
Vol. 6, No. 9, Special Issue. TOOLS EUROPE 2007, October 2007

Update Transformations in the Small with
the Epsilon Wizard Language

Dimitrios S. Kolovos
Richard F. Paige
Fiona A.C. Polack
Louis M. Rose

Department of Computer Science, University of York, United Kingdom

We present the Epsilon Wizard Language (EWL), a tool-supported language for spec-
ifying and executing automated update transformations in the small based on existing
model elements and input from the user. We discuss on EWL’s requirements and rele-
vant design decisions, as well as the infrastructure upon which the language has been
developed. We also provide concrete working examples to demonstrate how EWL can
be used to automate the process of constructing and refactoring models.

1 INTRODUCTION

Enhancing consistency and productivity in software development are the most im-
portant promises of Model Driven Development. The role of Model Transformation
for delivering these benefits is so important that it has been characterized the heart
and soul of Model-Driven Development [1]. There are two types of transformations:
mapping and update transformations [2]. Mapping transformations typically trans-
form a source model into a target model expressed in a different modelling language
by creating zero or more model elements in the target model for each model element
of the source model. A prominent example of mapping transformations is the pop-
ular Class to Database scenario found in [3]. By contrast, update transformations
perform in-place modifications of a model. They can be further classified into two
subcategories: transformations in the small and in the large. Update transforma-
tions in the large apply to sets of model elements calculated using well-defined rules
in a batch manner. On the other hand, update transformations in the small are ap-
plied in a user-driven manner on model elements that have been explicitly selected
by the user.

In the context of tool-support for model transformation, a large number of task-
specific languages for mapping transformations have been proposed, including QVT
[4], ATL [3] and VIATRA2 [5]. Moreover, it has been shown that such languages
can also be used to achieve update transformations in the large (e.g. the refinement
mode of ATL). By contrast, the field of update transformations in the small remains
relatively underdeveloped.

Cite this document as follows: Dimitrios S. Kolovos, Richard F. Paige, Fiona A.C. Polack:
Update Transformations in the Small with the Epsilon Wizard Language, in Journal of Object
Technology, vol. 6, no. 9, Special Issue. TOOLS EUROPE 2007, October 2007, pages 53–69,
http://www.jot.fm/issues/issues 2007 9/paper3

http://www.jot.fm/issues/issues_2007_10/paper3/


UPDATE TRANSFORMATIONS IN THE SMALL WITH THE EPSILON WIZARD LANGUAGE

In this paper we present the Epsilon Wizard Language (EWL), a language that
supports update transformations in the small for diverse modelling languages. EWL
provides novel features such as support for arbitrary modelling technologies, user
input and flexible guards in transformation rules.

The rest of the paper is organized as follows. In Section 2 we discuss the process
of constructing and refactoring models and show that it can benefit substantially
from additional automation beyond that provided by the modelling tools themselves.
In Section 3 we discuss the concept of update transformations in the small and out-
line the specific requirements of the task. Through this discussion we elaborate a
set of desirable characteristics for a language that can effectively support update
transformations in the small. In Section 4 we present the prototype Epsilon Wizard
Language (EWL), with tool support, which is implemented atop the Epsilon plat-
form [6] and tailored specifically to support update transformations in the small.
To show the practicality and usefulness of our approach, in Section 5 we provide
concrete examples implemented with EWL. In Section 6 we discuss related work and
in Section 7 we conclude and provide directions for further research on the subject.

2 CONSTRUCTING AND REFACTORING MODELS

Constructing and refactoring models is undoubtedly a mentally intensive process.
However, during modelling, reoccurring patterns of model update activities typically
appear. As an example, when renaming a class in a UML class diagram, the modeller
also needs to manually update the names of association ends that link to the renamed
class. Thus, when renaming a class from Chapter to Section, all associations ends
that point to the class and are named chapter or chapters should be also renamed
to section and sections respectively. As another example, when the modeller
needs to refactor a UML class into a singleton [7], they need to go through a number
of well-defined steps such as attaching a stereotype (<<singleton>>), defining a
static instance attribute and adding a static getInstance() method that returns
the unique instance of the singleton.

