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With the trend towards multi-core processors, support for multi-threaded programming
is increasingly important. We are interested in providing development and deployment
options to allow programmers to select minimal locks, achieving maximal concurrency,
at different levels of granularity within a composite system. We explore local proper-
ties of the fixpoint lattice of a Galois connection between exclusion requirements and
concurrency potential of a composite object. This allows us to develop incremental
algorithms for lock selection. Implemented within integrated development environ-
ments, such algorithms will allow programmers to interactively select minimal locks
with safety.

1 INTRODUCTION

One of the main challenges in concurrent programming is preserving data invariants
by controlling concurrent access of multiple threads to shared data. In systems with
mutable state, programmers are often overwhelmed by the code dependencies, and
admit defeat by imposing single-threading throughout their code, applying simple
mutex controls at all external access points. In languages like Java and C# where
all objects are heap-allocated, this can result in much redundant locking and loss of
potential concurrency. We can increase the potential concurrency in a system while
maintaining thread safety by adopting two complementary approaches. First, we
can move monitor boundaries from high-level objects down to sub-objects, so that
rather than single-threading an entire subsystem, only the shared objects within
that subsystem are single-threaded. Second, we can adopt a finer granularity of
exclusion control, such as read-write locks, rather than just mutexes.

This paper presents a novel approach for lock selection in a composite object
system, given exclusion requirements at the innermost levels, and known potential
for concurrent activity in the operating environment. One of the novel contributions
of this paper is the identification of strategies that allow programmers to systemat-
ically select locks, either adding or subtracting locks as they traverse the composite
object structure in either a top-down or bottom-up manner. At each stage of the
traversal, the lock selection is kept safe but with no redundancy—in other words,
with as much locking as necessary, but no more. At each stage the current lock
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INCREMENTAL LOCK SELECTION FOR COMPOSITE OBJECTS

selection can be incrementally modified. The choices for this modification are de-
termined from a lattice structure (the fixpoint lattice of a Galois connection) that
identifies certain critical combinations of exclusion requirements and potential con-
currency. A second novelty of this paper, is an algorithm for incremental calculation
of relevant fixpoints, computing them on demand. There is no need to compute the
whole lattice, which may be exponentially large. The examples of this paper were
checked using an implementation of this algorithm.

Our underlying model comes from Noble et al [1], which introduced the Exclusion
Algebra as a syntactic device for propagating locking requirements through the call
dependencies of a composite object system. This work assumes that a system is
composed of objects, that method calls can be factored into a tree-structure based on
the object composition, and that exclusion requirements can be calculated through
the layers of a system, starting with specified innermost exclusions. We recognized
the inherent duality of this model in [2, 3] where we introduced the complementary
notions of exclusion requirements and concurrency potential. The duality essentially
arises from different views of what locking achieves: from the internal point of view,
locking protects inconsistent states from occurring; from the external point of view,
locking blocks calls, and restricts the amount of concurrency that may be achieved.
For our purposes, we consider a single lock to be a device that controls method
calls, and blocks pairs of calls from executing concurrently. This includes mutexes,
read-write locks and their generalization, read-write sets. Elsewhere [4] we have
reported on performance experiments for a general purpose exclusion lock. This
lock implements a simple table-based scheme for an object wrapper so that the lock
can be configured to block any specified set of conflicting pairs of method calls.

In Section 2 we review our model for a composite object system with internal ex-
clusion requirements and external concurrency potential. We characterize safety for
given distributions of locks, and identify minimal combinations of locks for achieving
safety. This relies on the fixpoint lattice of a Galois connection between exclusion
requirements and concurrency potential, that we identified in earlier work. We sum-
marize the key ideas in Section 3 and provide some examples. In [5] we demonstrated
how lock selection can be made easy with appropriate tool support. This leads into
the new contributions of this paper. In Section 4 of this paper we introduce specific
strategies for lock selection, and in Section 5 we formulate local properties about the
fixpoint lattice which enable us to present our algorithm for computing lock choices
at each step of a selection process. We close with a discussion of practical concerns,
future work and a brief summary.
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2 A MODEL FOR HIERARCHICAL EXCLUSION CONTROL

Exclusion Requirements and Concurrency Potential

We present a simple concurrency control model for objects. We assume all object
access is via a defined interface comprising a set of methods M . Furthermore we
assume access is controlled by method level locks associated with an interface. A
particular lock L can be specified in terms of the set of pairs of methods whose
calls are excluded from being concurrently executed on the object. So a lock can be
simply described by:

L ⊆M ×M.

