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The trend towards domain-specific languages leads to an ever-growing plethora of highly
specialized languages. Developers of such languages focus on their specific domains
rather than on technical challenges of language design. Generic features of languages
are rarely included in special-purpose languages. One very important feature is modu-
larization, the ability to formulate partial programs in separate entities, composable into a
complete program in a defined manner. This paper presents a generic approach for adding
modularity to arbitrary languages, discussing the underlying concepts and presenting the
Reuseware Composition Framework. We walk through an example based on Xcerpt, a
Semantic Web query language.

1 INTRODUCTION

The ever-increasing complexity of modern-day software development asks for the con-
stant development of new languages to support specific tasks. Domain-specific languages
(DSLs) are one example of this kind of languages. The Semantic Web [3] is another area,
in which lots of languages have been defined to precisely capture meaning and enable
accurate description of data found on the web. Examples of Semantic Web languages in-
clude ontology languages (e.g. OWL [24], RDF(S) [5], SWRL [11]) and query languages
(e.g. XQuery [4], SPARQL [25], Xcerpt [7]). Another important area where many lan-
guages exists is modeling, and many DSLs have appeared around the Unified Modeling
Language (UML) [20].

These languages have been carefully designed and are very capable in their domains
of operation. The language designers focus on the domain-specific concepts and issues
the languages are meant to support. However, a lot remains to be wished for regarding
some more technical issues of language design. For example, many of these languages are
lacking good concepts for modularization, and, thus, have insufficient support for reuse.
It is well-known in the software engineering community that there are many benefits to
be harvested from creating programs based on reusable components. This method is
considered a vital part of large mature systems [19]. Yet, providing good support for
modularity and reuse can be a quite complex task in its own right. Therefore, it is often
neglected when new languages are being constructed.

To address this problem one could re-design the individual languages such that they
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support modularity and composition-based thinking and development. As mentioned, this
can be a quite daunting task. On the other hand, modularization has a lot of properties
that are independent of concrete languages. Hence, one can consider providing modu-
larization support on a language-independent level, without initially tampering with the
specifics of each individual language. This has the advantage that the same composition
technique can be reused for any language. More importantly, one can create a general
tool framework for enabling component-based development for a number of languages
lacking such capabilities.

A foundation of our work is Invasive Software Composition (ISC) [2], a composition
technique that is attractive for two reasons:

1. It is flexible wrt. the granularity of components and symmetry of composition [10]
and can, thus, capture and simulate many well-known composition techniques (e.g.
aspects [13] and hyper spaces [22]).

2. It operates at source-code level and, thus, is suitable also for interpreted, declarative,
or descriptive (i.e. non-operational) languages—for example, for the languages of
the Semantic Web or for modeling languages, such as UML.

So far, the concepts of modularity made available through ISC have been manually
implemented for Java and XML [27]. These concepts, however, can be understood inde-
pendently of a concrete language. The contribution of this paper is twofold:

1. We give a formal explanation of how ISC, and its concepts for modularity, can be
made available for arbitrary languages.

2. We present a framework and tool1 that embodies these concepts. It can generate
language extensions for modularization support for an arbitrary language, given its
description. Furthermore, this tool also allows to address language-specific issues
and requirements.

Hence, this paper can be viewed as a contribution to the vision of grammarware en-
gineering [14], the systematic development and maintenance of grammar-based applica-
tions.

As a running example, the paper shows an extension of the XML query and transfor-
mation language Xcerpt [7] with concepts for modularization.

The remainder of this paper is structured as follows. Section 2 deals with some pre-
liminaries, introducing both ISC and Xcerpt in more detail. In Section 3 we discuss the
formal concepts involved in a language-independent rendering of ISC followed by a pre-
sentation of the tool in Section 4. While we give formal definitions for all our concepts,
we also use a running Xcerpt example to illustrate the effect of these definitions. Section 5
references related work, and Section 6 concludes and presents directions for future work.

1The Reuseware Composition Framework, available from http://www.reuseware.org
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2 PRELIMINARIES

Before we describe our formalism in Section 3 for extending an existing language for
modularity, we give a brief introduction to ISC. However, rather than explaining the de-
tails of ISC, which is better learned by studying [2], we motivate why we build our work
upon, and extend, ISC. As we apply and demonstrate our techniques on the Web query
language Xcerpt, we introduce the language in the second part of this section.

