
Vol. 6, No. 10, November–December 2007

Reflective Constraint Management for Lan-
guages on Virtual Platforms

Mark Royer, Suad Alagić, and Dan Dillon
Department of Computer Science,
University of Southern Maine,
Portland, ME 04104-9300

Extending an object-oriented type system with assertions makes it possible for pro-
grams using reflection to rely on semantic information to ensure correct use of discov-
ered types. Using extended reflective capabilities to access assertions in (dynamically)
loaded class objects allows a variety of general and flexible verification techniques. The
XVP (Extended Virtual Platform) implements these features by extending the Java
Virtual Machine with the proposed functionalities. Its architecture and applications
are described in the paper. One of the goals of the XVP is to provide a virtual platform
that supports JML and the programming by contract methodology.

1 INTRODUCTION

Constraints are declarative, logic-based specifications, that are largely missing from
major object-oriented languages. Research efforts in several projects [20, 11, 7]
have been directed toward overcoming this limitation of object-oriented program-
ming languages. Constraints appear as assertions specified as method preconditions,
postconditions, and class invariants in the programming by contract methodology
as implemented in Eiffel [23], JML [20], Spec# [7], and OCL [24]. In this form,
constraints also appear in the rules of behavioral subtyping [21, 18]. These rules
guarantee correct software reuse.

As it is, there is nothing in the underlying Java technology that would guarantee
this core property of the object-oriented paradigm. Currently in Java, there are
no restrictions as to how a subclass can override an inherited method as long as
the typing rules are satisfied. This makes it possible to create semantic (behav-
ioral) incompatibilities between objects of a subclass with respect to objects of its
superclass. The availability of constraints makes it possible to enforce behavioral
compatibility of a subclass with respect to its superclass. This is a key component
of the programming by contract methodology.

Constraints allow the semantics of methods to be expressed in a declarative style.
In the current Java technology, accessing classes that were not available at compile
time via Java Core Reflection produces type signatures for classes, methods, and
fields. But the programmer is in the dark as to what exactly those methods are
doing, or what the properties of objects of the discovered classes are. Currently, if

Cite this document as follows: Mark Royer, Suad Alagić, and Dan Dillon: Reflective Constraint
Management for Languages on Virtual Platforms, in Journal of Object Technology, vol. 6, no.
10, November–December 2007, pages 59–79,
http://www.jot.fm/issues/issues 2007 11/article1

http://www.jot.fm/issues/issues_2007_11/article1

REFLECTIVE CONSTRAINT MANAGEMENT FOR LANGUAGES ON VIRTUAL PLATFORMS

the source code is not available, the semantic information cannot be introspected by
reflection, hence correctly using classes discovered by reflection is a very problematic
matter. Availability of constraints by reflection provides the basic semantics of
classes and methods. This is a prerequisite for their correct use.

Constraints are also critical for reducing the impedance mismatch between data
and programming languages. Constraints appear as data integrity conditions in
database systems that transactions are required to respect. Major query languages
such as SQL and OQL also include constraints, and in fact a query includes a con-
straint which specifies the collection of objects that qualify for the result. Similarly,
the notion of a database transaction cannot be expressed properly because of lack
of constraints, and queries cannot be expressed in a declarative style, as in data
languages. None of these features are possible in current object-oriented languages.
Absence of general constraints is a also a major limitation of object-oriented tech-
nologies such as ODMG [10] and JDO [16].

Lack of proper support for constraints makes it impossible to have reflective
capabilities of a virtual platform that report information on constraints, and on
the ability to verify behavioral subtyping requirements. Systems that incorporate
constraints typically do so by compiling them into procedural code as in Eiffel [23]
and JML [20]. This makes these constraints inaccessible by run-time reflection. If
constraints are integrated simply as strings, as in Spec# [7], their structure must
be rediscovered when loading class objects, rather than being integrated into the
run-time type system as in our extended platform. And in JML constraints are
currently not available even in string form.

A major subtlety in languages on virtual platforms is that the source code may
not be available. Hence, verifying behavioral subtyping requires access to a suitable
representation of constraints in class files and class objects. Loading class objects
and performing static verification is a preferable mode of operation in the proposed
extended platform. However, if the types that were not known at compile time are
discovered only at run-time, their associated constraints must then also be verified
at run time (more precisely at load time) and actions taken depending upon the
outcome of introspection and verification of constraints.

To overcome the problems outlined above, this paper advocates that virtual plat-
forms for object-oriented languages with logic-based constraints (assertions) must
provide proper support for this high-level language feature. We present a system
called XVP (Extended Virtual Platform) where constraints are managed in their
declarative form which is associated with the type information available both stati-
cally and dynamically. The typing environment is extended at compile-time and at
run-time with semantic information expressed by logic-based constraints.

In spite of the fact that we use the term extended virtual platform, it is critical
to point out what kind of an extension this is. This extension requires an elaborate
implementation, but it does not affect the integrity of the existing platform in any
way. This property is due to the fact that all the essential internals of the platform

60 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

2 GENERAL ARCHITECTURE

File System

Class file
with assertions

Extended
Class Object

 Read Class

Create
Class Object

XVP Loader

Extended Virtual Platform

Figure 1: Platform architecture

are extended in such a way that neither portability nor correct execution of legacy
code ever becomes an issue. An application-oriented test presented in section 10
demonstrates compatibility with legacy code. In this test, a legacy object-oriented
database system is executed on top of the XVP rather than on top of the JVM, and
the advantages of constraint management as available via Java Core Reflection in
XVP are demonstrated.