It is generally accepted that performing repetitive tasks manually is both time-
consuming and error-prone [8]. On the other hand, failing to complete such tasks
correctly and precisely compromises the consistency, and thus the quality, of the
models. In Model-Driven Development, this is particularly important since models
are increasingly used to automatically produce (parts of) working systems.

Automating the Construction and Refactoring Process

Some modelling tools provide built-in transformations (wizards) for automating
common repetitive tasks. However, according to the architecture of the designed
system and the specific problem domain, additional repetitive tasks typically appear,
which cannot be addressed by the pre-conceived built-in wizards of a modelling tool.

54 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



3 UPDATE TRANSFORMATIONS IN THE SMALL

To address the automation problem in its general case, users must be able to easily
define update transformations (wizards) that are tailored to their specific needs.

To an extent, this can be achieved via the extensible architecture that state-
of-the-art tools often provide and which enables users to add functionality to the
tool via scripts or application code using the implementation language of the tool.
Nevertheless, as discussed in [9], the majority of modelling tools have a proprietary
API through which they expose an edited model, and therefore such scripts and
extensions are not portable to other tools. Moreover, scripting languages and third-
generation languages such as Java and C++ are not particularly suitable for model
navigation and modification [9].

Existing languages for mapping transformations, such as QVT and ATL, cannot
also be used as-is for this purpose. The main reason is that such languages have been
designed to operate in a batch manner without human involvement in the process.
By contrast, as discussed above, the task of constructing and refactoring models is
inherently user-driven. The option of extending/customizing them is discussed in
the sequel.

3 UPDATE TRANSFORMATIONS IN THE SMALL

Update transformations are actions that automatically create, update or delete
model elements based on a selection of existing elements in the model and infor-
mation obtained otherwise (e.g. through user input), in a user-driven fashion. In
this paper we refer to such actions as wizards instead of rules to reduce confusion
between them and rules of languages for mapping transformations such as ATL and
QVT. In the following sections we elaborate the desirable characteristics of wizards
in an informal way.

Structure of Wizards

In its simplest form, a wizard only needs to define the actions it will perform when
it is applied to a selection of model elements. The structure of such a wizard that
transforms a UML class into a singleton is shown using pseudo-code in Listing 1.

Listing 1: The simplest form of a wizard for refactoring a class into a singleton

do :
attach the singleton stereotype
create the instance attribute
create the getInstance method

Since not all wizards apply to all types of elements in the model, each wizard
needs to specify the types of elements to which it applies. For example, the wizard
of Listing 1, which automatically transforms a class into a singleton, applies only

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 55



UPDATE TRANSFORMATIONS IN THE SMALL WITH THE EPSILON WIZARD LANGUAGE

when the selected model element is a class. The simplest approach to ensuring that
the wizard will only be applied on classes is to enclose its body in an if condition
as shown in Listing 2.

Listing 2: The wizard of Listing 1 enhanced with an if condition
do :
if (selected element is a class) {
attach the singleton stereotype
create the instance attribute
create the getInstance method

}

A more modular approach is to separate this condition from the body of the
wizard. This is shown in Listing 3 where the condition of the wizard is specified as a
separate guard stating that the wizard applies only to elements of type Class. The
latter is preferable since it enables filtering out wizards that are not applicable to
the current selection of elements by evaluating only their guard parts and rejecting
those that return false. Thus, at any time, the user can be provided with only
the wizards that are applicable to the current selection of elements. Filtering out
irrelevant wizards reduces confusion and enhances usability, particularly as the list
of specified wizards grows.

Listing 3: The wizard of Listing 2 with an explicit guard instead of the if condition
guard : selected element is a class
do :
attach the singleton stereotype
create the instance attribute
create the getInstance method

To enhance usability, a wizard also needs to define a short human-readable de-
scription of its functionality. To achieve this we add another field named title.
There are two options for defining the title of a wizard: the first is to use a static
string and the second to use a dynamic expression. The latter is preferable since it
enables definition of context-aware titles.