Thus, for us, a lock is simply a set of pairs of methods of an object. We use subset
ordering to compare locks: one lock is smaller than another if it is a subset of it.

Each object has an exclusion requirement R which is determined by internal
sharing of methods; shared data can be treated as a special case with separate
reader and writer methods.

R ⊆M ×M.

When a lock L is selected for an object with internal exclusion requirement RI , some
part of the requirement may still be missing. We call this the external exclusion
requirement RE:

RE =̂ RI − L.

Any missing requirement RE can only be met by restricting the context of external
method calls for the object. To allow us to capture this notion we introduce the
concept of concurrency potential P :

P ⊆M ×M.

Because a lock will block concurrent execution of any of its pairs of methods (that is,
it excludes these pairs), any concurrency potential available internally (PI) can be
determined by subtracting the lock’s pairs of methods from the external concurrency
potential (PE) according to:

PI = PE − L.

The main ideas of this model are sketched in Figure 1. The object bubble rep-
resents the internal part of the system which can only be accessed via the interface,
where a local lock L may be selected. The exclusion requirements of the internal
part appear at the object interface as an internal requirement RI . Following the
squiggly arrow, this requirement may be partially satisfied by L. The remainder
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Figure 1: Required Exclusion & Concurrency Potential

then appears as the external exclusion requirement RE. Similarly the external envi-
ronment has the potential to make concurrent calls on the system. The concurrency
potential, PE, specifies which pairs of methods can be called concurrently. Following
the squiggly line, this external concurrency potential gets reduced by the lock L to
provide an internal concurrency potential PI .

We can characterize several properties pertaining to safety, minimum locking,
and lock redundancy for a single object.

Safety Condition: For an object to be safe, none of the method pairs in RI should
be executed concurrently ; but only those pairs in PE have this potential. So,
providing the lock L blocks all pairs that are in both RI and PE, the object is safe.
The safety condition is therefore:

Safe =̂ RI ∩ PE ⊆ L

This is equivalent to having nothing in common between exclusion requirements and
concurrency potential at either layer (external or internal); in other words

Safe iff RE ∩ PE = {} iff RI ∩ PI = {}

Minimum Safe Lock: For given RI and PE, the above safety condition clearly
identifies the minimum safe lock as:

Lmin =̂ RI ∩ PE

Redundant Locking: If a lock for an object is not the minimum required for
safety, then any non-minimal pairs that are blocked are redundant, either because
their exclusion is not required by RI , or they will not occur concurrently, by PE.
For a given local lock L, the redundancy is therefore:

Lred =̂ L− Lmin

Algebra of Exclusion

Earlier work [1, 2, 3] described a simple language for compactly writing exclusion
requirements. This is useful for our examples. The basic syntax is given by:

e ::= e e | e|e | e× e | ē | n

480 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



2 A MODEL FOR HIERARCHICAL EXCLUSION CONTROL

In effect this is a language for describing undirected graphs. Each expression denotes
a set of elements (the vertices) and a symmetric relation on those elements (the
undirected edges). For each of these expressions, the set of elements is the union of
the elements of its sub-expressions. The symmetric relation is defined as by cases:
the sum e1e2 (equivalently e1|e2) is the union of the relations for the sub-expressions;
the product e1×e2 is the union of the relation for e1e2 with the symmetric Cartesian
product of the elements of e1 and e2; the completion ē is the Cartesian product of
the set of elements of e with itself; method name n denotes a singleton set. The
second form of sum operator has lowest precedence; the first form (concatenation)
has highest. For example, the expression r1r2 × w1w2 | r3r4 × w3w4 denotes a pair
of read-write locks, with two reader and two writer methods in each set.

