
Vol. 6, No. 9, Special Issue: TOOLS EUROPE 2007, October 2007

Pluggable checking and inferencing of non-
null types for Java

Torbjörn Ekman, Computing Laboratory, Oxford University, United Kingdom
Görel Hedin, Department of Computer Science, Lund University, Sweden

We have implemented a non-null type checker for Java and a new non-null inferencing
algorithm for analyzing legacy code. The tools are modular extensions to the JastAdd
extensible Java compiler, illustrating how pluggable type systems can be achieved. The
resulting implementation is compact, less than 230 lines of code for the non-null checker
and 460 for the inferencer. Non-null checking is a local analysis with little effect on compi-
lation time. The inferencing algorithm is a whole-program analysis, yet it runs sufficiently
fast for practical use, less than 10 seconds for 100.000 lines of code. We ran our inferencer
on a large part of the JDK library, and could detect that around 70% of the dereferences,
and around 24% of the method return values, were guaranteed to be non-null.

1 INTRODUCTION

Static typing allows for early detection of certain classes of errors and allows developers
to document important aspects of their intent in the form of type signatures. Extending a
given type system is often desirable, as language developers discover new useful ways of
stating additional static properties of programs. There are also drawbacks in that different
extensions might be desirable for different applications, and the language becomes more
complex. To overcome these drawbacks, Bracha has suggested the notion of pluggable
types where optional type systems can be plugged into a compiler [Bra04]. Bracha sug-
gests the use of meta data, such as Java annotations, for expressing the new constructs,
and that the annotations should have no effect on the dynamic semantics of the program.

In this paper, we show how Bracha-style pluggable type systems can be implemented
in a compact and modular way, by extending the JastAdd Extensible Java Compiler [EH,
EH07], using ReCRAGs (Rewritable Circular Reference Attributed Grammars) [EH04,
MH03]. We illustrate our technique by the development of a pluggable non-null type
checker. Furthermore, we suggest an algorithm to infer non-null types in legacy code,
also implemented as a pluggable extension to the base compiler. The approach promises
to allow similar type extensions at reasonable performance and implementation costs.

Non-null types are as available in some newer object-oriented languages like Spec#
[BLS04] and Nice [Bon] as well as the next generation of Eiffel [Mey05]. The idea is
to let the compiler detect that certain expressions will never have the value null. These
expressions can be safely dereferenced without any risk of leading to null pointer excep-
tions at runtime. To help the compiler in this analysis, the source code can be annotated
using modifiers on reference declarations. Fähndrich and Leino [FL03] showed how an

Cite this document as follows: Torbjörn Ekman, Görel Hedin: Pluggable checking and inferencing
of non-null types for Java, in Journal of Object Technology, vol. 6, no. 9, Special Issue: TOOLS
EUROPE 2007, October 2007, pages 455–475,
http://www.jot.fm/issues/issues_2007_10/paper23

http://www.jot.fm/issues/issues_2007_10/paper23

PLUGGABLE CHECKING AND INFERENCING OF NON-NULL TYPES FOR JAVA

object-oriented language such as Java or C# can be extended with non-null types, intro-
ducing the notion of raw types to handle the intricacies of partially initialized objects.
Extending Java to support non-null types using annotations is also suggested as part of a
Java Specification Request (JSR-305).

When starting to use non-null annotations, a problem is that legacy code is not an-
notated. Experiments indicate that non-null references are much more common than
possibly-null references [FL03, CJ07], and that non-null should therefore be the default
for reference declarations. However, for legacy code, the reverse default rule must be
used. The annotated new code must always assume null values from legacy code, and add
extra checks against null when using such code in order to be safe from possible run-time
null pointer exceptions.

We suggest an improved approach by inferring annotations in legacy code, e.g., the
JDK, to get a safe conservative approximation of which references in the legacy code
are always non-null. These inferred annotations can then be used by the explicitly anno-
tated code to be able to safely use much of the legacy code without extra guarding null
checks. The inference analysis over the legacy code is a whole-program analysis since it
is necessary to take inheritance and overriding into account in order to obtain good ap-
proximations that are useful. I.e., a safe but uninteresting approximation would be to infer
that all references in the library code are possibly null.

The rest of this paper is structured as follows. Sections 2 and 3 present background
to non-null types and the JastAdd system used for the implementation. Section 4 defines
a base language which is extended with non-null type checking in Section 5 and non-
null inferencing in Section 6. The approach is evaluated in Section 7 and related work is
discussed in Section 8. Section 9 concludes the paper.