Listing 4: The wizard of Listing 3 enhanced with a title part
guard : selected element is a class
title : Convert class <class-name> into a singleton
do :
attach the singleton stereotype
create the instance attribute
create the getInstance method

Capabilities of Wizards

The guard and title parts of a wizard need to be expressed using a language that
provides model querying and navigation facilities. Moreover, the do part also re-
quires model modification capabilities to implement the transformation. To achieve

56 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



4 THE EPSILON WIZARD LANGUAGE (EWL)

complex transformations, it is essential that the user can provide additional infor-
mation. For instance, to implement a wizard that addresses the class renaming
scenario discussed in Section 2, the information provided by the selected class does
not suffice; the user must also provide the new name of the class. Therefore, a
suitable language must also provide mechanisms for capturing user input.

4 THE EPSILON WIZARD LANGUAGE (EWL)

In the previous section we used an example to elaborate the desired structure and
capabilities of a language for supporting update transformations in the small effec-
tively. In this section, we present such a language, the Epsilon Wizard Language
(EWL), and discuss the infrastructure on which it has been implemented as well as
its abstract syntax and execution semantics.

Infrastructure

As discussed in Section 3, a language for update transformations in the small must
provide model querying, navigation and modification facilities. To achieve this in
the context of EWL with minimal effort and duplication, we have implemented the
language atop Epsilon, a platform of task-specific languages for model management.

The Epsilon Platform

Experience has shown that each model management task is best supported by a
task-specific language. In this context, many different languages have been proposed
for tasks such as model transformation, merging, validation, comparison and code
generation. While each language has its own task-specific features, they all provide
mechanisms for model querying, navigation and modification. Moreover, languages
for tasks such as comparison, merging and transformation also need to support
access to more than one models - of potentially different metamodels and modelling
technologies - concurrently.

Epsilon consolidates these common facilities in a base language, the Epsilon Ob-
ject Language (EOL) [9], and the Epsilon Model Connectivity (EMC) layer that
new task-specific languages can reuse. EOL supports the powerful navigation and
querying mechanisms of OCL but also provides features such as statement sequenc-
ing, model modification, operation polymorphism, multiple model access, user in-
put/output facilities and enhanced modularity (using the import statement [9]).
The EMC on the other hand is a layer that abstracts over the different modelling
frameworks and enables languages built atop it to manage models of different mod-

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 57



UPDATE TRANSFORMATIONS IN THE SMALL WITH THE EPSILON WIZARD LANGUAGE

elling technologies uniformly. So far, EMC drivers for MDR1, EMF2 and XML
models have been developed and in the future we plan to develop drivers for the
Microsoft DSL framework [10] and for Java source code through the Spoon [11]
project.

The architecture of Epsilon facilitates implementing task-specific languages with
minimal replication. Apart from the wizard language discussed here, four more task-
specific languages have been developed atop EOL and EMC: the Epsilon Comparison
Language [12], the Epsilon Transformation Language [13], the Epsilon Merging Lan-
guage (EML) [14] (built atop ETL and ECL), and the Epsilon Validation Language
(EVL) [13]. Figure 4 provides a graphical overview of the architecture of Epsilon.

Figure 1: Overview of the architecture of Epsilon

Alternative Implementation Options

An alternative to implementing EWL atop Epsilon would be to extend the syntax
of a mapping transformation language such as QVT or ATL by adding the title

construct to rules, and implement a user-driven rule-execution scheme. From a
technical perspective this would be very challenging to achieve as neither language
has been designed with extensibility as a primary aim. Especially for QVT, a pub-
licly available implementation of the full standard is still missing, and therefore it
is practically impossible to build atop it. On the other hand, Epsilon provides a
more suitable infrastructure for implementing EWL since it has been built with the
precise aim of supporting the development of task-specific languages.