The Composite Model

In this section we extend the model for individual objects to a composite model in
which objects may be composed of other objects. We assume that all component
objects of a composite are independent of one another, so that the composite is
tree-structured. Figure 2 suggests how the internal exclusion requirements RI of a
composite are determined from the external exclusion requirements REi of the com-
posite’s internal objects. The upward arrows indicate where outward propagation of
exclusion requirements occurs. Conversely the internal concurrency potential PI de-
termines the external concurrency potential of the inner objects, as indicated by the
downward arrows. Observe the duality: exclusion requirements depend on internal
objects, whereas concurrency potential depends on the external environment. Fur-
thermore these dependencies can be composed through the layers of the composite
system.

       R E 

  P E   
Lock 

  R I   

  

  

  

R E1    P E1   

 R I1    P I1   

Lock1 

 R E3   P E3   

 R I3    P I3   

Lock3 

 R E2   P E2   

 R I2     P I2   

Lock2 

  P E 

  P I 

Figure 2: Hierarchical Composite

Outward Propagation of Exclusion Requirements

We now show how external exclusion requirements for inner objects propagate
to internal exclusion requirements for their container. If an inner object requires
exclusion between methods, n1 and n2 say, and does not provide this exclusion
with its own local lock, then n1 × n2 is part of the inner object’s external exclusion
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requirements. This requirement should be met by the callers of n1 and n2; therefore,
the exclusion n1×n2 propagates to an internal required exclusion between all callers
of n1 and n2 for the container.

Consider a composite object with methods I1, I2, and two internal objects C1

and C2 with methods m1, m2 and n1, n2. Assume the usage dependency is: I1 7→
m1 I1 7→ n2 I2 7→ m2 I2 7→ n1 and that each object has internal exclusion
requirements C1 : m1|m2 and C2 : n1×n2. We calculate the internal requirement on
the composite object from the external requirements on inner objects by substituting
the users of each internal method in the exclusion expressions.

For C1 : m1|m2[I1/m1, I2/m2] yields I1|I2

For C2 : n1 × n2[I2/n1, I1/n2] yields I2 × I1

We then combine the result as: (I1|I2)|(I2 × I1) yields I1 × I2. So, the exter-
nal exclusion requirements of the internal objects collectively form a composition
of requirements representing the internal exclusion requirements of the composite:
RI = I1 × I2. If the local lock provides the needed internal required exclusion (RI)
(i.e L = I1× I2) the external exclusion requirement (RE = RI −L) is void (written
as I1|I2 in Figure 3).

I1 | I2                 I1I2 

L = I1 x  I2 

 I1 x  I2         I1 | I2 

REI 

RI 

RE2 

RE 

m1 | m2           m1 | m2 

 

 

 n1 x  n2              n1 | n2 

 

 

PE 

PI 

PE2 PE1 

Figure 3: Outward Propagation of Exclusion Requirements and Inward Propagation
of Concurrency Potential

Inward Propagation of Concurrency Potential

Inward propagation of external concurrency potential is dual to the outward
propagation of the internal exclusion requirements. In our example we consider the
composite object to be operating in a fully concurrent environment; Figure 3 shows
an external concurrency potential I1I2 assuming that any pair of methods may be
concurrently activated.

The composite object is provided with a lock for the top object; that lock may
reduce some or all of the incoming concurrency potential. Before propagating the
concurrency potential inward, we have to consider the provided lock. PI = PE − L
simply calculates what is left of the concurrency potential after blocking the activ-
ities specified by the lock. So the internal concurrency potential to be propagated
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into the internal objects is I1I2− (I1× I2) = I1|I2 (Figure 3). The process of inward
propagation of external concurrency potential is simply the dual of the outward
propagation of internal exclusion requirements into external exclusion requirements.
For our example, we find, as shown in Figure 3:

For C1 : I1|I2 yields m1|m2

For C2 : I1|I2 yields n2|n1

Locking and Safety

We have seen that an individual object is safe just when RE ∩ PE = {}, or
equivalently, RI ∩ PI = {}. For a composite system, we require this to hold at
the outermost level. Indeed it then follows that all objects will be safe. For the
example of Figure 3 we found RE = I1I2. So the maximum allowable concurrency
is PE = I1I2, that is, there is no limit on the concurrency — we have fully met the
exclusion requirements at the outer level.