Invasive Software Composition

ISC is a grey-box composition approach where components—or fragments components2—
are static, source-code entities with well-defined interfaces using the notion of hooks. A
hook is essentially a location in a component which may be replaced by another compo-
nent by using ISC composition operators. As such, the hooks of a component define its
composition interface. The replacement of a hook with some existing component consti-
tutes the basic composition technique of ISC. The benefit of this composition technique
is that it is very general and is realizable for any language used to author the compo-
nents. Another attractive quality in grey-box approaches is the flexibility of components
wrt. to granularity and symmetry, properties that differentiate many known composition
techniques [10]. Thus, ISC can realize and combine techniques that rely on well-defined
component interfaces [2], for example, aspect-oriented programming [13], hyper-space
programming [22] and view-based programming [2].

Grey-box approaches stand in contrast to traditional black-box approaches where users
of components solely rely on expected inputs and outputs of components. For modeling
and Semantic-Web languages, traditional black-box approaches are not applicable, be-
cause there is no notion of a dynamic execution of components. ISC works on component
source code and is, thus, easily applicable to composition in the modeling and Semantic
Web domains. Our contribution in this paper is a formalization of the notion of ISC frag-
ments. The important point, however, is that this formalization is not bound to a particular
language. Thus, we describe a formalism where arbitrary languages can be extended to
take advantage of the possibilities of using ISC’s grey-box techniques.

Xcerpt

Xcerpt is an XML query and transformation language. In contrast to similar languages
like XQuery [4] and XSLT [9], Xcerpt follows the logic programming paradigm (rule-
based and declarative) and clearly separates query and construct parts of programs.

An Xcerpt program consists of a finite set of Xcerpt rules. The rules of a program
are used to derive new (or transform) XML data from existing data (i.e. the data be-
ing queried). In Xcerpt, two different kinds of rules are distinguished: construct rules

2Simply fragments when it is clear from the context what is meant.
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and goal rules. Construct rules are used to produce intermediate results and takes the
form: CONSTRUCT head FROM body END. Goal rules make up the output of programs
and looks like: GOAL head FROM body END. Intuitively, the rules are to be read: if body
holds, then head holds. Formally, head is a construct term and body is a set of query
terms joined by some logical connective (e.g. or or and). A rule with an empty body is
interpreted as a fact, i.e. the rule head always holds.

While Xcerpt works directly on XML data, it has its own data format for model-
ing XML documents. Xcerpt data terms model XML data and there is a one-to-one
correspondence between the two notions. Xcerpt data terms use a square bracket nota-
tion, e.g. the data term book [ title [ ‘‘White Mughals’’ ] ] corresponds to the
XML snippet <book><title>White Mughals</title></book>. The data term syn-
tax makes it easy to reference XML document structures in queries.

Xcerpt query terms are used for querying data terms and intuitively describe patterns
of data terms. Query terms are used with a pattern matching technique3 to match data
terms. Query terms can be configured to take partiality and/or ordering of the underly-
ing data terms into account during matching. Square brackets are used in query terms
when order is of importance, otherwise curly brackets may be used. E.g. the query term
a [ b [], c [] ] matches the data term a [ b [], c [] ] while the query term
a [ c [], b [] ] does not. However, the query term a { c [], b [] } matches
a [ b [], c [] ], since ordering is said to be of no importance in the query term. Par-
tiality of a query term can be expressed by using double instead of single brackets. Query
terms may also contain logic variables. If so, successful matching with data terms results
in variable bindings used by Xcerpt rules for deriving new data terms. E.g. matching
the query term book [ title [ var X ] ] with the XML snippet above results in the
variable binding {X / "White Mughals"}. Construct terms are essentially data terms
with variables. The variable bindings produced by query terms in the body of a rule can
be applied to the construct term in the head of the rule in order to derive new data terms.
In the rule head, construct terms including a variable can be prefixed with the keyword
all to group the possible variable bindings around the specific variable.

1GOAL
authors [ var X ]

3FROM
book [[ author [ var X ] ]]

5END

7CONSTRUCT
book [ title [ "White Mughals" ], author [ "William Dalrymple" ] ]

9END

Listing 1: The construct rule defines some data about books and their authors and the goal
rule queries this data for authors

An example Xcerpt program querying a bibliography fact base is shown in Listing 1,
resulting in the data term authors [ "William Dalrymple" ]. For a more complete
and in-depth view into Xcerpt, please consult [7].

3simulation unification, for details of this technique, please refer to [26]
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The reuse abstraction available directly in Xcerpt is on the level of rules. Rules can
be chained together where the output from one rule is used as input to another. As such,
rules may be reused and configured together in new ways. Other kinds of reuse are not
offered, for example, there is no support to reuse query terms or any other syntactical
entity supported by the language. In the following sections we propose how this situation
can be remedied for any language defined by a context-free grammar. It should be noted
that while we use examples from Xcerpt, the techniques is in no way limited to this
particular language.