Abstract Syntax of EWL

Since EWL is built atop Epsilon, its abstract and concrete syntax need only to
define the concepts that are relevant to the task it addresses; they can reuse lower-
level constructs from EOL. The basic concept of the EWL abstract syntax is a

1http://mdr.netbeans.org
2http://www.eclipse.org/emf

58 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



4 THE EPSILON WIZARD LANGUAGE (EWL)

Figure 2: EWL Abstract Syntax

Wizard. A wizard defines a name, a guard part, a title part and a do part.
Wizards are organized in Modules. The name of a wizard acts as an identifier
and must be unique in the context of a module. The guard and title parts
of a wizard are of type ExpressionOrStatementBlock, inherited from EOL. An
ExpressionOrStatementBlock is either a single EOL expression or a block of EOL
statements that include one or more return statements. This concept allows users
to express simple declarative calculations as single expressions and complex calcula-
tions as blocks of imperative statements. The usefulness of this construct is further
discussed in the case study presented in Section 5. Finally, the do part of the wizard
is a block of EOL statements that specify the effects of the wizard when applied
to a compatible selection of model elements. A graphical overview of the abstract
syntax of EWL is provided in Figure 2.

Executing EWL Wizards in ArgoUML

The process of executing EWL wizards is inherently user-driven and as such it
depends on the environment in which it is used. In this work, we have integrated
the execution engine of EWL with the ArgoUML3 open-source UML modelling tool4.
Here we should stress that EWL does not depend in any way on ArgoUML (or UML
in general) and can be integrated as an extension to any Java-based modelling tool
such as the Topcased AADL and SAM or the GMF ECore graphical modellers.

To achieve integration, we have implemented an EMC compatible driver for the
internal model of ArgoUML so that EWL can query and modify it. Since ArgoUML
has been developed following a Model-View-Controller architecture, changes in the
internal model are reflected to the user interface automatically. To integrate with
the user-interface of ArgoUML, we have added a panel at the right side of the tool
(point 1 in Figure 3) where users can view and execute the applicable wizards.
The specifications of wizards are contained in a file (wizards.ewl) located in the

3http://argouml.tigris.org
4The extended version of ArgoUML is available at http://www-

users.cs.york.ac.uk/∼dkolovos/software.php

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 59



UPDATE TRANSFORMATIONS IN THE SMALL WITH THE EPSILON WIZARD LANGUAGE

Figure 3: Screenshot of the extended ArgoUML with support for EWL Wizards

installation directory of ArgoUML.

With regard to the execution process, each time the selection of model elements
changes (i.e. the user selects or deselects a model element), the guards of all wizards
are evaluated. If the guard of a wizard is satisfied, the title part is also evaluated
and the wizard is added to the list of applicable wizards (point 2 in Figure 3). Then
the user can select a wizard and press the execute button (point 3 in Figure 3) to
execute its do part. In all parts of the wizard, the elements selected by the user
can be referenced using the built-in (self) variable. Finally, any output or runtime
errors produced during the execution of any part of the wizard are displayed in the
output tab (point 4 in Figure 3).

Evaluating the guard of every wizard whenever the selection of model elements
changes can be quite time-consuming when many wizards are defined. Therefore,
we are considering adopting a more scalable approach for future versions of the tool.
An option is to evaluate the guards of wizards only when the user right-clicks on
the selected elements, and, thereafter display applicable wizards in a pop-up menu.

5 CASE STUDY

In this section we present three concrete examples of EWL wizards for refactoring
UML 1.4 models. Our aim is not to provide complete implementations that address
all the sub-cases of each scenario but to provide enhanced understanding of the
concrete syntax, the features and the capabilities of EWL to the reader. Moreover,
we should stress again that although the examples in this case study are based on
UML models, EWL can be used to capture wizards for diverse modelling languages

60 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



5 CASE STUDY

and technologies as discussed in Section 4.

Case 1: Converting a Class into a Singleton

The singleton pattern [7] is applied when there is a class for which only one instance
can exist at a time. In terms of UML, a singleton is a class stereotyped with the
<<singleton>> stereotype, and it defines a static attribute named instance which
holds the value of the unique instance. It also defines a static getInstance()

operation that returns that unique instance. Wizard ClassToSingleton, presented
in Listing 5, simplifies the process of converting a class into a singleton by adding
the proper stereotype, attribute and operation to it automatically.

