution is called correlated attributes/operations
change which is the addition or removal of a group of classes. This change also
requires the addition or removal of some attributes or operations in the classes of the
original pattern applications.

The expression of this kind of pattern-level evolution is the same as the fourth
kind pattern-level evolution as follows:

∑ Add (Operation(operationNamei, classNamej, returnTypei, accessibilityi,…))

∑ Add (Attribute(attributeNamei, classNamej, typei, accessibilityi)) +

i
∑ Add (Class(classNamei)) +

∑ Add (Relationship (classNamei, classNamej)) +i,j

i,j

i,j

Nevertheless, they have different semantic meaning. In the fourth kind of pattern-level
evolution, the classNamej in the “Add” attributes and operations transformations only
includes those classes which are newly added into the pattern. In the fifth kind of
pattern-level evolution, in contrast, classNamej includes the newly added classes as
well as the existing classes, i.e., the addition of a group of classes results in the
addition of the attributes and operations of the existing classes in original pattern.

This kind of evolution can be seen in several design patterns as, for example, in
the Abstract Factory and Adapter patterns. For the same example shown in Figure 1,
another potential evolution can be the addition of a new kind of product
(AbstractProductC with ProductC1 and ProductC2). This requires the addition of the
createProductC operation in all concrete factory classes (ConcreteFactory1 and
ConcreteFactory2). The corresponding generalization and realization relationships are
also added as shown in Figure 3. This evolution can be defined in terms of the
primitive-level evolutions as follows:

Add (Class (AbstractProductC)) +
Add (Class (ProductC1)) +
Add (Class (ProductC2)) +
Add (Generalization (ProductC1, AbstractProductC)) +
Add (Generalization (ProductC2, AbstractProductC)) +
Add (Realization (ConcreteFactory1, ProductC1)) +
Add (Realization (ConcreteFactory2, ProductC2)) +
Add (Operation (createProductC, ConcreteFactory1, null, public)) +
Add (Operation (createProductC, ConcreteFactory2, null, public))

which indicates that three classes, AbstractProductC, ProductC1, and ProductC2 are
added into the pattern application. ProductC1 and ProductC2 are subclasses of
AbstractProductC. The createProductC() operation is added into both
ConcreteFactory1 and ConcreteFactory2 classes. The realization relationships are also

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 105

added between the ConcreteFactory1 and ProductC1 classes and between the
ConcreteFactory2 and ProductC2 classes, respectively. These relationships show that
ConcreteFactory1 and ConcreteFactory2 create ProductC1 and ProductC2,
respectively.

All five kinds of pattern-level evolutions are summarized in Table 2.

Evolution Names Description
1 Independent Addition or removal of one independent class and the corresponding

relationships between this class and the classes in the original pattern.
2 Packaged Addition or removal of one independent class with attributes and/or operations

and the corresponding relationships between this class and the classes in the
original pattern.

3 Class group Addition or removal of one attribute/operation in several different classes
consistently.

4 Correlated classes Addition or removal of a group of correlated classes.
5 Correlated

attributes/operations
Addition or removal of a group of classes and addition or removal of some
attributes or operations in the classes of the original pattern applications.

Table 2 Pattern Level Evolutions

Design Pattern Name Pattern-Level Evolutions
Abstract Factory 4,5
Builder 4,5
Factory Method 4
Prototype 2
Singleton N/A
Adapter 4,5
Bridge 2
Composite 2
Decorator 2,3
Façade 1
Flyweight 2
Proxy 4
Chain of Responsibility 2
Command 4
Interpreter 2
Iterator 4
Mediator 1
Memento 3
Observer 2,3
State 2
Strategy 2
Template Method 2,3
Visitor 2,5

Table 3 Evolutions of GoF Design Patterns

Categorization of Design Pattern Evolutions

We studied the types of pattern evolutions of the design patterns listed in [8]. The
result is shown in Table 3. For each design pattern, all possible evolution types of the
design pattern are listed in the “Pattern-Level Evolutions” column. Consider the

A CLASSIFICATION OF DESIGN PATTERN EOVOLUTIONS

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

Abstract Factory pattern, for instance, one possible evolution is shown in Figure 2,
which is classified as the fourth type of pattern-level evolution (correlated classes in
Table 2). In this type of evolution, the addition of a new set of concrete products
(ProductA3 and ProductB3) results in the addition of ConcreteFactory3 class. The
other possible evolution is the fifth type (correlated attributes/operations) of pattern-
level evolution as, for example, depicted in Figure 3. The addition of a new set of
concrete products (ProductC1 and ProductC2) results in the addition of
AbstractProductC class and the addition of operation (createProductC()) in the
existing classes, ConcreteFactory1 and ConcreteFactory2. Thus, the Abstract Factory
pattern may have the fourth and fifth types of possible pattern-level evolutions. Since
the application of the Singleton pattern is not typically intended to evolve, it is labeled
“N/A”.