3 FORMALISM

Before defining our notion of fragment components and how they can be specified in more
detail, we briefly look at context-free grammars, as the principal formalism for describing
the syntax of formal languages. We will then base our explanations on languages defined
using context-free grammars. Fragment components and ISC can also be used for lan-
guages based on metamodeling, but in this paper we focus on grammar-based languages
to simplify our explanations.

Formally, a context-free grammar (CFG) is a 4-tuple [15]:

G = (Vt ,Vn,Pr,S)

where Vt is a finite set of terminals, Vn a finite set of non-terminals, Pr a finite set of
production rules Vn → (Vt ∪Vn)∗ and S ∈Vn the start symbol. Each production rule Vn →
(Vt ∪Vn)∗ can be used to rewrite Vn by (Vt ∪Vn)∗. A language L is context free if there
exists a context-free grammar G that generates it. Intuitively, a context-free grammar G
of a programming language L defines a (possibly infinite) set of programs that conform to
G. Most programming languages can be defined by a context-free grammar, and we only
deal with such languages here.

1XcerptProgram = XcerptStatement+;
XcerptStatement = GoalQueryRule | ConstructQueryRule;

3

ConstructQueryRule = "CONSTRUCT", ConstructTerm, ("FROM", QueryTerm)?, "END";
5GoalQueryRule = "GOAL", ConstructTerm, ("FROM", QueryTerm)?, "END";

7QueryTerm = StructuredQt | ...
ConstructTerm = ...

Listing 2: A selection of the production rules for Xcerpt

As an example, the production rules Pr of a context-free grammar describing the syn-
tax of a subset of the Xcerpt language is given in Listing 2 (based on a grammar given in
[6]). The start symbol for this grammar is assumed to be XcerptProgram. Intuitively, this
means that any valid program of the grammar can be derived starting from the symbol
XcerptProgram by successively applying production rules until no more non-terminals
are contained in the resulting string. The symbols ? and | have the standard meaning as
used in EBNF [12].
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A program P of a language L defined by the grammar G is a set of syntactically well-
formed statements wrt. G. More specifically, the program P can be derived from G using
its defined production rules and starting with the start symbol S. We can, therefore, say
that P is of (grammatical) type S.

Definition 1 (Grammatical types). Given a string T and a context-free grammar G,
every non-terminal vn ∈Vn that T can be derived from is a grammatical type (wrt. G) of
T . The grammatical type of any program derived from G is S, the start symbol of G.

For example, for the grammar in Listing 2, we say that the type of a valid pro-
gram is XcerptProgram. Note that according to Definition 1, strings can have more
than one grammatical type. In particular this is the case when a grammar G contains
production rules with choices. For example, on Line 2 in Listing 2 where the non-
terminal XcerptStatement is defined. A string that can be derived from the non-terminal
GoalQueryRule can also be derived from the non-terminal XcerptStatement.

The program in Listing 3 queries a bibliography database biblio.xml and extracts
titles and authors from it and constructs the result in a specific way, as seen in the con-
struct term of the goal rule. The string representing the program can be generated start-
ing from three different non-terminals in the grammar in Listing 2: XcerptProgram,
XcerptStatement, GoalQueryRule. Therefore its set of grammatical types includes
these non-terminals.

GOAL
2results [ all result [

var Title, all var Author
4] ]

FROM
6in { resource { "file:biblio.xml", "xml" },

bib [[ book [
8var Title -> title [[ ]],

authors [[
10var Author -> author [[ ]]

]]
12] ]]

}
14END

Listing 3: An Xcerpt program querying a bibliography database for authors and titles

In ISC programs are composed from fragments of code, or so-called partial programs.
Partial programs are not complete programs in themselves, but can describe specific con-
cerns in more complete programs. Partiality of a program can stem from two different
sources: First, given a grammar G one may specify partiality of a program P wrt. G by
exchanging the start symbol S of G to S′ ∈Vn \{S}. By using a start symbol other than S,
we effectively derive a new grammar G′, defining a sub-part of a valid G-program. Such
a partial program is, consequently, of grammatical type S′.