Listing 5: Implementation of the ClassToSingleton Wizard
1 wizard ClassToSingleton {
2
3 -- The wizard applies when a class is selected
4 guard : self.isTypeOf(Class)
5
6 title : ’Convert ’ + self.name + ’ to a singleton’
7
8 do {
9 -- Create the getInstance() operation

10 var gi : new Operation;
11 gi.owner := self;
12 gi.name := ’getInstance’;
13 gi.visibility := VisibilityKind#vk_public;
14 gi.ownerScope := ScopeKind#sk_classifier;
15
16 -- Create the return parameter of the operation
17 var ret : new Parameter;
18 ret.type := self;
19 ret.kind := ParameterDirectionKind#pdk_return;
20 gi.parameter := Sequence{ret};
21
22 -- Create the instance field
23 var ins : new Attribute;
24 ins.name := ’instance’;
25 ins.type := self;
26 ins.visibility := VisibilityKind#vk_private;
27 ins.ownerScope := ScopeKind#sk_classifier;
28 ins.owner := self;
29
30 -- Attach the <<singleton>> stereotype
31 self.attachStereotype(’singleton’);
32 }
33 }
34
35 -- Attaches a stereotype with the specified name
36 -- to the Model Element on which it is invoked
37 operation ModelElement attachStereotype(stereotypeName : String) {
38 var stereotype : Stereotype;

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 61



UPDATE TRANSFORMATIONS IN THE SMALL WITH THE EPSILON WIZARD LANGUAGE

39
40 -- Try to find an existing stereotype with this name
41 stereotype := Stereotype.allInstances.select(s|s.name = stereotypeName).first();
42
43 -- If there is no existing stereotype
44 -- with that name, create one
45 if (not stereotype.isDefined()){
46 stereotype := Stereotype.createInstance();
47 stereotype.name := stereotypeName;
48 stereotype.namespace := self.namespace;
49 }
50
51 -- Attach the stereotype to the model element
52 self.stereotype.add(stereotype);
53 }

The guard part of the wizard specifies that it is only applicable when the selection
is a single UML class. The title part specifies a context-aware title that informs the
user of the functionality of the wizard and the do part implements the functionality
by adding the getInstance operation (lines 10-14), the instance attribute (lines
23-28) and the << singleton >> stereotype (line 31).

The stereotype is added via a call to the attachStereotype() operation. At-
taching a stereotype is a very common action when refactoring UML models, par-
ticularly where UML profiles are involved, and therefore to avoid duplication we
have specified this reusable operation that checks for an existing stereotype, creates
it if it does not already exists, and attaches it to the model element on which it
is invoked. In practice this, and other common operations on UML elements, are
located in a library of reusable operations (uml.lib) which we can import using the
EOL import statement from different EWL modules.

An extended version of this wizard could also check for existing association ends
that link to the class and for which the upper-bound of their multiplicity is greater
than one and either disallow the wizard from executing on such classes (in the
guard part) or update the upper-bound of their multiplicities to one (in the do
part). However, in this section our aim is not to implement complete wizards that
address all sub-cases but to provide a better understanding of the concrete syntax
and the features of EWL. This principle also applies to the examples presented in
the sequel.

Case 2: Renaming a Class

The most widely used convention for naming attributes and association ends of
a given class is to use a lower-case version of the name of the class as the name
of the attribute or the association end. For instance, the two ends of a one-to-
many association that links classes Book and Chapter are most likely to be named
book and chapters respectively. When renaming a class (e.g. from Chapter to
Section) the user must then manually traverse the model to find all attributes

62 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



5 CASE STUDY

and association ends of this type and update their names (i.e. from chapter or
bookChapter to section and bookSection respectively). This can be a daunting
process especially in the context of large models. Wizard RenameClass presented in
Listing 6 automates this process.

Listing 6: Implementation of the RenameClass Wizard

1 wizard RenameClass {
2
3 -- The wizard applies when a Class is selected
4 guard : self.isKindOf(Class)
5
6 title : ’Rename class ’ + self.name
7
8 do {
9 var newName : String;