3 FORMALISATION OF THE MODEL

This section explains how knowledge of the call dependencies between objects of a
system can be exploited to reduce the number of conflict pairs that need to be con-
sidered for locking purposes. Our model relies on knowing exclusion requirements
for internal objects, the potential concurrency for calls on an external interface, and
the usage dependency of the external interface on the internal objects. A significant
aspect of our model is the recognition of a Galois connection between external po-
tential concurrency and internal exclusion requirements. The key idea is that we
need only consider the fixpoints of this connection for a given usage relation. We
briefly introduce some notation to allow us to illustrate this idea; appropriate Order
Theory background can be found in [6].

Galois Connection for Usage Relation

As a special case, we consider a composite object with one component object. The
relation uses : A ↔ B describes the call dependency of the outer object A on
the inner object B. The outward propagation of an exclusion requirement R for
B can be expressed as uses.R.uses−1 (the ‘.’ operator denotes forward relational
composition). Similarly the inward propagation of concurrency potential P for A is
uses−1.P.uses. But these propagated values can be restricted by given values: for
object A we assume an external concurrency potential is given, PEA

say, and for
B we assume an internal exclusion requirement, RIB

say. We now define a pair of
mappings (., /) as:

. : P(A× A)→ P(B ×B)
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/ : P(B ×B)→ P(A× A)

P . = RIB
− P→, where P→ = uses−1.P.uses

R/ = PEA
−R←, where R← = uses.R.uses−1

Here, when P is the internal concurrency potential for the outer object A, P→ is the
external concurrency potential for the inner object B. Consequently P . = RIB

−P→

is the maximal external exclusion requirement for which B remains safe. In other
words, given P , we can determine the minimal lock required on B, namely, LBmin

=
RIB
− P . = RIB

∩ P→. Dually, when R is the external exclusion requirement
for the inner object B, R← is the internal exclusion requirement for A, and R/

is the maximal internal concurrency potential for which A remains safe. In other
words, given R, we can determine the minimal lock required on A, namely, LAmin

=
PIA
−R/ = PIA

∩R←.

The fact that inner objects being safe just when outer ones are, leads to the
recognition of the following.

Property 1 (Galois Connection)

(., /) is a Galois connection on (P(PIA
), P(RIB

)): given P ⊆ PIA
and R ⊆ RIB

,

P . ⊇ R iff P ⊆ R/.

The Galois connection is between subsets of the external concurrency potential PIA

and subsets of the internal exclusion requirement RIB
. The proof of Property 1 is

straightforward. Property 2 summarises standard results for Galois connections [6].

Property 2 (Fixpoints)

1. The composed operators . /: P(A × A) → P(A × A) and / .: P(B × B) →
P(B ×B) are closure operators.

2. The set of fixpoints (the range) of ./ is order isomorphic to that of /. .

3. The fixpoints form a complete sublattice of P(A× A) (resp. P(B ×B)).

The key point for us is that the uses relation induces a one-one mapping between
particular subsets, the fixpoints of outer concurrency potential and inner exclusion
requirements. The significance for lock selection is that we only need to consider a
subset of possible locks: essentially those that take us to fixpoints.