2 GENERAL ARCHITECTURE

The general architecture of the extended virtual platform is represented in figure 1.
The main components of this architecture are:

• Class files that allow representation of logic-based constraints.

• Class objects that contain type signatures along with constraints.

• A loader that assembles class objects from class files and properly manages
type signatures and constraints.

• Reflective capabilities that allow introspection of types and constraints.

Our system is designed in such a way that it is independent of a particular
constraint language and its underlying logic basis. However, our project is a part of
a greater JML [20] effort. The JML assertion language and its tools play a major
role in our development. Although the architecture is more general, this constraint
language is used throughout the paper and in the actual implementation.

A tool that interfaces with a program verification system allows checking of
constraints and behavioral subtyping requirements. This is represented in figure 2.
The program verification system accesses loaded class objects through a tool that

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 61

REFLECTIVE CONSTRAINT MANAGEMENT FOR LANGUAGES ON VIRTUAL PLATFORMS

makes use of extended reflective capabilities. The interface component produces a
program verification theory of a class and the program verification system carries
out deduction and reports the results.

As shown in figure 2, verification techniques for a particular system, PVS (Pro-
totype Verification System [26]), have been investigated; however, interfacing the
XVP with other verification systems is also possible.

Verification Component

 PVS Response Create PVS
Theories

Check Constraints

Class TheoriesPVS System

Reflective Introspection

Verification Tool

Class Theories

Extended
Class Object

Figure 2: Verification tool

Our system allows a variety of verification techniques. Static verification is possi-
ble by loading class objects, accessing them by reflection and carrying out interactive
verification typical for the verification system used in this project, PVS. Load time
dynamic verification is possible as soon as a class object is loaded and is thus avail-
able for introspection by reflection. Enforcing assertions at run-time is based on
the fact that the JML compiler generates byte code for constraints. In addition,
disciplines other than design by contract (typical for the current JML tools) may
be enforced both statically and dynamically because of the availability of assertions
that are integrated with the type system. A variety of proof strategies have been
developed [5] that may be used as decision procedures. This is in fact required for
dynamic verification. Customized verification techniques may thus be developed
that are not necessarily based on behavioral subtyping.

62 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

3 CONSTRAINTS

3 CONSTRAINTS

We introduce the basic features of the assertion language used in the paper with a
sample interface Collection. The interface is equipped with JML assertions. Unlike
JML, the assertions are specified using the new annotation feature in Java 5.0. This
feature is an improvement over JML because it makes assertions available in string
format even at run-time. This opens up more general possibilities in managing
assertions. Annotations are preceded by @.

@Constraint("invariant (\\forall Object o; this.contains(o);" +
"this.count(o) > 0);")

public interface Collection {

@pure
public int count(Object o);

@Constraint("ensures \\result == this.count(o) > 0;")
@pure
public boolean contains(Object o);

@Constraint("ensures this.count(o) == \\old(this.count(o)) + 1 &&" +
"(\\forall Object o1; this.contains(o1);" +
"!o1.equals(o) ==> (this.count(o1) == \\old(this.count(o1))));")

public void insert(Object o);

@Constraint({ "requires this.contains(o);" ,
"ensures this.count(o) == \\old(this.count(o)) - 1 && " +
"(\\forall Object o1; this.contains(o1); " +
"!o1.equals(o) ==> (this.count(o1) == \\old(this.count(o1)))); "})

public void delete(Object o);
}

Figure 3: Collection interface

The mutator methods insert and delete that change the underlying object
state are equipped with method preconditions and method postconditions specified
in the requires and ensures clauses. The postconditions for the methods insert

and delete refer to both the current and the previous object states. The latter are
denoted using the keyword old as in Eiffel or JML. The constraints include features
from first order predicate calculus, such as quantifiers. Constraints for pure methods
that are just functions (do not change the object state) are specified in the same
style. The class invariant is also specified.

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 63

REFLECTIVE CONSTRAINT MANAGEMENT FOR LANGUAGES ON VIRTUAL PLATFORMS

4 REFLECTIVE CAPABILITIES

The existing Java reflective capabilities allow introspection of type signatures and
the extended virtual platform allows introspection of the constraints associated with
those types. Constraints are reported by the extended reflective capabilities in their
logic-based declarative style. This is a major distinction in comparison with existing
virtual platforms.

The Java Core Reflection (JCR) classes that have been extended are Class,
Constructor, and Method. These extensions are based on new types such as
Invariant, PreCondition, and PostCondition. With these new types it becomes
possible to add method preconditions and postconditions to the class Method, and
the class invariant to the class Class. These assertions require further types that
make it possible to create objects that represent logical formulas for constraints.
In order to achieve independence of a particular constraint language and its logic
basis, the types representing logical formulas are specified as abstract classes. These
classes must be extended for a particular assertion language as we did for JML.