2 NON-NULL TYPES BACKGROUND

Our non-null types extension is based on the work on non-null types by Fähndrich and
Leino [FL03]. Their approach differs from earlier work on non-null types by taking in-
heritance and object initialization into account.

The purpose of non-null types is to add the possibility to distinguish non-null ref-
erences from possibly-null references in the type system. This enables the compiler to
statically detect null-related errors at compile-time. The programmer already needs to
consider whether a value may be null or not, and the special handling of null values is
error prone. It is clearer to make this design explicit in the code, and making use of these
type invariants in order to write simpler and safer code. In particular, conditionals guard-
ing against null can safely be removed for non-null references, and the compiler can give
warnings or errors if there are missing null guards for expressions that are possibly null.

Fähndrich and Leino split reference types into possibly-null and non-null types. The
subtype relation is extended to include these new types. Consider the example to the left
in the figure below. À A newly created instance is clearly non-null and thus allowed

456 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 JASTADD BACKGROUND

to be assigned to a non-null typed variable. Á A possibly-null typed variable may be
assigned an expression typed by its non-null counterpart, i.e., T− is a subtype of T . Â A
conditional statement that checks a possibly-null local variable or parameter against null,
automatically casts it into its non-null counterpart, as long as it is not assigned a possibly-
null value in that branch. Ã A qualified variable or method-name must be qualified by a
value of a non-null type, otherwise a possible null pointer violation is reported.

À T- t = new T();
Á T n = t;
Â if(n != null)

t = n;
Ã int x = t.f;

Object

S

T

Object-

S-

T-null

T− <: T

T− <: S− i f f T <: S

null 6<: T−

The type hierarchy can be modeled by the diagram in the middle where a type T is a
subtype of another type S if there is a path in the upward direction from T to S. The
subtype relation is extended to include three new rules relating non-null types to possibly
null types. These rules are shown on the right hand side in the figure above. The typing
rules for Java state that all reference types are supertypes of the null type, and the third
rule excludes this relation for non-null types.

The combination of non-null instance fields and object initialization complicates mat-
ters. Consider the listings in Figure 1. The left hand is actually equivalent to the right
hand side from a code generation point of view. There is an implicit call to the super
constructor and fields are not initialized until after that call is completed. The constructor
in A is thus reached before b has been initialized and the virtual call to print() reaches
the implementation in B that uses the b field prior to its initialization. The problem is
that a partially initialized object is referenced by this within a constructor. A type based
solution to this problem is to extend the type system with reference types for partially
initialized objects. These types are called raw and when reading fields in raw objects we
expect them to be possibly-null regardless of their annotations. Instance methods that are
dispatched on a raw object, e.g., called from a constructor, can be annotated as being raw
which implies that the type of this is raw in the method body. A thorough description of
raw types is given in [FL03].

3 JASTADD BACKGROUND

The JastAdd compiler construction system combines object-orientation with declarative
attributes and context-dependent rewrites to allow highly modular specifications [EH].
Inter-type declarations [KHH+01] allow for modular extension and declarative attributes
enable composition of specifications. Behavior may be specified declaratively using
the Rewritable Circular Reference Attributed Grammars (ReCRAGs) formalism [HM03,
EH04, MH03] or imperatively using Java code.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 457

PLUGGABLE CHECKING AND INFERENCING OF NON-NULL TYPES FOR JAVA

class A {
String a = "a";
A() {

print();
}
void print() {

System.out.println(a);
}

}
class B extends A {

String b = "b";
B() { }
void print() {

System.out.println(a+b);
}

}

class A extends Object {
String a;
A() {
super(); this.a = "a"; this.print();

}
void print() {

System.out.println(this.a);
}

}
class B extends A {

String b;
B() { super(); this.b = "b"; }
void print() {

System.out.println(this.a + this.b);
}

}

Figure 1: Access to fields in partially initialized objects. The generated code is identical
for both examples and the message "anull" is printed if B is instantiated.

Object oriented abstract grammars

An abstract grammar models a class hierarchy from which classes are generated that are
used as node types in the abstract syntax tree (AST). Consider the grammar in Figure 2 in
Section 4. A class is generated for each production in the grammar, e.g., TypeDecl, Expr,
and may inherit another production by adding a colon followed by the super production,
e.g., ClassDecl : TypeDecl.