For example, Listing 4 is a partial program wrt. to the original Xcerpt grammar. In
fact it is the Xcerpt query term from Listing 3 and the type QueryTerm belongs to its set
of grammatical types. Therefore, it is a valid program wrt. to the original Xcerpt grammar
where the start symbol has been changed to QueryTerm.
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in { resource { "file:biblio.xml", "xml" },
2bib [[ book [

var Title -> title [[ ]],
4authors [[

var Author -> author [[ ]]
6]]

] ]]
8}

Listing 4: A partial Xcerpt program: a query term

Second, partiality of a program can also come from within a specific sub-part as it
was defined above. Thus, for a partial program it is not sufficient to only use a different
start symbol for the grammar. A partial program may also be underspecified “inside”; that
is, at a deeper nesting level. For example, a partial program consisting of a goal rule in
Xcerpt might be underspecified by leaving out the query term, thus allowing the rule to be
configurable wrt. the query term. To allow for such underspecifications, we introduce the
notion of a variation point. A variation point is a place holder for some partial program
that is still unspecified.

Definition 2 (Variation point). A variation point v(vn, I) represents the uninstantiated
non-terminal vn ∈ Vn from a grammar G. The grammatical type of a variation point
v(vn, I) is vn. I is an identifier associated with the variation point.

Listing 5 shows the goal rule from Listing 3, where we have replaced the concrete
query term with a variation point for the non-terminal QueryTerm: «myVarPoint :
QueryTerm». This allows us to vary the query term used in this rule, or seen another
way, allows us to reuse the desired query term in other rules. Here we use « and » to
markup the variation point and myVarPoint is the identifier for the specific variation
point.

GOAL
2results [ all result [

var Title, all var Author
4] ]

FROM
6<<myVarPoint : QueryTerm>>

END

Listing 5: An underspecified partial Xcerpt program with one variation point

To enable processing of partial programs containing variation points, we need to ex-
tend their grammar to include syntax for the variation points. Therefore, we introduce
variation point syntax as non-terminals (we use Vv to denote a set of variation points):

Definition 3 (Context-free reuse grammar). A context-free reuse grammar for a context-
free grammar G = (Vt ,Vn,Pr,S) is a context-free grammar

GI = (Vt ,Vn∪Vv,PrI,SI)

transformed via the function GI = τ(G) where SI ∈ Vn (possibly SI 6= S) and for each
vp ∈Vv there is a non-terminal n ∈Vn such that vp = v(n, I), v is a variation point for n.
For any reuse grammar GI , we call G the core grammar of GI .
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τ fulfils two properties. First, τ is preservative, meaning that any string that can be
derived from SI wrt. G can still be derived from SI wrt. grammar GI . Second, τ is type
preservative. This means that τ transforms the production rules Pr of G such that each
vp ∈Vv is introduced in rules of PrI with the requirement that vp is only an alternative for
its corresponding n ∈Vn (according to vp = v(n, I)).

The transformation function τ, thus, extends a core grammar for a language L into
a corresponding reuse grammar describing a language used for writing partial programs
of L . It is a generalising grammar transformation in the sense of [14]. Intuitively, if
variation points for some grammatical type are introduced, we only extend the production
rules of the core grammar such that the variation points become valid alternatives for
partial programs of that type.

Thus, a partial program may be specified by freely choosing a start symbol SI ∈ Vn
and using a set Vv of variation points for a subset of Vn.

Listing 6 is provided as an example of how the production rules of the (core) Xcerpt
grammar from Listing 2 are transformed via τ to allow for replacing a concrete query
term with a variation point. In the production rules defining ConstructQueryRule and
GoalQueryRule, the reference to the rule QueryTerm is replaced by a choice. Such a
choice allows to specify a variation point — v(QueryTerm,I) — as an alternative to a
concrete query term.

1XcerptProgram = XcerptStatement+;
XcerptStatement = GoalQueryRule | ConstructQueryRule;

3

ConstructQueryRule = "CONSTRUCT", ConstructTerm,
5("FROM", ( QueryTerm | v(QueryTerm,I) ))?, "END";

GoalQueryRule = "GOAL", ConstructTerm,
7("FROM", ( QueryTerm | v(QueryTerm,I) ))?, "END";

9v(QueryTerm,I) = "<<", I, ":", "QueryTerm", ">>";

11QueryTerm = StructuredQt | ...
ConstructTerm = ...

Listing 6: Reuse grammar production rules including a variation point for QueryTerm

There are two basic approaches to derive a context-free reuse grammar GI from a
context-free core grammar G via τ:

1. Introduce variation points in Vv of GI for every non-terminal in Vn of G (i.e. |Vn|=
|Vv| and ∀vn ∈Vn : ∃v(vn, I) ∈Vv). In this case, we call GI a universal extension of
G, or universally variable.

2. Introduce variation points for a well-chosen subset of non-terminals in Vn of G only
(i.e. Vv ⊂Vn). In this case, we call GI a tailored extension of G.