The structure of constraints is determined by their underlying logic basis. This
is why the class Sentence, given below, is abstract, and its methods only report
universally and existentially quantified variables. A sentence is a logical formula
with no free variables, i.e., all its variables are quantified. An example of a sentence
is an invariant:

(\\forall Object o; this.contains(o); this.count(o) >= 0);

public abstract class Sentence {
public Variable[] getVariables();
public Variable[] getExistentialVariables();
public Variable[] getUniversalVariables();
public abstract Boolean evaluate(Object[] variables);
}

Methods of the class Variable report names and types of variables. A logical for-
mula in general contains free variables. An example of a formula is this.count(o)
>= 0 . This is reflected in the definition of the abstract class Formula. If the values
of free variables are bound to values invoking the method bindVariables, a formula
may be evaluated. But a specific logic still must be chosen in order to perform the
evaluation of a formula.

public abstract class Formula extends Sentence {
public Variable[] getFreeVariables();
public void bindFreeVariables(Object[] vars);

}

The basic building blocks for constructing expressions are terms. An example
of a term is this.count(o). The class Term, specified below, is abstract to allow
for a variety of possible forms of terms. A term has a type and a collection of free
variables. Given values of these variables a term may be evaluated. However, the
method evaluate in the class Term is abstract since the specific evaluation rule
depends upon the form of a term.

64 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

4 REFLECTIVE CAPABILITIES

Class

+getInvariant(): Invariant
+getInvariants(): Invariant[]
+getDeclaredInvariant(): Invariant
+getDeclaredInvariants(): Invariant[]

Method

+getPreCondition(): PreCondition
+getPostCondition(): PostCondition

Invariant

+evaluate(o:Object): boolean

PreCondition

+evaluate(o:Object,params:Object[]): boolean

PostCondition

+evaluate(o:Object,result:Object,params:Object[]): boolean

 *

*

 * *

Figure 4: Reflection extensions

public abstract class Term {
public Class getType();
public Variable[] getVariables();
public abstract Object evaluate(Object[] variables);

}

A message term consists of the receiver term, a method, and an array of argu-
ments which are also terms. The specific evaluation rule amounts to substitution of
arguments and invocation of the underlying method.

public abstract class MessageTerm extends Term {
public Term getReceiverTerm();
public Method getMethod();
public Term[] getArguments();
public Object evaluate(Object[] variables);

}

Formulas are constructed recursively starting with atoms and applying the rules
of a particular logic.

Some of the basic extensions to Java Core Reflection are shown in figure 4. Ad-
ditions of the recompiled class Class allow access to the declared and the inherited
invariant.

public final class Class { ...
public Invariant getInvariant();

}

The extensions of the class Method allow access to (declared and inherited) pre-
conditions and postconditions. The class Constructor is similarly extended.

public final class Method { ...
public PostCondition getPostCondition();
public PreCondition getPreCondition();
}

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 65

REFLECTIVE CONSTRAINT MANAGEMENT FOR LANGUAGES ON VIRTUAL PLATFORMS

5 REPRESENTATION OF CONSTRAINTS

Java classes are compiled into Java class files. In the Java class file structure [22]
an array of attributes is associated with each class, each field, and each method.
The predefined attributes such as Code, ConstantValue, Exceptions, etc., must
be correctly recognized in order for the Java Virtual Machine to function correctly.
An important point is that in addition to the above mentioned attributes, optional
attributes are also allowed. These optional attributes have no effect on the correct
functioning of the Java Virtual Machine.

In the XVP a class has an invariant, and each method of a class contains a
precondition and a postcondition. The structures representing these assertions are
assembled by an extended loader from the optional attributes contained by the class
file. This is accomplished by constructing invariants, preconditions, and postcon-
ditions, lazily, i.e., upon demand via Java Core Reflection. This is a very different
approach to managing constraints in comparison with other systems.

In order to enforce semantic conditions, projects such as JML [20] and Octopus
[25] are forced to create complex techniques for representation of assertions in proce-
dural form. For example, when JML’s runtime assertion checker is used, interfaces
are extended with surrogate inner classes and class definitions are extended with
extra methods that were not written by the programmer. When these types are
introspected via Java Core Reflection, the additional constraint-related implemen-
tation information unexpectedly appears intermingled with the type information
the programmer would expect. Consequently, this means that the runtime repre-
sentation of the type declared by the programmer does not match the type the
programmer intended.

Unlike the above mentioned projects, the XVP makes small extensions to the
classes Class, Method, and Constructor. In these extensions type information is
recorded as usual by Java Core Reflection; however, additional extensions are made
to record, but keep separate, semantic information with the corresponding types.
This technique is similar to the technique used to extend Java with generics in Java
5.0 and is further elaborated in section 7.

The representation of constraints in class files is based on optional attributes
as specified in the JVM Specification [22]. Attached to the class file structure is
an optional attribute representing an invariant. Similarly, method structures in the
class file have optional attributes representing preconditions and postconditions.

The assertion attributes are further composed of different structures. Some of
these structures represent terms and others represent formulas based on those terms.
The structure of formulas is determined by the logic underlying the constraint lan-
guage.

Term structures are designed in such a way that they can represent five possible
types of terms: messages, constants, variables, new object terms, and field access
terms.

66 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

6 COMPILING DECLARATIVE SPECIFICATIONS

A formula may be an atom or a complex formula. If the formula is an atom, then
it refers to a message term, and the descriptor in the message term will indicate the
result type boolean. A formula contains arrays of free, universally quantified, and
existentially quantified variables. Each variable is represented by a pair, consisting
of the type and the name of the variable. Connective types in formulas are meant
to be one of the standard ones (and, not, or, implies, etc.).