Example 1. Consider the usage relation between objects A = {a, b, c} and
B = {1, 2, 3} as in Table 1 . Let us assume that PEA

= abc (full concurrency
potential) and RIB

= 123. We obtain the full fixpoint lattice depicted in Figure 4.
The edges on the lattice are labelled with the difference between the fixpoint sets
they connect. In this example, there are 6 different pairs of methods in both A and
B. So the total number of concurrency potentials on A, paired with all the exclusion
requirements on B, is 26 × 26 = 4096. From Figure 4 we see that we only need to
consider 14 of these combinations.
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uses uses−1

A B B A
a 2, 3 1 c
b 2 2 a, b
c 1, 3 3 a, c

Table 1: Usage Relation for Examples 1 and 2
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1 2 ×××× ××××3 b c ××××

a b ××××

1 3 2 

1 2 ×××× 3 

2 3 ××××

a b ×××× c | 3 1 2 a | b c ××××

2 a b ××××1 2××××

2 1 ×××× 3 

b c××××

a c ××××1 3 ××××

3 a 

3 a 

1 3 ×××× c 

1 2 ×××× 3 a c b 

1 2×××× b c××××

3 1 2 a c b ××××

a c b ××××1 3 ×××× | 2 

1 3 ×××× a c ××××

a b c ××××1 3 2 

1 c 

1 c 

a b 2 

a c b 

a b 2 

b 2 

a b c ××××1 3 2 a b c ××××1 2 ×××× | 3 a c b 1 3 2 

a b c ××××1 2 ××××

a b ××××2 3 ××××

1 3 2 ××××

1 3 2 ×××× a c b 

a c b 
a b c ××××1 3 2 ××××

Figure 4: Lattice for Example 1 with RIB
= 123

Example 2. Next, with the same usage relation, let us assume that object B
has exclusion requirement RI = 1× 2̄× 3 and concurrency potential for A remains
the same, PEA

= abc. Then, the lattice of fixpoints shown in Figure 5 depicts a
restricted form after collapsing the circled edges in the lattice of Figure 4. These
edges are labelled 1̄ or 3̄, which are the exclusion pairs now missing from RI . The
number of points to consider is now only 10.

The Role of Fixpoints for Lock Selection

The importance of the Galois connection and its associated fixpoint lattice is that it
allows us to precisely characterise locks for an object which provide safety without
redundancy. We find that two locks on an inner object may have the same effect at
the outer level; because of the fixpoint property, there will be a unique minimal lock
with the same effect. For lock selection purposes it is sufficient to restrict attention
to these.

Suppose in Example 2 a lock is arbitrarily chosen as LB = 1× 2̄|3. Figure 6(a)
shows the lock configuration after selecting the given lock. The remaining require-
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Figure 5: Lattice for Example 2 with RIB
= 1× 2̄× 3

ment is RE = RI −L = 12× 3. This then induces a maximal allowable concurrency
potential for object B: PI = R/

E = ab̄c. Note that this is a fixpoint. This also
implies we must provide a lock on A equal to b×ac. The corresponding concurrency
potential for B is PI

→ = 12̄3.

B 

 

A 

 
    abc             abc 

  b x ac            abc 

b x ac 

  12 x 3           123   

1 x 2 x 3       1 2 3              

1 x 2 | 3 

B 

 

A 

 
    abc             abc 

  ab x c            abc 

ab x c            

  1 x 23          1 23   

1 x 2 x 3        1 2 3           

1  | 2 x 3 

(a) with    LB = 1 x 2 | 3 (b) with    LB = 1 | 2 x 3 

Figure 6: Different Lock Selections in Example 2

The redundancy for the chosen lock is: 1× 2̄|3− (1× 2̄× 3 ∩ 12̄3) = 1× 2|3. This
implies that the exclusion between methods 1 and 2 is redundant – there will be no
concurrent behaviour on B for it to block. The unique minimal lock with equivalent
behaviour is L = 12̄3, a mutex on method 2. This corresponds to selecting the
fixpoint pair 1× 2× 3/ab̄c in Figure 5.

If instead as in Figure 6(b) we had chosen L = 1|2̄×3 (a read-write lock on 3 and
2), we find RE = 1× 23 and PI = abc, with corresponding concurrency potential for
B as PE = 123. In this case, the lock redundancy is 1|2̄× 3− (1× 2̄× 3∩ 123) = {}.
No part of the lock is redundant. Note that this non-redundant lock corresponding
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to the fixpoint 1 × 23/abc can be determined by accumulating the edge labels on
the path from the top of the lattice to the chosen fixpoint.