Definition 4 (Fragment). A fragment is a partial program wrt. a context-free grammar
G and a valid program wrt. a context-free reuse grammar GI = τ(G). The grammatical
type of such a fragment is SI .
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The variation points contained in a fragment form its invasive composition interface.
Based on their composition interfaces, fragments can be connected using special operators
called composition operators.

Definition 5 (Primitive composition operators). A primitive composition operator is an
operation that takes two fragments F1 and F2, and the identifier of a variation point v
in F1 and produces a new fragment, which is equal to F1, but with the variation point
transformed by F2.

Depending on the type of compositions allowed on them, we distinguish two basic
types of variation points (as well as the corresponding types of primitive composition
operators):

1. Slots can be used for parametrization of a fragment. They function as place holders
for a single fragment. Once a slot has been bound (i.e., the composition operator
bind() has been applied to the slot), it cannot be bound again.

2. Hooks can be used for extension of fragments. A hook serves as an extension point
where suitable fragments can be added repeatedly, if necessary, by applying the
extend() composition operator to the hook. That is, after each call of extend()
the hook being operated on remains in place to be used again.

Composition operators are type-safe operators in the sense that they enforce that the
type of the variation point and the type of the fragment to be bound to the slot, or added
to the extension point, match. Definition 6 specifies what matching of grammatical types
means. It should be clear that the types involved are derived from the underlying core
grammar and its set of non-terminals.

Definition 6 (Type safety). Let G be a context-free core grammar, F1 and F2 fragments
valid wrt. GI = τ(G), v(vn, I) a variation point in F1, and c a primitive composition
operator. Let GT2 ⊆ Vn be the set of grammatical types of F2. Then c can be applied to
F1, F2, and v, iff vn ∈ GT2; that is, if the grammatical types of the variation point and the
fragment to be composed match.

By enforcing type safe composition, it is guaranteed that the result from executing
a composition operator will always be a valid partial program wrt. the underlying core
grammar. Thus, syntactical errors in the potential composition result will already be
caught at composition time and reported to the user. In case of a type error, the composi-
tion will not be executed.

For example, the grammatical types of the query term in Listing 4 are {QueryTerm,
StructuredQt}. Binding the variation point in Listing 5 with the fragment in Listing 4
using the bind() primitive composition operator is type safe. This is so, because the type
of the variation point belongs to the set of grammatical types of the fragment being bound
(QueryTerm ∈ {QueryTerm,StructuredQt}). Trying to bind the fragment in Listing 3
to the same variation point will result in a type error and the execution will not proceed
(since QueryTerm 6∈ {XcerptProgram,XcerptStatement,GoalQueryRule}).
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Additionally to the concept of primitive composition operators, we introduce the no-
tion of complex composition operators. A complex composition operator groups a number
of primitive operators, intended to be executed as an atomic unit for some specific task.
As such, the complex operator can address several variation points acting together and
apply the primitive composition operators on them in sequence. We will in the follow-
ing demonstrate the use of such a complex composition operator implementing a module
system for Xcerpt.

Xcerpt does not, at the time of writing, allow for a set of rules to be collected into a
reusable module, like in other logic programming systems, e.g. XSB4. Here we intend to
solve this issue using our composition framework. An Xcerpt module in this setting is an
Xcerpt program with slots, i.e. an Xcerpt fragment. The slots can be used to configure
modules for some specific purpose, e.g. to control the information flow, as we will show
below.

Ontologies are nowadays commonly used on the Semantic Web for modeling domain
information. A common use of such ontologies is to arrange the central concepts of the
modeled domain in a subclass-of hierarchy. Ontology reasoners are often employed to
infer implicit information contained in such ontologies, e.g. to compute the transitive
closure of the subclass-of relationships. The rules in Listing 7 describe a reusable Xcerpt
module, which can be used as a simple inference engine for computing such implicit
information without employing the full force of an ontology reasoner. The second rule is
used to extract the explicit subclass-of information from the ontological data, while the
first rule infers the implicit information.