6 COMPILING DECLARATIVE SPECIFICATIONS

The procedure for compiling Java source equipped with JML assertions is repre-
sented in figure 5 and it consists of the following actions:

• First, Java source equipped with constraints is compiled with the Java 5.0
compiler.

• The next step is the XVP post compiler which performs limited processing of
the source. It gathers the information from the import clauses in the source
and the signatures of formal parameters (names and types) of methods and
constructors. It collects the information in each annotated assertion and sends
it to the module that performs parsing and type checking of the assertion. This
is performed for every class, method, and constructor.

• The subsequent step is creating the class file byte code representation of as-
sertions. This is done in accordance with the class file format for constraints
discussed in section 5. The class file augmented with constraints actually
overwrites the class file generated by the Java 5.0 compiler.

Java 5.0 allows annotations to be accessed at compile time, load time, or at run
time using Java Core Reflection. JML currently converts assertions into executable
code at compile time. Our approach allows the original source of an assertion to
be available at runtime. This makes it possible to compile assertions at runtime if
they were not processed statically by the XVP post-compiler. The @Constraint

annotation is represented by the following declaration:

@Target({ElementType.METHOD,ElementType.TYPE,ElementType.CONSTRUCTOR})
@Retention(RetentionPolicy.RUNTIME)
public @interface Constraint {

String[] value();
}

The Target meta-annotation indicates that the Constraint annotation applies
to types, methods, and constructors. The Retention meta-annotation indicates
that this information is to be retained at runtime. The Constraint annotation has
a String array named value.

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 67

REFLECTIVE CONSTRAINT MANAGEMENT FOR LANGUAGES ON VIRTUAL PLATFORMS

:PostCompiler

loop
[forall Annotations]

:SourceParser

:AssertionParser

tmpClass: JavaClass

new *.class file created

parseJava

new JavaClass

parseAssertion()

dump()

addAttribute()

Figure 5: Compiler sequence

Once class files include assertions this way, they may be interrogated at runtime
for information about the assertions. The choice of representing assertions as an-
notations is based on the flexibility of this approach, which allows assertions to be
parsed from raw String form at compile time, or dynamically at load time.

A limited post-compile parse of the Java source file is required because the Java
compiler discards import statements and formal parameter names during compila-
tion. If this parse were omitted, every name in a JML expression would need to
be fully qualified (i.e., Class would need to be specified as java.lang.Class), and
more importantly, specifications that refer to formal parameters of methods and
constructors could not be bound correctly without more information. In addition,
there would be limitations on dynamically parsing assertions. Preconditions and
postconditions could not refer to parameter names, and every assertion would need
to use fully qualified names to compile.

At each new type encountered in the source file parsing phase BCEL [6] is utilized
to store information regarding assertions. BCEL (Byte Code Engineering Library)
is part of the standard Java runtime environment. A temporary class file of type
JavaClass is created. JavaClass is part of BCEL and it represents all the class file
information of a class annotated with assertions. The JavaClass object also provides
methods to add, remove, and modify features of a class file it is representing.

68 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

7 CONSTRAINT MANAGEMENT

At each annotation of type Constraint, the annotation contents (strings rep-
resenting the constraints to be parsed) are sent to a separate assertion processing
module, along with the current class file, import declarations, methods and con-
structors, and their formal parameter names and types.

The assertion processing module is responsible for verifying that annotation con-
tent is valid with respect to the JML grammar for assertions. There is a very
important reason why this module is separate from the module which parses the
Java source file. Our design allows any constraint language to be substituted in
place of our current module which validates JML expressions. A different constraint
language would require a different module for verifying syntactic correctness of as-
sertions, but the rest of the architecture will remain unaffected by this change of
logic. An example of a different constraint language would be OCL [24].

The challenging aspect of type checking assertions that are integrated into the
Java type system, has been parsing declarative expressions in a language very dif-
ferent from Java, and verifying their correctness using the procedural tools that
Java provides. While resolving types, our approach is nearly identical to how Java
5.0 resolves names, but we have to handle much more general situations such as
expressions with quantified variables as defined in the JML grammar.

Our approach is also different from the Java compiler’s approach because we
extensively use Java Core Reflection to infer types. Since all necessary class files have
already been generated by the Java compiler and the corresponding class objects
have already been loaded, it is easy to discover type information via Java Core
Reflection. This explains why Java Core Reflection is used for discovering type
information when performing type checking.

7 CONSTRAINT MANAGEMENT

In this section we describe how constraints are managed in the extended virtual
platform. Extensions to existing components of Java Core Reflection are made in
such a way that they allow for a variety of constraint languages to be represented
and maintained by the system.

The class ConstraintManagement is in charge of associating constraints with
their corresponding types. There are several components that are utilized for man-
aging assertions via the ConstraintManagement class in the XVP. The main ones
are:

• An object repository

• A constraint factory

• A byte code repository

• An XVP constraint representation

• A JML constraint representation

In order to allow users to quantify over all currently existing objects, an object
repository is used to maintain references to every object that is created during

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 69

REFLECTIVE CONSTRAINT MANAGEMENT FOR LANGUAGES ON VIRTUAL PLATFORMS

program execution on the virtual platform. This kind of quantification is perfectly
natural and it is not supported in JML.

This is accomplished by extending the default constructor in the class Object

so that the newly created object is added to the object repository. This is required
because quantifiers may refer to all objects of a given type, and the current JVM
does not keep track of that collection. This represents a generalization of both JML
and JVM. In the object repository, objects are kept in maps according to their types
to allow for constant time access to any object in the repository.