The right hand side of a production is a list of elements. The default name of an
element is the same as its type unless it is explicitly named by prefixing the element with
a name and a colon. E.g., the TypeDecl has an element named Extends which is of type
TypeName. Elements enclosed in angle brackets are values, e.g., <Name:String> in TypeDecl,
while other elements are tree nodes, e.g., Extends:TypeName and BodyDecl in TypeDecl. An
element may be suffixed by a star to specify a list of zero or more elements, e.g., BodyDecl*
in TypeDecl. Optional elements are enclosed in square brackets.

The system generates a constructor and accessor methods for value and tree elements.
An accessor method is prefixed by get, e.g., TypeName getExtends(). List elements can be
queried for the number of elements in the list using int getNumBodyDecl(). Elements are
selected using an index to specify the appropriate child through getBodyDecl(int index).

Declarative attributes

Attribute grammars [Knu68] have proven useful when describing context-sensitive infor-
mation, and specifies behavior through attributes whose values are defined by equations.
They integrate well with the object-oriented programming paradigm when extended with
reference attributes, allowing an attribute to be a reference to another tree node [Hed00].

458 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 JASTADD BACKGROUND

A synthesized attribute is similar to a virtual method without side-effects which allows
for efficient evaluation using caching. Consider the grammar in Figure 2 in Section 4 and
the task to determine whether an Expr node accesses a field named name or not. This
can be implemented through the following synthesized attribute. Notice that the equation
for FieldName overrides the default equation for its superclass Expr. Equations may be
specified as either a side-effect free block returning the value or a single expression.

syn boolean Expr.isFieldName(String name);
eq Expr.isFieldName(String name) { return false; }
eq FieldName.isFieldName(String name) = getName().equals(name);

An inherited attribute propagates context downwards the AST. Consider the task to
determine the enclosing TypeDecl for a BodyDecl node. A TypeDecl defines the enclosing
context for all its BodyDecls through the following inherited attribute. Equations for in-
herited attributes are broadcast to an entire subtree to eliminate the need for copy rules.
This subtree is explicitly selected using a child accessor, getBodyDecl(int index) in this
case. The equation should thus be read as: define the value for the enclosingTypeDecl()

attribute in the entire subtree whose root is the node returned by getBodyDecl(int index)

in a TypeDecl node. The index can be used in the equation to define individual values for
children in a list. The sample equation states that the value is this, i.e., a reference to the
type declaration node defining the equation.

inh TypeDecl BodyDecl.enclosingTypeDecl();
eq TypeDecl.getBodyDecl(int index).enclosingTypeDecl() = this;

A common way to extend functionality in a modular fashion is to define new node
types for new language constructs and to provide equations that override existing behavior
in a superclass. This feature is extensively used in our compiler, but there is sometimes
the need to refine an existing equation. This is similar to overriding but the new behavior
affects the same class instead of a subclass. The following equation refines the behavior of
FieldName.isFieldName(String name) previously defined in a module called Base. This new
equation will replace the old definition. The old definition can still be accessed within the
new equation by prefixing its name with the module in which it is defined, i.e., Base.

refine Base eq FieldName.isFieldName(String name) =
name.equals("?") ? true : Base.FieldName.isFieldName(name);

Circular attributes

Circular Reference Attributed Grammars [MH03] allow iterative fixed-point computa-
tions to be expressed directly using recursive equations. Cyclic dependencies are allowed
as long as there is a fixed-point that can be computed with a finite number of iterations.
This is for example guaranteed if the value domain forms a finite height lattice and the
functions are monotonic. Consider the code snippet below that detects cyclic class hier-
archies. A ClassDecl optionally extends another class through explicit naming and that
superclass is reached through the type() attribute in the extends clause. We define a
boolean attribute cyclicHierarchy() which is true if, for instance, a class A extends B

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 459

PLUGGABLE CHECKING AND INFERENCING OF NON-NULL TYPES FOR JAVA

and B extends A. In this situation the attribute is indeed circular since it depends on it-
self. We therefore need to declare the attribute circular and give a bottom value, in this
case true, to be used in the fixed-point computation. This computation is guaranteed to
terminate since the value domain is a boolean lattice and the equation has bottom value
true and a meet operation that reaches top for a single false element.
ast ClassDecl : TypeDecl ::= <Name:String > [Extends:TypeName]

BodyDecl* ImplicitTypeDecl:TypeDecl*;
syn boolean ClassDecl.cyclicHierachy() circular [true] =

hasExtends() && getExtends().type().cyclicHierarchy();