CONSTRUCT
2inferredSubClassOf [

all subClassOf [ var Subclass, var Superclass ]
4]

FROM
6or {

declsubclassof [ var Subclass, var Superclass ],
8and {

declsubclassof [ var Subclass, var Z ],
10declsubclassof [ var Z, var Superclass ]

}
12}

END
14

CONSTRUCT
16declsubclassof [ var Subclass, var Superclass ]

FROM
18<<rootNode>> [[

Class {
20id { var Subclass },

subClassOf {
22about { var Superclass }

}
24}

]]
26END

Listing 7: An Xcerpt module in the file /subClassOf.mxcerpt

4http://xsb.sourceforge.net
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Since the author of the reusable module does not necessarily know how the data on
which the rules will operate will be structured, a slot has been declared to be able to
configure this. A possible extended Xcerpt program using the module defined above is
shown in Listing 8. The program uses the module to construct a result consisting of all
the existing subclass-of relationships of an ontology. For simplicity, the input data (i.e.
the ontology) is directly constructed inside the program (Lines 11–19), but could also
be given as a view provided by an additional construct rule querying a specific ontology
document and format (e.g. OWL [24]). The given ontology describes sports articles and
their subclass-of relationships.

IMPORT
2/subClassOf.mxcerpt [ bind(rootNode, ’owl’) ]

END
4

GOAL
6result [ all var X ]

FROM
8var X -> inferredSubClassOf [[ ]]

END
10

CONSTRUCT
12owl [

Class [ id [ "SportsEquipment" ] ],
14Class [ id [ "TennisRacket" ],

subClassOf [ about [ "SportsEquipment" ] ] ],
16Class [ id [ "WilsonTennisRacket" ],

subClassOf [ about [ "TennisRacket" ] ] ]
18]

END

Listing 8: An Xcerpt program making use of the module

We need to declare a hook in the Xcerpt program where the content of a module should
be placed. Additionally, we need to provide a complex composition operator that imple-
ments the merging of modules. In particular, this operator provides support for configura-
tion of modules.5 So that the operator can be invoked, we need to provide a corresponding
construct in the extended language. Here we choose to call this construct import. Lines
1–3 of Listing 8 show the import statement that Xcerpt has been extended with. Note
that we have not explicitly declared the above-mentioned hook. Composition operators
may be executed in-line. That is, the import statement here represents both the hook and
the call to the defined composition operator. The composition operator in this example
takes two arguments: the location of the module (/subClassOf.mxcerpt) as well as the
identifier–fragment pair for the configuration slot in the module («rootNode» to be re-
placed by owl). The steps performed by the import composition operator are as follows.6

First, it loads the fragments from the specified module (each of type XcerptStatement).
Second, it executes the bind composition operator for every slot–fragment pair that the
module is parameterized with. Third, it extends the hook represented by the import state-
ment with the loaded fragments. The composition result will thus consist of the two rules

5It could also provide support for module encapsulation, however, we will discuss these issues in more
detail in a follow-up paper.

6The formal definition of the composition operator is not provided here for space reasons.
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from the module put together with the goal rule from the program, such that they can be
executed by the Xcerpt engine. For space reasons, we do not present the composition
result, but it can be found on the Reuseware web page7.

The module system we presented here is in a sense rather simple and leaves many
aspects of a module system unconsidered. One such aspect is module encapsulation,
i.e. making sure that rules from different modules do not affect each other in unintended
ways when merged. A composition operator for a module system should perform ad-
ditional steps to protect, if required and specified, the merged rules from each other. A
composition operator extended with just this feature has been implemented for Xcerpt,
but is left out from this paper due to space limitations. This extended operator, together
with examples, can, however, be found on the Reuseware web page.

4 COMPOSITION FRAMEWORK IMPLEMENTATION

This section describes the Reuseware Composition Framework that implements the con-
cepts described above. We use the presented Xcerpt module example to show selected
parts of the implemented tool. As one front-end, we implemented a set of plugins for
the Eclipse Platform [28]. However, the framework itself can be used independently of
Eclipse.

The framework consists of two distinct components. The first component provides
tooling to define and extend languages. The second component supports definition of
fragments and composition execution.

In the following, we will use the first component to define and extend the Xcerpt
grammar. The results of this process (i.e., the generated code) will then be used by the
second component to execute the Xcerpt import example.

Generating a Composition System

To get started, we require a description of the original language—in our case Xcerpt. In
this paper we use context-free grammars to define languages. Tool support for languages
based on context-free grammars does not extend far beyond parser generation. On the
other hand, metamodel-based languages have much richer tool support. Therefore, we
use EMOF [21] as our implementation technology. The EMOF implementation Ecore
and the associated Eclipse Modeling Framework [8] offer a rich and stable tool set to
manipulate models and metamodels. Ecore models and metamodels are used to represent
fragments and grammars, respectively. Any structure that can be defined by a context-free
grammar can also be defined by a metamodel (since context-free grammars describe tree
structures and metamodels can also describe graph structures). A mapping from a context-
free grammar to a metamodel is possible [1] and is provided by the framework to allow
language specification in grammar form. Such a metamodel only describes the syntax of

7http://www.reuseware.org/modularxcerptexample
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a language. The mapping does not take conceptual relationships between grammars and
metamodels, as discussed in [16], into account. Such considerations will be included in
future work.