4 RELATED WORK

The evolution processes of design patterns have been studied in [1], where Prolog [4]
is used to capture the structural evolution processes of design patterns. The structural
aspect of a design pattern is described in terms of Prolog facts. Thus, the evolution
and change of a design pattern application can be achieved by the addition or removal
of new or old Prolog facts. The evolution processes are defined as Prolog rules. In this
paper, we further characterize two-level pattern evolutions.

Design pattern evolutions in software development processes are also discussed
in [9], where software development processes are considered as the evolutions of
analysis of design patterns. The evolution rules are specified in Java-like operations to
change the structure of patterns. Although some primitive-level evolution rules are
introduced, there is no discussion on pattern-level evolution rules.

Noda et al. [10] consider design patterns as a concern that is separated from the
application core concern. Thus, an application class may assume a role in a design
pattern by weaving the design pattern concern into the application class using Hyper/J
[11]. Due to the separation of concerns, an application class may assume different
roles in different design patterns. The change of roles that an application class plays,
i.e., the change of design patterns, becomes a relative simple task. The main goal of
their evolution of design pattern is the replacement of one pattern by another. In
contrast, our design pattern evolution refers to the internal changes of a design pattern
application. In addition, the practical application of their approach is left as a mystery.

Improving software system quality by applying design patterns in existing
systems has been discussed in [3]. When the user selects a design pattern to be applied
in a chosen location of a system, automated application is supported by applying
transformations corresponding to the mini-patterns. The main goal of their software
evolution is to apply design patterns in existing systems, whereas our evolution goal is
to change the design patterns that have already applied in a system.

5 CONCLUSIONS

Currently, the evolution information of each design pattern is generally implicit in the
descriptions of the pattern. A designer has to dig into the pattern descriptions and try

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 107

to understand the particular ways of evolutions encapsulated in the design patterns.
There are several problems when the evolution information is implicit: first, it is hard
for the designer to take advantage of the benefits of using a design pattern when
changes are needed. Second, the evolution of a design pattern generally involves
several classes and relationships. Missing one part may cause inconsistencies and
errors in the design which are difficult to find and correct. Third, the evolution
processes are not reusable if not documented. As discussed previously, many of the
evolution processes recurs in different patterns.

In this paper, we characterize two-level evolutions: the primitive level and the
pattern level and explicitly describe the evolution of design patterns using these two-
level evolutions. This classification not only provides explicit documentation of
design pattern evolutions, but also opens the door for automation of these evolution
processes. We may consider the primitive-level and pattern-level evolutions as model
transformations in the Model Driven Architecture (MDA) [12]. Thus, we may
provide techniques and tools for automating the pattern evolution processes as model
transformation.

Design patterns are usually represented in the Unified Modeling Language
(UML) [2] which is considered to be the de facto standard for object-oriented
modeling. The Model Driven Architecture supports developing software systems
based on models as primary artifacts. Thus, the level of abstraction of software
development is raised from implementation (writing code) to model transformation.
By raising the level of abstraction, the level of reuse is raised accordingly since high-
level software models can be reused as well as software programs (libraries). In this
way, models become assets in MDA. Consequently, technology that supports the
transformation of models is considered as a key enabler of MDA. While the
application of a design pattern can be represented in a design model in UML, the
evolution of the design pattern may be considered as a transformation of the design
model.

The XML Metadata Interchange (XMI) [13] is an interchange format for
metadata in terms of the Meta Object Facility (MOF) [12]. XMI specifies how UML
models are mapped into a XML file. By representing a UML models in XML format,
the UML model can be manipulated since there are rich collections of XML related
techniques and tools available. The extensible stylesheet language transformation
(XSLT) [14] provides the transformation from XML document to other types of
document (including XML). The use of XMI and XSLT helps on the automated
model transformation process and enforces constraints of model implicitly.