10
11 -- Prompt the user for the new name of the class
12 newName := UserInput.prompt(’New name for class ’ + self.name);
13 if (newName.isDefined()) {
14 var affectedElements : Sequence;
15
16 -- Collect the AssociationEnds and Attributes
17 -- that are affected by the rename
18 affectedElements.addAll(
19 AssociationEnd.allInstances.select(ae|ae.participant = self));
20 affectedElements.addAll(
21 Attribute.allInstances.select(a|a.type = self));
22
23 var oldNameToLower : String;
24 oldNameToLower := self.name.firstToLowerCase();
25 var newNameToLower : String;
26 newNameToLower := newName.firstToLowerCase();
27
28 -- Update the names of the affected AssociationEnds
29 -- and Attributes
30 for (ae in affectedElements) {
31 ae.replaceInName(oldNameToLower, newNameToLower);
32 ae.replaceInName(self.name, newName);
33 }
34 self.name := newName;
35 }
36 }
37
38 }
39
40 -- Renames the ModelElement on which it is invoked
41 operation ModelElement replaceInName(oldString : String, newString : String) {
42 if (oldString.isSubstringOf(self.name)) {
43 -- Calculate the new name
44 var newName : String;
45 newName := self.name.replace(oldString, newString);
46
47 -- Prompt the user for confirmation of the rename

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 63



UPDATE TRANSFORMATIONS IN THE SMALL WITH THE EPSILON WIZARD LANGUAGE

48 if (UserInput.confirm(’Rename ’ + self.name + ’ to ’ + newName + ’?’)) {
49 -- Perform the rename
50 self.name := newName;
51 }
52 }
53 }

As with the ClassToSingleton wizard, the guard part of RenameClass specifies
that the wizard is applicable only when the selection is a simple class and the title
provides a context-aware description of the functionality of the wizard.

As discussed in Section 3, the information provided by the selected class itself
does not suffice in the case of renaming since the new name of the class is not specified
anywhere in the existing model. In EWL, and in all languages that build on EOL,
user input can be obtained using the built-in UserInput facility. Thus, in line 12 the
user is prompted for the new name of the class using the UserInput.prompt() op-
eration. Then, all the association ends and attributes that refer to the class are col-
lected in the affectedElements sequence (lines 14-21). Using the replaceInName

operation (lines 31 and 32), the name of each one is examined for a substring of the
upper-case or the lower-case version of the old name of the class. In case the check
returns true, the user is prompted to confirm (line 48) that they want the feature to
be renamed. This further highlights the importance of user input for implementing
update transformations with fine-grained user control.

Case 3: Moving Model Elements into a Different Package

A common refactoring when modelling in UML is to move model elements, partic-
ularly Classes, between different packages. When moving a pair of classes from one
package to another, the associations that connect them must also be moved in the
target package. To automate this process, in Listing 7 we present the MoveToPackage
wizard.

Listing 7: Implementation of the MoveToPackage Wizard
1 wizard MoveToPackage {
2
3 -- The wizard applies when a Collection of
4 -- elements, including at least one Package
5 -- is selected
6 guard {
7 var moveTo : Package;
8 if (self.isKindOf(Collection)) {
9 moveTo := self.select(e|e.isKindOf(Package)).last();

10 }
11 return moveTo.isDefined();
12 }
13
14 title : ’Move ’ + (self.size() - 1) + ’ elements to ’ + moveTo.name
15
16 do {

64 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



6 RELATED WORK

17 -- Move the selected Model Elements to the
18 -- target package
19 for (me in self.excluding(moveTo)) {
20 me.namespace := moveTo;
21 }
22
23 -- Move the Associations connecting any
24 -- selected Classes to the target package
25 for (a in Association.allInstances) {
26 if (a.connection.forAll(c|self.includes(c.participant))){
27 a.namespace := moveTo;
28 }
29 }
30 }
31
32 }

The wizard applies when more than one element is selected and at least one of
the elements is a Package. If more than one package is selected, the last one is
considered as the target package to which the rest of the selected elements will be
moved. This is specified in the guard part of the wizard.

To reduce user confusion over the package to which the elements will be moved,
the name of the target package appears in the title of the wizard. This example shows
the value of our choice to express the title as a dynamically calculated expression (as
opposed to a static string). It is worth noting that in the title part of the wizard
(line 14), the moveTo variable declared in the guard (line 7) is referenced. Through
experimenting with a number of wizards, we have found that in complex wizards
duplicate calculations need to be performed in the guard, title and do parts of
the wizard. To eliminate this duplication we have extended the scope of variables
defined in the guard part so that they are also accessible from the title and do
part of the wizard.