A grammatical language description in the tool has two parts. On the one hand, a
concrete syntax definition is required in order to process concrete code fragments. On the
other hand, the abstract syntax has to be provided, since it clearly defines the grammatical
types. Abstract and concrete syntax are cleanly separated into separate files. The abstract
description is mapped to an Ecore metamodel from which a Java code representation is
generated by the Eclipse Modeling Framework. From the concrete syntax description a
parser and a printer are generated utilizing the ANTLR tool set [23]. The separation of
abstract and concrete syntax also allows to define several concrete syntaxes, which some
languages (e.g. Xcerpt) have, for the same abstract syntax.

Abstract syntax grammar

Concrete syntax grammarMetamodel (result from mapping) Generate code

Extend grammar automatically

Figure 1: Grammar of Xcerpt in Reuseware

The abstract and concrete syntax grammars of Xcerpt can be derived by separating
concrete from abstract elements in the grammar from Listing 2. Additionally, each ref-
erence to a production rule in the abstract syntax grammar is tagged with a role name
(rolename : ProductionRule). These names are then used to annotate the concrete
syntax on top of the abstract structure. The production rule for GoalQueryRule (Line
5 in Listing 2), for instance, is split into an abstract and a concrete form. The abstract
syntax production rule looks as follows:

GoalQueryRule = goal:ConstructTerm, query:QueryTerm?;
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This abstract syntax rule is then annotated with its concrete syntax using the notion of
role names in the following manner:

GoalQueryRule ::= "GOAL" goal ("FROM" query)? "END";

The Xcerpt grammars as they are used in the tool are shown in Figure 1. After the
grammars of the original language have been defined in the tool, they can be extended
for reuse. This extension can be done automatically or by manually adding production
rules. Additional production rules are annotated to enable the tooling to identify variation
points as such and address them during composition. In any case, the extended grammar
is a context-free reuse grammar and the extension itself conforms to the transformation
function τ (defined in Definition 3). Figure 2 visualizes the extended grammars of Xcerpt
that use annotations to identify non-terminals that describe variation points. Such an-
notations are done in the abstract syntax grammar by repeating the rule name followed
by a ==> and a predefined marker. Such markers are “componentmodel.Slot” and
“componentmodel.Hook”.

Abstract syntax reuse grammar

Concrete syntax reuse grammarSeparate files for core and reuse grammar

Refinement of a rule defined elsewhereGenerated code

Figure 2: Grammar of ReuseXcerpt in Reuseware

Additional production rules may be placed in a separate file. The completed ex-
tended grammar will then consist of the original grammar as modified by these addi-
tional production rules. Non-terminals defined elsewhere can be referred to using the
Language.NonTerminal notation. Thus a separation between core language and reuse
extension is reflected on the grammar files.

Note that a concrete syntax definition has to be provided for the reuse language. How-
ever, such definitions do not have to care about which are original and which are additional
rules, since the parsers handle all rules alike.
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Xcerpt module

Composition errorFolder for composition results

Reuseware Project Extended Xcerpt program

Slot

Figure 3: Xcerpt composition in Reuseware

Executing a Composition

Once plugins are generated, they can be deployed and activated inside the platform. In our
case, fragments written in the languages Xcerpt and its reuse extension are now under-
stood by the tooling. Variation points inside underspecified fragments can be recognized
and addressed for composition. The composition is executed by merging the abstract
syntax trees and using a generated printer to obtain a concrete program as result. Since
grammatical types are reflected into the metamodel and into the generated code, type safe
composition is ensured. In Figure 3 we show the definition of fragments in the tooling. A
Reuseware Project provides different folders with distinct behaviors:

components Fragments (possibly underspecified) placed in this folder will be found by
the tooling. We place our Xcerpt module here.

composition programs Here, one can place fragments or composition programs8. The
tooling will automatically interpret the content of this folder and call the corre-
sponding composition operators. We place our extended Xcerpt program here. The
tooling will then execute the import composition operator.

out After a composition was executed successfully, the result appears here.

8A definition of which composition operators are to be applied on which variation points.
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In this section we gave a brief overview of the Reuseware Composition Framework.
The Xcerpt modular system motivated earlier was realized using the framework and can
be utilized as a preprocessor, composing Xcerpt fragments before passing them to the
Xcerpt interpreter. Certain details, for instance about composition operator definition,
have been left out since they do not directly relate to the theory of composition interfaces
presented in this paper. Future work will discuss aspects related to these elements of the
framework.