References to objects in the repository are weak references. This allows objects
to be garbage collected when they are no longer referenced in applications running
on the system. When an object is garbage collected, the weak reference in the
repository must be removed. This is accomplished by the garbage collector adding
newly destroyed weak object references to a list of dead references, and then the
repository can remove the weak references at appropriate times.

A ConstraintFactory is used by the constraint manager to create assertions
requested by the system. The ConstraintFactory is an abstract class that follows
an abstract factory pattern design. This allows the constraint management class to
dynamically load bytes from the byte repository when an assertion is requested and
lazily instantiate it with a specific constraint factory. The newly created assertion
is then handled by the constraint manager and passed back to the corresponding
reflection class, either Class, Method, or Constructor.

In order for the ConstraintManagement and extended Java Core Reflection
classes to handle a variety of constraint languages and their different logic bases,
an abstract representation of the components of a constraint language is used. The
types of terms such as VariableTerm, MessageTerm, FieldTerm, etc., and abstract
classes such as Sentence and Formula form an abstract framework. This framework
is extended with a concrete representation for each specific constraint logic.

In our design, we extended the abstract logic representation with the specific
one according to the grammar of JML. This was accomplished by creating concrete
classes that represent the various types of JML expressions and a specific constraint
factory that knows how to properly construct JML expressions. Each abstract rep-
resentation of formulas and terms was extended by its corresponding component
according to the JML grammar.

Figure 6 shows the associations between the ConstraintManagement class and
the components described above.

Classes are loaded via the extended XVPLoader, and the byte code representa-
tion of assertions are stored in the ByteCodeRepository. When a class or method
of Java Core Reflection requires an assertion, it requests for the assertion from
the ConstraintManagement class. ConstraintManagement gets the correspond-
ing bytes from the ByteCodeRepository and then creates the assertion using the
ConstraintFactory. At runtime, the ConstraintFactory is represented by a con-
crete factory that knows how to create assertions of the underlying specific assertion

70 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

8 EXTENDED LOADER

ClassLoader

+loadClass(): Class

XVPLoader

+bytesForClass(): byte[]
+findClass(name:String): Class<T>

ByteCodeRepository

ConstraintManagement Class<T>

+getInvariant(): Invariant

ConstraintFactory

+createInvariant(): Invariant
+createPreCondition(): PreCondition
+createPostCondition(): PostCondition

Figure 6: Main constraint components

language.

The XVP must carefully manage expressions in assertions that use the keyword
old. In the XVP, the value of the argument expression e in old(e) is stored prior
to method execution so that it can be retrieved after method execution. Primitive
and object types are handled differently by the XVP. Prior to method execution, a
primitive value is stored by the XVP. If the type of the expression e is an object
type, instead of a copy of that object, only a reference to an object is saved. This
means that given an object obj, old(obj) == obj after method execution.

A further complication in managing the occurrence of old in expressions is when
it appears in the scope of collection operations as defined in JML [20]. The XVP
supports seven collection operations: forall, exists, max, min, product, sum, and
num of. In general, a collection operation is composed of three parts: a collection
operator followed by a type declaration, a range predicate, and a body predicate.
This is illustrated by the following example:

(\\forall Object o; this.contains(o); this.count(o) >= 0);

For primitive types in collection operations, the XVP stores values using a map-
ping scheme that allows for nested quantifiers and retrieval of old(e) values after
method execution. A similar system is used by the XVP for object types, but in this
case the XVP may throw a NoOldValueException. NoOldValueExceptions can be
thrown in collection operations because collection operations in the XVP may range
over all object types. This may include newly created objects that did not exist in
the previous system state.

8 EXTENDED LOADER

As shown in figure 6, an important part of managing constraints in the extended
virtual platform is an extended class loader. The virtual platform is extended to
be able to properly load constraints in extended Java class files. There are two

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 71

REFLECTIVE CONSTRAINT MANAGEMENT FOR LANGUAGES ON VIRTUAL PLATFORMS

System

classObject

:ClassLoader

Class Object
Constructed

classObject

:XVPLoader

bytes

:ConstraintManagement

loadClass(clazz)

findClass(clazz)

bytesForClass(clazz)

defineClass(bytes)

storeConstraintBytes(bytes)

Figure 7: Class loading sequence

design choices here. The first one is to extend the native system class loader, and
the second is to utilize Java’s parent delegation class loader model and create an
extended class loader.

In the current implementation of XVP the extended class loader option is used.
The reason is that it allows us to load all augmented class files of interest without
changing any native code. This is useful because it allows us to port our system
to a variety of virtual machines without having to recompile the entire platform.
The reason this is appropriate is that the Java API classes are not compiled with
assertion declarations. Since the default system class loader is in charge of loading
the system runtime library classes, if these files were to be annotated with assertions,
then the system class loader would need to be extended. In addition, the XVP does
not have access to assertions in classes that are loaded in systems that define their
own class loaders. The XVP implements a null object pattern for assertions, so
assertions in classes loaded by other loaders are treated as always true.

The general loading process for the XVP is shown in the sequence figure 7.
The loading process begins when the XVP requires a class object with associated
constraint information. At this point loadClass is invoked on the parent class
loader. When the default system loader fails to find the class in the system class path,
the overridden findClass method is invoked on the XVPLoader. The XVPLoader

has enough information to locate the augmented class file with assertions in the file
system. This occurs in the method bytesForClass, and the byte code representation

72 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

9 VERIFICATION SYSTEM

of the class file is returned after loading the class file from the file system.