6 RELATED WORK

In [15], an approach to expressing model refactorings as update transformations is
described. There, similarly to our approach, update transformations are expressed
as guarded actions. The main difference with our approach is that it does not
consider user input. To our view this is somewhat limiting as user input has been
shown to be necessary for achieving certain kinds of transformations such as the
class renaming example presented in Section 5. Moreover, it is not clear that the
language can be used to capture wizards with complex applicability criteria, such as
the one presented in Section 5, since the examples presented there address wizards
that apply to a single model element only.

In [16], the authors propose a graphical approach to defining update transforma-
tions targeting the Eclipse Modeling Framework. The transformations can then be
interpreted using the AGG graph transformation engine [17] or compiled to Java.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 65



UPDATE TRANSFORMATIONS IN THE SMALL WITH THE EPSILON WIZARD LANGUAGE

The transformation language proposed in this tool [16] is rather simple and in ab-
sence of a proper query language (e.g. OCL), it is not clear how it can be used
for complex scenarios such as the one demonstrated in Listing 7. In [18], a set of
refactorings on UML models is proposed and specified using OCL pre and post con-
ditions. The paper refers only to specifications and not implementations, and there
is no mechanism for executing them to perform the refactorings automatically.

7 CONCLUSIONS AND FURTHER WORK

In this paper we have presented the Epsilon Wizard Language (EWL), a language
tailored to specifying executable update transformations in the small. Compared
with existing approaches, EWL provides a number of novel features such as support
for capturing user input, enhanced modularity and flexible guards. We have pre-
sented tool support for EWL in the context of ArgoUML and demonstrated working
examples of wizards specified using the language.

To extend our tool-support for EWL beyond ArgoUML and enable developers to
use the language to specify wizards for Domain Specific Languages (DSLs), we are
working towards integrating EWL with the Eclipse Graphical Modeling Framework
(GMF), a framework for developing graphical editors for DSLs. Epsilon already
provides support for EMF which is the underlying modelling framework of GMF, so
aligning with GMF is straightforward and requires only the implementation of the
necessary user interface components.

8 ACKNOWLEDGEMENTS

The work in this paper was supported by the European Commission via the MOD-
ELPLEX project, co-funded by the European Commission under the “Information
Society Technologies” Sixth Framework Programme (2006-2009).

REFERENCES

[1] Shane Sendall and Wojtek Kozaczynski. Model Transformation the Heart and
Soul of Model-Driven Software Development. IEEE Software, 20(5):42–45,
September/October 2003.

[2] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transforma-
tion Approaches. In OOPSLA ’03 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, 2003.

[3] Frédéric Jouault and Ivan Kurtev. Transforming Models with the ATL. In
Jean-Michel Bruel, editor, Proceedings of the Model Transformations in Practice

66 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



8 ACKNOWLEDGEMENTS

Workshop at MoDELS 2005, volume 3844 of LNCS, pages 128–138, Montego
Bay, Jamaica, October 2005.

[4] Object Management Group. MOF QVT Final Adopted Specification.
http://www.omg.org/cgi-bin/doc?ptc/05-11-01.pdf.

[5] Andras Balogh, Daniel Varro. Advanced model transformation language con-
structs in the VIATRA2 framework. In SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing, pages 1280–1287, New York, NY, USA, 2006.
ACM Press.

[6] Extensible Platform for Specification of Integrated Langauges for mOdel maN-
agement (Epsilon). http://www.eclipse.org/gmt/epsilon.

[7] Craig Larman. Applying UML and Patterns : An Introduction to Object-
Oriented Analysis and Design and Iterative Development. Prentice Hall PTR,
3rd edition, October 2004.

[8] Jack Herrington. Code Generation in Action. Manning, 2003. ISBN:
1930110979.

[9] Dimitrios S. Kolovos, Richard F.Paige and Fiona A.C. Polack. The Epsilon
Object Language. In Proc. European Conference in Model Driven Architecture
(EC-MDA) 2006, volume 4066 of LNCS, pages 128–142, Bilbao, Spain, July
2006.