5 RELATED WORK

The Mjølner System and the Beta language [17] were the first to introduce the concept
of slots. In Beta, any programming construct can be replaced by a slot typed with the
non-terminal corresponding to that construct. Beta also supports a notion of inheritance
of grammar types. Binding of slots happens when the name of a fragment and the name
of a slot in the same project match. Our approach extends the Beta approach in two ways:

1. We introduce additional types of variation points, in particular hooks, which can be
extended multiple times. Also, we make explicit the actual composition operators,
so that binding a slot with a fragment is an explicit operation rather than implicitly
matching by name.

2. We extend the concept to any language that can be described by a context-free
grammar. Different from Beta, our tool allows any language to be automatically
extended with a composition system.

The Software COMPOsition SysTem (COMPOST) [27] is a predecessor of our cur-
rent system, which introduced many of the concepts available in our approach, but was
limited to Java and XML. Each new language that should be supported by COMPOST,
requires a large amount of implementation work. The contribution of this paper is an
approach that automates the generation of composition systems for any language that can
be specified using a context-free grammar.

Our notion of fragment components is comparable to the notion of syntactic units
presented in [18]. Syntactic units are arranged in syntactic unit trees that can be likened
to composition programs. In this approach, so-called extension spots can be defined as
alternatives for any fragment of code derivable from a non-terminal. Compared to our
approach, there is no formalization of language extensions which allows for tailored ex-
tension of a language (to only allow the desired amount of variability) and generation of
language specific tooling.
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6 CONCLUSIONS AND OUTLOOK

In this paper we have presented a language-independent technology for modularization,
composition and reuse. The technology is based on Invasive Software Composition (ISC)
[2], a grey-box approach to composition. So far, ISC has been manually implemented for
Java and XML [27]. The contribution of this paper is a generic extension of ISC to arbi-
trary languages. To this end, in Section 3 we have formally defined the relevant concepts
of the framework. In Section 4 we have, then, presented an Eclipse-based tool that can
automatically generate composition support from language descriptions of arbitrary lan-
guages. We have used examples in Xcerpt [7] to demonstrate application of this generic
framework to a concrete language.

In this paper, we have only lightly touched on the issue of complex composition oper-
ators and composition languages. Additional work has been done in this area, but due to
space limitations, this work will have to be reported in a future publication. Further, the
approach presented currently supports composition at a syntactic level only. That is, while
type-safe composition can guarantee that the composition results will be syntactically
valid programs, they may still be semantically invalid. For example, if a programming
language requires that a variable be declared before it is used, this cannot be expressed
in our typing rules. We are working on enhancing the composition interface of fragments
with various types of semantic constraints that will allow to detect such situations through
static type-checking of composition programs.

The technology as presented in this paper is based on context-free–grammar descrip-
tions of languages to be extended. However, the underlying concepts—variation points,
fragments, and invasive composition—can also be transferred to metamodel-based de-
scriptions of languages. The most important issue one has to deal with here is the fact that
metamodel instances tend to have a graph-like structure, while instances of context-free
grammars are always trees. The current version of the tool already contains initial support
for metamodel-based languages (not shown in this paper). We are going to investigate this
further and are planning to provide full support for metamodel descriptions of languages
in the near future.

EBNF can itself be described using EBNF. Therefore, our approach can be applied to
construct a composition and modularization technique for EBNF itself. Effectively, this
provides an opportunity to bootstrap our approach and provide support for language com-
position. An example, where language composition may be useful is event–condition–
action (ECA) languages, often used for describing behavior in a rule-based manner. De-
pending on context, different sub-languages for events, conditions, and actions may be
preferable. However, the core semantics of handling ECA rules—namely, ‘when an event
occurs and the corresponding condition holds, then trigger an action’—is the same in-
dependent of the concrete sub-languages used. Hence, it would be interesting to study
whether we can modularize ECA languages such that we can reuse the core semantics
while being able to exchange the different sub-languages as appropriate. The approach
presented in this paper may form the technological backbone of such studies.
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We have presented our work as an approach to static, composition-time composition
(as opposed to dynamic run-time composition). However, as can also be seen from the
Beta [17] example, there is nothing, conceptually, that stands against dynamic composi-
tion of fragments. Dynamic composition of fragments may allow completely new ways
of modularizing and dynamically reconfiguring programs. This is still a very open, but
very interesting field of research. We hope to be able to cover some ground in this area in
the longer-term future.
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