Example 3. Consider the uses relation depicted in Table 2. Assuming PEA
= abc

we obtain the lattices of Figure 7. Lattice (a) is for RIC
= 123. Lattice (b) is for

RIC
= 1̄2× 3̄.

uses uses−1

A C C A
a 1, 2 1 a, b
b 1, 2, 3 2 a, b, c
c 2 3 b

Table 2: Usage Relation for Example 3
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 (a)                       (b) 

12 x 3        b ac  12 x 3        b ac 

Figure 7: Fixpoint Lattices for Example 3

We can enumerate all the safe combinations of non-redundant locks for objects
A and C, simply by adding or removing method pairs corresponding to edge labels
on the lattice. For lattice (b) these lock combinations are shown in Table 3, where
each row is numbered according to the fixpoint labels of Figure 7(b). The first row
corresponds to the top fixpoint, with no locking on the inner object C, and full
locking on the outer object A. The lock on A is the difference between the external
concurrency potential ābc and the fixpoint a × c̄|b; this can also be determined by
accumulating all the lattice edge labels from the bottom to the top. Moving to the
second row corresponds to moving to the fixpoint one edge down to the left; in turn,
this corresponds to adding a lock on A and removing part of the lock on C—they
are complementary, as indicated by the edge label. This complementary addition
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and removal of locks works for all edge traversals, and is the key to our strategies
for lock selection.

Lock Number Lock C Lock A
1 − āc× b̄
2 2× 3 ab
3 1̄ ac× b̄
4 1̄|2× 3 a× b̄
5 1̄2× 3 b̄
6 1̄2× 3̄ −−

Table 3: Locks for Example 3

4 LOCK SELECTION STRATEGIES

So far, we have seen that with knowledge of usage dependency, internal exclusion
requirements and external concurrency potential, we can theoretically identify all
safe, non-redundant lock combinations. There is a trade-off between internal locks,
which will be more fine-grained, and which may need to be repeatedly acquired, and
external locks which may be held for a longer duration, and therefore reduce overall
concurrency.

We cannot expect a programmer to calculate these combinations. Instead, we
propose using a tool to systematically offer choices between internal and external
locks. The tool would offer choices that preserve lock safety and minimality, by
simply offering the choices that correspond to all the edges incident on a given
fixpoint of the lattice. The programmer need not be aware of the underlying lattice,
but rather just steps through a lock selection wizard, at each stage choosing to
trade-off between inner and outer level locks.

Two Level Lock Selection

When the system comprises just two layers, choosing an optimal (minimal, safe)
lock distribution just requires the selection of a fixpoint in the lattice for the usage
relation between the two layers, as we have just illustrated.

The additive-at-top approach starts with fine-grain locking and incrementally
coarsens the locking. This corresponds to stepping up the fixpoint lattice, starting
with no top-level lock, and all bottom-level locks satisfying the exclusion require-
ments there. At each step, a restricted set of choices is offered, corresponding to
the covering relation for the current fixpoint. As a selection is made, we step up the
lattice, adding locks to the top-level and removing locks at the bottom, correspond-
ing to the labels on the selected lattice edge. At every step we maintain an optimal
lock distribution; so the process may be stopped whenever the desired degree of lock
coarsening is attained. The additive-at-bottom is the dual approach, starting with
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full coarse-grain locking at the top, and incrementally selecting locks to add at the
bottom level.

Example 4. Consider the add-to-top approach with Example 2. We illustrate
the lock selection process with the available choices at each step shown in Table 4.
The actual selections, shown in bold give rise to the path in the lattice as in Figure 8.