Based on MDA, we can map our primitive-level and pattern-level evolutions
into model transformations and automate these model transformations based on the
XSLT techniques [6]. In this way, the users can choose a pattern-level evolution given
a design pattern application and perform the evolution automatically. In addition, we
have investigated the model transformation techniques based on Query, View,
Transformation (QVT) that is an OMG standard allowing users to query, establish and
maintain views, and transform MOF models [7]. In our investigation, we take
advantage of available model transformation tools, such as Model Transformation
Framework from IBM [16].

In the future, we will characterize the constraints of evolutions of each design
pattern and provide techniques and tools for checking such constraints after

A CLASSIFICATION OF DESIGN PATTERN EOVOLUTIONS

108 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 10

evolutions. Our pattern evolution techniques can be also naturally integrated with our
pattern visualization techniques discussed in [5] since both are based on MDA.

REFERENCES

[1] P. Alencar, D. Cowan, J. Dong, and C. Lucena, A Pattern-Based Approach to
Structural Design Composition, the Proceedings of the IEEE 23rd Annual
International Computer Software & Applications Conference (COMPSAC),
pp160-165, Phoenix USA, October 1999.

[2] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language User
Guide, Addison-Wesley, 1999.

[3] M. Ó Cinnéide and P. Nixon. Automated Software Evolution Towards Design
Patterns, Proceedings of the International Workshop on the Principles of
Software Evolution, pp162-165, Vienna, Austria, September, 2001.

[4] W. F. Clocksin and C.S. Mellish. Programming in Prolog. Berlin : Springer-
Verlag, 1987.

[5] Jing Dong, Sheng Yang and Kang Zhang, Visualizing Design Patterns in Their
Applications and Compositions, IEEE Transaction on Software Engineering
(TSE), Volume 33, Number 7, pp. 433-453, July 2007.

[6] Jing Dong, Sheng Yang and Kang Zhang, A Model Transformation Approach
for Design Pattern Evolutions, Proceedings of the Annual IEEE International
Conference on Engineering of Computer Based Systems (ECBS), pp 80-89,
Germany, March 2006.

[7] Jing Dong, Sheng Yang, Yongtao Sun, and W. Eric Wong, QVT Based Model
Transformation for Design Pattern Evolutions, Proceedings of the Tenth
IASTED International Conference on Internet and Multimedia Systems and
Applications (IMSA), pp16-22, USA, August 2006.

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

[9] T. Kobayashi and M. Saeki. Software Development Based on Software Pattern
Evolution, Proceedings of the Sixth Asia-Pacific Software Engineering
Conference (APSEC), pp 18-25, Takamatsu, Japan, 1999.

[10] Natsuko Noda, Tomoji Kishi. Design pattern concerns for software evolution,
Proceedings of the 4th International Workshop on Principles of Software
Evolution, pp 158-161, Vienna, Austria, 2001.

[11] Hyper/J, http://www.alphaworks.ibm.com/tech/hyperj

[12] Model Driven Architecture. http://www.omg.org/mda/

[13] W3C, Extensible Markup Language (XML), http://www.w3.org/

[14] W3C, XSL Transformations (XSLT), http://www.w3.org/

[15] Rational Rose website. http://www.rational.com/

VOL. 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 109

[16] IBM, http://www-128.ibm.com/developerworks/rational/ library/05/503_sebas/

About the authors

Jing Dong is an assistant professor in the Computer Science Department at the
University of Texas at Dallas. He received a Ph.D. in Computer Science from the
University of Waterloo. He also holds a B.S. degree in Computer Science from
Peking University. His research interests include design patterns, UML, model-driven
architecture, software evolution and analysis, and formal methods. He can be reached
at jdong@utdallas.edu and http://www.utdallas.edu/~jdong.

Sheng Yang received the BE degree from Tsinghua University in 1994, and the MS
and PhD degrees in computer science from the University of Texas at Dallas in 2001
and 2006, respectively. His research interests include automated software engineering
methods, model-driven architecture, software evolution and analysis, and software
engineering tools and environment.

Yongtao Sun is a senior software architect at the Information Technology Service
department of American Airlines. His research interests are design pattern, machine
learning, data mining and pattern recognition.