Two actions are now taken on the class byte representation by the XVPLoader.
First, the XVPLoader finishes creating the class object by handing the byte code
representation to the defineClass method in ClassLoader. The defineClass

method ensures that the byte code representation of a class is properly formed
and returns a completely loaded class object. Secondly, the XVPLoader passes the
byte code representation of assertions to the ConstraintManagement class where
the byte code is stored for future lazy instantiation. Assuming that there were no
complications during the loading process, the system now has a class object with
associated constraints ready for use in an application program.

The components that allow access to assertions in extended class files are the
XVPLoader and BCEL. Special attention is made to class paths to ensure that the
XVPLoader is selected as the class loader of classes with assertion information. Af-
ter the class files have been loaded as a byte code representation, the optional at-
tributes containing constraint information have to be recognized and handled by the
XVPLoader. This is done using BCEL. The byte code representation of assertions is
stored by the ConstraintManagement class for access by the program application if
needed.

9 VERIFICATION SYSTEM

A distinctive feature of the extended virtual platform is the representation and
management of constraints in their logic-based, declarative form, rather than in the
procedural form, as in Eiffel or JML. This makes it possible to interface the platform
with a verification system using extended reflection.

PVS [26] is a specific verification system that we have been investigating [4].
The choice of PVS is based on the fact that PVS has a sophisticated type system
with particular forms of subtyping and parametric polymorphism, and in addition
it provides support for a variety of logics. These features allows representation of
generic classes as in Java 5.0 and a variety of constraint languages.

The first order predicate calculus-based constraints appear in the sample class
Collection given in section 3. In fact, we use a temporal logic to express the
subtleties of the object-oriented paradigm such as object-state changes caused by
mutator methods that require usage of the operator old [4]. This makes it possible
to specify history properties as defined in [21]. These are properties of sequences of
object states, pairs of successive object states in particular. History properties are
available in JML via the usage of the old operator in assertions.

In order to verify properties of a class equipped with assertions, the class must
be transformed into a specification that can be handled by PVS. The XVP reflection
extensions use a visitor pattern to facilitate this transformation. PVS specifications
are theories. A theory of a class consists of the type signatures of its methods
represented in the standard functional style along with a collection of logic-based
constraints, which are sentences expressed in the chosen logic [4].

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 73

REFLECTIVE CONSTRAINT MANAGEMENT FOR LANGUAGES ON VIRTUAL PLATFORMS

PVS can be used in the extended platform to verify behavioral subtyping require-
ments [21]. When a class is loaded, PVS can check whether the class is a behavioral
subtype of its superclass. This is a condition for semantic (behavioral) correctness
of software reuse. If a class is a behavioral subtype of its superclass then objects
of the (sub)class will behave as objects of the superclass when the substitution of
the former by the latter is carried out. Stronger forms of behavioral subtyping are
based on history properties and require compatibility of sequences of object states
[21]. These requirements are represented in temporal logic based verification tech-
niques described in [4]. In addition, unlike the situation in the current version of
JML and Eiffel, other policies for enforcing constraints may be used. Full details
are given in [4].

The compromise between static and dynamic checking amounts to treating con-
straints that are meant to be checked at run-time as axioms and proving the remain-
ing ones as theorems. The proofs will be valid as long as the truth of the axioms is
guaranteed at run-time. At the same time, the constraints that are proved as theo-
rems under the above assumptions will not be checked at run-time. This improves
efficiency of dynamic checking of constraints and reliability of programs.

10 ILLUSTRATIVE APPLICATION

Our application illustrating the advantages offered by the extended virtual platform
is from the database area where constraints are absolutely critical. In spite of that,
practically all object-oriented database technologies (ODMG [10] and JDO [16] in
particular) are lacking general, logic-based constraint capabilities. Yet, constraints
are available in other data models such as relational or XML (represented by XML
Schema).

Extended reflection is critical because database users expect to see declarative
constraints when introspecting classes in a database schema. Procedural representa-
tion of constraints as in Eiffel or JML is completely unacceptable for introspection.
Static verification of database transactions is an attractive goal that we advocate,
but in reality dynamic verification is unavoidable. This is why more general and
more flexible techniques for managing and verifying constraints, available in the
XVP, represent a significant advantage.

JML and Eiffel were designed to support design by contract, but database prop-
erties that are typically enforced are not behavioral subtyping, but rather constraints
such as keys, referential integrity, range values, sums, etc. All of this shows that
more general and more flexible constraint management is needed in comparison with
what is currently offered for object-oriented languages.