Step Lock A Lock B Choices Selection
0 – 1× 2̄× 3 ab× c

ab
a× c̄ a× c̄

1 a× c̄|b 13× 2̄ b× c
ab ab

2 ā× b̄c̄ 13× 2 b× c b× c

3 abc – – –

Table 4: Lock Choices for Example 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Potential 

Concurrency 

Exclusion 

Requirement 

2 b 

c 

c 

a c b 

a c b 

1 2 ×××× ×××× 3 b c ×××× 

a b ×××× 

1 3 2 

1 2 ×××× 3 

2 3 ×××× 

a | b c ×××× 

1 2

3 

×××× 

2 1 ×××× 3 

b c

3 

×××× 

a c b ×××× 

a c b 

a b 2 

b 2 

a b c ×××× 1 2 ×××× | 
 
3 a c b 1 3 2 

a b c ×××× 1 2 ×××× 

a b ×××× 2 3 ×××× 

1 3 2 ×××× 

1 3 2 ×××× a c b 

a c b 
a b c ×××× 1 3 2 ×××× 

c 

1 3 ×××× 
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1 3 ×××× | 
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1 3 ×××× | 
 
2 

1 2 ×××× ×××× 3 

c a ×××× 

a b 2 

a c b 

1 3 ×××× c a ×××× 

Figure 8: Selection Path in Example 4

When a composite object has more than one sub-object, we can decompose the
uses relation and exclusion requirements correspondingly. This assists with reducing
the complexity of the calculation of the fixpoints, but we must take all children into
account simultaneously – lock choices for one child can affect those for the other. So
we need to work with the fixpoint lattice between layers, and not between pairwise
combinations of parent-child objects.
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Example 5. Consider the combination of Example 2 and 3, where object A has
two sub-objects B and C with given usage dependencies and exclusion requirements.
The fixpoint lattice for the A − B pair has 10 points, and 6 points for the A − C
pair. It turns out that the fixpoint lattice for the two layer system, A−BC has 20
points. However the maximum path length in the lattice remains at 6, so we can
handle the lock selection for the layer in the same number of steps as for each object
individually.

With an add-at-top strategy, the path shown in Example 4 is also a path in the
lattice of Example 5. However the choice ab at Example 4 Step 0 is now refined
(because of the choice for Example 3) to just b̄. With that choice, another possible
path is b̄, a×b, ā, b×c, a×c, c̄. The first four steps correspond to a path (Figure 7)(b).

Multi-level Lock Selection

When there are more than two layers of sub-objects in a composite object, there
are more approaches for lock selection. We now describe the simplest of these, by
adopting our two level strategies appropriately. All of these strategies guarantee:
no objects will be re-visited once their locks are selected; no redundant locking will
be produced; and any optimal lock distribution is achievable.

First we consider subtractive strategies: we work, level by level, removing locks
from the current level and compensating by adding locks at the next level to re-
establish safety. Thus a subtractive approach incrementally selects locks to migrate
from level to level. This can be done either top-down or bottom-up. For example, the
subtractive top-down approach starts with coarse grain locks at the top-level with
no internal locks. We then offer lock selections, moving locks to the next layer down
(just as for add-at-bottom strategy for the two-layer system). Then we move top-
down, repeating this strategy at the second and third levels. And so on. Similarly,
the subtractive bottom-up process starts with fine grain locks at the bottom level,
and repeatedly applies the two-level add-at-top process to successive pairs of levels.

Next we consider additive strategies: again we work, level by level, selecting
locks to add at each level, and compensating by removing locks at the extreme level
(bottom when top-down, top when bottom-up). The additive bottom-up strategy,
we start with coarse grain locks at the top-level. Then we apply the two-level add-
to-bottom strategy between the top and bottom level; we repeat the add-to-bottom
approach between the top and second bottom level; and so on. The idea is that
we progressively add fine grain locks bottom-up, but always achieve safety and non-
redundancy by removing duplicates locks at the top-most level. The additive top-
down approach works dually. Whereas the subtractive approach migrates selected
locks level by level, the additive approach is appropriate when a combination of
outermost and innermost locks is wanted.
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5 INCREMENTAL ALGORITHM FOR LOCK CHOICES

Even for relatively small object interfaces the size of the fixpoint lattice may be
unmanageably large. For example, with n methods there are n(n + 1)/2 pairs of
methods, and up to 2n(n+1)/2 fixpoints in the Galois connection between the object
and its internals. We therefore consider localised algorithms for navigating the
fixpoint lattice. Given a fixpoint R/P , with R = P . and P = R/, our task is to find
the set of covering increments 4/∇ such that (R ∪4)/(P −∇) covers R/P in the
fixpoint lattice.