[10] Microsoft Domain Specific Languages Framework, Official Web-Site.
http://msdn.microsoft.com/ vstudio/ teamsystem/ workshop/ DSLTools/ de-
fault.aspx.

[11] Renaud Pawlak, Carlos Noguera, Nicholas Petitprez. Spoon: Program Analysis
and Transformation in Java. Technical Report 5901, INRIA, May 2006.

[12] Dimitrios S. Kolovos, Richard F. Paige, Fiona A.C. Polack. Model Compari-
son: A Foundation for Model Composition and Model Transformation Testing.
In Proc. 1st International Workshop on Global Integrated Model Management
(GaMMa), ACM/IEEE ICSE 2006, pages 13 – 20, Shanghai, China, 2006.
ACM Press.

[13] Dimitrios S. Kolovos, Richard F. Paige, Fiona A.C. Polack. Eclipse Develop-
ment Tools for Epsilon. In Eclipse Summit Europe, Eclipse Modeling Sympo-
sium, Esslingen, Germany, October 2006.

[14] Dimitrios S. Kolovos, Richard F. Paige and Fiona A.C. Polack. Merging Mod-
els with the Epsilon Merging Language (EML). In Proc. ACM/IEEE 9th In-
ternational Conference on Model Driven Engineering Languages and Systems
(Models/UML 2006), Genova, Italy, October 2006. LNCS.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 67



UPDATE TRANSFORMATIONS IN THE SMALL WITH THE EPSILON WIZARD LANGUAGE

[15] Ivan Porres. Model Refactorings as Rule-Based Update Transformations. In
Perdita Stevens and Jon Whittle and Grady Booch, editor, Proc. UML 2003 -
The Unified Modeling Language, 6th International Conference, volume 2863 of
LNCS, pages 159–174. Springer-Verlag, 2003.

[16] E. Biermann, K. Ehrig, C. Khler, G. Kuhns, G. Taentzer, and E. Weiss. EMF
Model Refactoring based on Graph Transformation Concepts. In Proc. Third
International Workshop on Software Evolution through Transformations (SE-
Tra’06), volume 3, Natal, Brazil, September 2006.

[17] Gabriele Taentzer. AGG: A Tool Environment for Algebraic Graph Transforma-
tion. In Proc. Applications of Graph Transformations with Industrial Relevance,
AGTIVE, page 481, September 1999.

[18] Gerson Sunyé, Damien Pollet, Yves Le Traon, Jean-Marc Jézéquel. Refactoring
UML Models. In Proc. Int’l Conf. UML 2001 - The Unified Modeling Language:
Modeling Languages, Concepts, and Tools, volume 2185 of LNCS, pages 134–
148. Springer-Verlag, 2001.

68 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



8 ACKNOWLEDGEMENTS

ABOUT THE AUTHORS

Dimitrios S. Kolovos is a PhD student and Research Associate
at the Department of Computer Science at The University of York,
United Kingdom. He can be reached at dkolovos@cs.york.ac.uk. See
also http://www-users.cs.york.ac.uk/∼dkolovos.

Richard F. Paige is a Lecturer at the Department of Com-
puter Science at The University of York, United Kingdom. He
can be reached at paige@cs.york.ac.uk. See also http://www-
users.cs.york.ac.uk/∼paige.

Fiona A.C. Polack is a Senior Lecturer at the Department of
Computer Science at The University of York, United Kingdom.
She can be reached at fiona@cs.york.ac.uk. See also http://www-
users.cs.york.ac.uk/∼fiona.

Louis M. Rose is an MEng student at the Department of Computer
Science at The University of York, United Kingdom. He can be
reached at lmr109@cs.york.ac.uk.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 69

mailto:dkolovos@cs.york.ac.uk
http://www-users.cs.york.ac.uk/~dkolovos
mailto:paige@cs.york.ac.uk
http://www-users.cs.york.ac.uk/~paige
http://www-users.cs.york.ac.uk/~paige
mailto:fiona@cs.york.ac.uk
http://www-users.cs.york.ac.uk/~fiona
http://www-users.cs.york.ac.uk/~fiona
mailto:lmr109@cs.york.ac.uk