In this experiment, we used Versant’s FastObjects [27], an ODMG object-oriented
database management system. Just like ODMG, FastObjects does not know any-
thing about constraints. Since FastObjects does not have such a capability, we
construct a transaction example below showing how a particular transaction can
access assertions using extended reflection, evaluate them, and proceed depending

74 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

11 RELATED RESEARCH

upon the result, i.e., abort or commit.
public void update() {

Transaction txn = new Transaction();
txn.begin();
Employee employee = null;
try { employee = (Employee)database.lookup("John Doe");
} catch (ODMGException e) { txn.abort(); /* other actions */ }

Invariant inv = employee.getClass().getInvariant();
Method m = null;
try { m = employee.getClass().getMethod("updateSalary", float.class);
} catch (Exception e) { txn.abort(); /* other actions */ }
PreCondition pre = m.getPreCondition();
Object[] params = new Object[]{1000f};
if (! (pre.evaluate(employee, params) && inv.evaluate(employee)))
txn.abort();

PostCondition post = m.getPostCondition();
post.bindPreMethodVars(employee, params);
employee.updateSalary(1000f);
if (! (post.evaluate(employee, null, params) && inv.evaluate(employee)))
txn.abort();

txn.commit();
}

Figure 8: Database transaction

In the example 8 the extended platform has been used with FastObjects rather
than the standard JVM. First, the program initializes access to the database. The
employee object “John Doe” is looked up in the database and returned. At this
point components of the XVP are utilized. The invariant and the precondition are
accessed from the employee class and evaluated. If the invariant and precondition
evaluate to true, then the program binds variables in postconditions, employs an
evaluation strategy that takes into account the semantics of the old operator, and
continues to execute the update on the employee. After the update has taken place,
the postcondition and invariant are evaluated. Given each assertion component
evaluates to true, the transaction is completed and committed to the database.

11 RELATED RESEARCH

Assertions are generally missing from the initial design of major object-oriented lan-
guages with Eiffel [23] being the only exception. ESC/Java [11] statically detects
some programming errors. Nice [9] is a functional Java like language with assertions
that are enforced at run-time, and Spec# [7] is a superset of C# equipped with as-
sertions. JML [19] annotates Java programs with behavioral specifications that are
compiled and enforced at run-time. LOOP [8] (with a related work [13]) generates
theories (PVS in particular) representing the semantics of Java classes so that they
can be verified by a theorem prover, and we develop temporal verification techniques

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 75

REFLECTIVE CONSTRAINT MANAGEMENT FOR LANGUAGES ON VIRTUAL PLATFORMS

for Java-like classes in PVS [4]. Our position is that assertions require proper sup-
port in the underlying virtual platform [3]. This is a novelty in this paper which
considers deep integration of constraints into the overall environment, starting from
the language down to different levels of the supporting architecture.

Spec# specifications are both compiled and attached to executable code as cus-
tom attributes accessible by CLR meta data capabilities [7]. Unlike Spec# in which
these specifications are strings, in our architecture internal representation is pro-
duced that is completely integrated into the run-time type system and accessible
in a declarative form along with the type information using an extended JCR. In
the Spec# architecture the static program verifier Boogie consumes the compiled
code. It constructs a program in its own intermediate language and makes use of the
Simplifier theorem prover [7]. In our architecture type signatures with associated
constraints are visible in class and method objects that are transformed into PVS
theories, and PVS is invoked to verify the desired properties.

This project makes several contributions to the existing JML related results.
Currently, JML compiles assertions into code that appears in class files and thus
makes dynamic checking of assertions possible. In our architecture, in addition to
the compiled code for assertions, internal declarative representation integrated with
class and method type signatures is also generated so that it is accessible by JCR.
This feature is called specification reflection in [17]. In addition, our architecture
allows other possibilities discussed in [17] such as reflective specification execution,
i.e., execution of assertions discovered at run-time. Customized run-time checking
is also possible based on run-time analysis of assertions available via JCR. Since
various components of assertions are in fact instances of classes such as variable,
term, message, formula, and sentence, even run-time construction of assertions is
also possible in our architecture.

12 CONCLUSIONS

Integration of logic-based constraints into an object-oriented programming environ-
ment requires proper support. Integrating constraints into the type system makes
the constraints accessible by reflection. Programs using reflection can now rely on
the semantic information associated with types in order to ensure correct usage of
classes and methods discovered by reflection.

The required features of an extended platform include representation of con-
straints in class files and class objects, an extended loader to load constraints into
the class objects, and reflective capabilities that report type signatures along with
their associated constraints.

Perhaps the most important point is that all of this can be accomplished with
pure extensions of the existing platform without any effect on the integrity or cor-
rect functioning of the legacy platform. Even the critical components of the legacy
platform such as the structure of class files and objects is not affected. The only ex-
tension visible by users are additional types related to constraints that are available

76 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

12 CONCLUSIONS

through Java Core Reflection.

A distinctive feature of this environment is that it can be interfaced with a so-
phisticated program verification system which makes it possible to check constraints
and enforce the rules of programming by contract or other rules. The extended re-
flective capabilities play a decisive role in making this possible. Construction of
program verification theories is based on introspecting both type signatures and
their associated constraints using reflection.

This architecture is general enough to permit a variety of constraint languages
and their logic bases. It also allows a range of verification techniques, from the static
to the dynamic ones, as well as various intermediate options. Although programming
by contract (or behavioral subtyping) has been our primary interest, other disciplines
based on the availability of the semantic information expressed by constraints are
also possible. Since constraints can be accessed by reflection, much more general
and flexible verification techniques are available to application programs.

WEB SITE
The web site of this project: http://www.cs.usm.maine.edu/ ˜alagic/xvp con-
tains documentation, illustrative examples and download information.

REFERENCES

[1] S. Alagić, S. Kouznetsova, Behavioral compatibility of self-typed theories, Pro-
ceedings of ECOOP 2002, Lecture Notes in Computer Science 2374, pp. 585-608,
Springer, 2002.