First, some notation. For non-empty X ⊆ RI −R, and r1, r2 ∈ RI −R, define:

∇R X =̂ P ∩X←

r1 ≡R r2 =̂ ∇R r1 = ∇R r2

The corresponding equivalence class is denoted by [r]R.

Theorem For non-empty 4 ⊆ RI −R,
4/∇ is a covering increment

iff a) ∇R 4 = ∇
b) ∀r ∈ 4 . [r]R = 4

See [7] and [8] for the proofs. As a consequence of this theorem we can restrict our
search for covering increments to those generated by singletons, as in the following.

Algorithm:

1. For each r ∈ RI −R, calculate ∇R r[as R ∩ r←].

2. Partition RI −R according to ≡R.

3. Output equivalence classes [r]R with minimal ∇R [r]R.

An efficient implementation of this algorithm can exploit the partitioning of equiv-
alence classes to eagerly eliminate non-minimal candidates. Another optimisation
is to cache the values of ∇R r and use these to calculate the values for the next
fixpoint up the lattice:

∇R∪4 r = ∇R r −∇

Example 6: Consider Example 4 after one step where R = 1× 3|2, P = b̄× āc.
We find in Step 1 that each ∇R r is distinct as shown in Table 5. So, the set of
exclusion pairs is partitioned into singletons in Step 2. Then in Step 3, we find that
[2× 3] is non-minimal, because b× c ⊆ b× āc. At the next fixpoint 1× 23/abc we
find the partitions [2̄] and [2× 3], but now [2̄] is non-minimal, because b× ā ⊆ ab.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 491



INCREMENTAL LOCK SELECTION FOR COMPOSITE OBJECTS

r ∈ RI −R r← Step 1: ∇R r Step 2
1× 2 ab× c b× c [1× 2]

2̄ ab ab [2̄]
2× 3 ā× b× c b× āc [2× 3]

Table 5: Example 6

6 CONCLUSION

The object paradigm, since its emergence from the icy Oslo fjord, has been cou-
pled with concurrency Objects are natural candidates for providing synchronisation
mechanisms for concurrent activities. So many concurrent programming languages
and models have emerged in the past three decades. We do not attempt a full
survey here—see for instance Briot et al [9] or Philippsen [10] for comprehensive
surveys of systems and approaches that integrate concurrency and object-oriented
languages. Little of this work has addressed issues of lock distribution and how to
select amongst alternative safe locking strategies.

There have been recent advances in using static analysis to instrument code
with locks [11]. This work requires the programmer to annotate code blocks as
being atomic and is only concerned with simple mutexes. Their lock allocation
guarantees the required atomicity without risk of deadlock. Although they allow
nesting of locks, there is less emphasis in this work on establishing hierarchical
structure, though clearly the imposition of lock ordering implies that such structure
is implicit. In our scheme, the hierarchical structure is explicit. The best of our
knowledge, noone has considered the problem of lock distribution for a hierarchical
model with arbitrary pair-wise exclusions, as we do.

Further work needs to be done to make our approach practical. To date, we
have implemented and demonstrated the viability of a general purpose exclusion
lock which can be configured to exactly meet a specific locking requirement [4],
[12]. We have also prototyped the algorithm outlined in Section 5 in Haskell. What
remains to be done is to provide a programming language based solution to the
automatic derivation of the tree-structured uses relation. In this regard, we intend
to pursue both development-time models, relying on object ownership types, and
deployment-time techniques, relying on static analysis techniques.

This paper has considered the problem of lock selection for composite object sys-
tems, with known internal exclusion requirements and external potential for concur-
rent activity. We have identified strategies for selecting optimal lock distributions,
exploiting fixpoint lattice of a Galois connection between the internal exclusion re-
quirements and external concurrency environment. To reduce the difficulty of the
lock selection process for programmers, we have presented a novel algorithm for local
computation of the covering relation for the lattice. A wizard can use this algorithm
to intelligently guide a programmer through the lock selection process.
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