[2] S. Alagić, J. Solorzano, and D. Gitchell, Orthogonal to the Java imperative, Pro-
ceedings of ECOOP ’98, Lecture Notes in Computer Science 1445, pp. 212 - 233,
Springer, 1998.

[3] S. Alagić and M. Royer, Next generation of virtual platforms,
http://www.odbms.org/, 2005.

[4] S. Alagić, M. Royer, and D. Crews, Temporal verification theories for Java-
like classes, ECOOP 2006 Workshop Formal Techniques for Java-like Programs,
http://www.disi.unige.it/person/AnconaD/FTfJP06/, 2006.

[5] M. Archer, B. Di Vito, and C. Munoz, Developing user strategies in PVS: A tutorial,
Proceedings of STRATA 2003.

[6] Byte Code Engineering Library. http://jakarta.apache.org/bcel/.

[7] M. Barnett, K. R. M. Leino, and W. Schulte, The Spec# programming system: an
overview, Microsoft Research 2004. Also in Proceedings of CASSIS 2004.

[8] J. van den Berg and B. Jacobs, The LOOP compiler for Java Lecture Notes in
Computer Science 2031, Springer, 2001, pp. 299 - 312.

[9] D. Bennett, The Nice programming language, http://nice.sourceforge.net/.

[10] R. G. G. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell, O.
Schadow, T. Stanienda, and F. Velez, The Object Data Standard: ODMG 3.0, Mor-
gan Kaufmann, 2000.

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 77

http://www.cs.usm.maine.edu/~alagic/xvp

REFLECTIVE CONSTRAINT MANAGEMENT FOR LANGUAGES ON VIRTUAL PLATFORMS

[11] C. Flanagan, K. R. M. Leino, G. Nelson, J. B. Saxes, and R. Stata, Extended static
checking for Java, Proceedings of PLDI, ACM, 2002, pp. 234-245.

[12] J. Gosling, B. Joy, G. Steele and G. Bracha, The JavaTM Language Specification,
Addison-Wesley, 2006.

[13] B. Jacobs, L. van den Berg, M. Husiman and M. van Berkum, Reasoning about Java
classes, Proceedings of OOPSLA ’98, pp. 329-340, ACM, 1998.

[14] Java Core Reflection, JDK 1.1, Sun Microsystems, 1997.

[15] Java 5.0, Sun Microsystems, 2004.

[16] D. Jordan and C. Russell, Java Data Objects, O’Reilly, 2003.

[17] Y. Cheon, Y. Hayashi, and G. Leavens, A thought on specification reflection, Proc.
of 8th World Multi Conf. on Systems, Computing Techniques, 2004.

[18] G. T. Leavens and K. K. Dhara, Concepts of behavioral subtyping and a sketch of
their extension to component-based systems, in: G. T. Leavens and M. Sitaraman,
Foundations of Component-Based Systems, Cambridge University Press, 2000.

[19] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok, How the design of
JML accommodates both runtime assertion checking and formal verification, Science
of Computer Programming, Vol. 55, pp. 185-205, Elsevier, 2005.

[20] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cook, P. Muller, and J.
Kiniry, JML Reference Manual (draft), July 2005, http://www.cs.iastate.edu/ leav-
ens/JML/.

[21] B. Liskov and J. M. Wing, A behavioral notion of subtyping, ACM Transactions on
Programming Languages and Systems, 16, pp. 1811-1841, 1994.

[22] T. Lindholm and F. Yellin, The JavaTM Virtual Machine Specification, Addison-
Wesley, 2000.

[23] B. Meyer, Object-Oriented Software Construction, Prentice Hall, 1997.

[24] Object Constraint Language Specification, OMG documents ad970808 and ad2003-
01-06.

[25] Octopus: OCL Tool for Precise UML Specifications, http://www.klasse.nl/octopus/.

[26] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Clavert: PVS Language
Reference, SRI International, Computer Science Laboratory, Menlo Park, California.

[27] Versant FastObjects, http://www.versant.com/products/fastobjects.

ABOUT THE AUTHORS

Mark Royer is a PhD student and research assistant in The De-
parmtent of Computer Science at The Univerisity of Maine. His
research interests include object-oriented programming languages
and database systems. He is currently working on data integra-
tion problems at The University of Maine. He can be reached at
mroyer@cs.umaine.edu. See also http://cs.umaine.edu/∼mroyer.

78 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 10

mailto:mroyer@cs.umaine.edu
http://cs.umaine.edu/$\sim $mroyer

12 CONCLUSIONS

Suad Alagić is a Computer Science Professor at the University
of Southern Maine in Portland. His research areas are object-
oriented systems, database systems, and programming languages
and systems. His object-oriented publications are related to the
Java technology, object-oriented persistent and database technol-
ogy (ODMG in particular), and constraint (assertion) languages.
Most of his research has been directed toward integration of the
technology of programming languages and systems and database
systems. He can be reached at alagic@cs.usm.maine.edu. See also
http://cs.usm.maine.edu/∼alagic.

Dan Dillon is a software engineer in the industry. He is currently
developing applications based on Java Enterprise technologies. His
interests include Web Services and web-oriented databases. He can
be reached at dan.j.dillon@gmail.com.

VOL 6, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 79

mailto:alagic@cs.usm.maine.edu
http://cs.usm.maine.edu/$\sim $alagic
mailto:dan.j.dillon@gmail.com