4 JAVADEMOTYPES BASE LANGUAGE

For demonstration purposes we define a small core language, JavaDemoTypes, which is
then extended with non-null and raw types. The declarative specification language al-
lows us to modularize our grammars freely, and the implementation can therefore share
the same modularizaton as this presentation. JavaDemoTypes is implemented as separate
modules for name binding, type checking, and an abstract grammar. There are three sep-
arate modules extending the base language with non-null types, raw types, and implicit
casts through explicit null-checks. The language captures the essence of our implemen-
tation techniques while being small enough to fit in the paper. The same techniques are
used to extend the JastAdd extensible Java compiler [EH07] and all implementations and
extensions can be downloaded from the JastAdd web site [EH].

The main design principle is to represent the entire compilation process as an at-
tributed AST. All language construct relations are represented as bindings between nodes
in the tree. For instance, a type of an expression is represented by a reference to a type
declaration which can then be used to look up members in name analysis, and to com-
pute the subtype relation during type checking. There is thus no need for separate symbol
tables, and this allows the extension mechanisms that apply to ASTs and attributes to be
applied to the compilation data structures too. Code generation is then a one pass traversal
of the tree which emits bytecode, reading attributes to gather non-local information.

The base JavaDemoTypes language contains class declarations with member fields,
object instantiation, the null literal, and access to the current object through this. This
allows us to write a very scaled-down version of Java and the language is then gradually
extended with new concepts as they are introduced through language extensions.

Language structure

The AST structure is defined by the grammar in Figure 2. A type declaration inherits
a single named type and has a list of body declarations. Each type also contains a list
of implicit type declarations, e.g., arrays and non-null types based on that ground type.
These implicit declarations are dynamically created when needed and added to the AST
since all concepts must be explicit in the AST.

460 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

4 JAVADEMOTYPES BASE LANGUAGE

The only body declarations in the base language are member fields, but later examples
add constructors and method declarations. Fields are initialized where declared and these
assignments are checked using the subtype relation to ensure type safety. Basic support
for names include type names, field names, and qualified names. Qualified names are
used for nested types and member fields. Fields can also be qualified by this. A class
instance expression is used to create an object and there is an explicit null literal. A
singleton NullDecl is used to represent the type of the null literal.

ast abstract TypeDecl ::= <Name:String > Extends:TypeName
BodyDecl* ImplicitTypeDecl:TypeDecl*;

ast ClassDecl : TypeDecl;
ast NullDecl : TypeDecl;
ast BodyDecl ::= <Modifiers:String >;
ast FieldDecl : BodyDecl ::= TypeName <Name:String > Expr;
ast abstract Expr;
ast QualName : Expr ::= Left:Expr Right:Expr;
ast TypeName : Expr ::= <Name:String >;
ast FieldName : Expr ::= <Name:String >;
ast This : Expr;
ast ClassInstanceExpr : Expr ::= TypeName;
ast NullLiteral : Expr;

Figure 2: Abstract grammar for the JavaDemoTypes base language.

Name binding and type system API

For brevity, we only include the implementation of the base system that is concerned with
types. The full implementation, including name analysis, is available at [EH]. Figure 3
shows the API for relevant parts of the base code that are not included in this paper. À

Each expression has a type which is represented by a reference to a type declaration.
The following attributes deal with names: Á Each FieldName is bound to a FieldDecl, and
Â some names are qualified by an expression in which case there is a reference to that
expression Ã. Each Expr is enclosed in a TypeDecl which can be found through Ä and
member fields of types can be bound using Å.

À syn TypeDecl Expr.type(); / / each Expr has a t y p e
Á syn FieldDecl FieldName.decl() / / names are bound t o d e c l a r a t i o n s
Â inh boolean Expr.isQualified(); / / an Expr can be q u a l i f i e d . . .
Ã inh Expr Expr.qualifier(); / / . . . and t h e n has a q u a l i f i e r
Ä inh TypeDecl Expr.enclosingType(); / / an Expr has an e n c l o s i n g t y p e
Å syn FieldDecl TypeDecl.memberField(String n); / / member f i e l d b i n d i n g

Figure 3: The base language API that is used by the type extension.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 461

PLUGGABLE CHECKING AND INFERENCING OF NON-NULL TYPES FOR JAVA

Subtype computation for error checking

The subtype relation is used when typechecking object-oriented programs, and subsump-
tion allows a subtype S of T to be used where a type T is expected. A typical example
is assignment where an expression is assigned to a variable and the type of that expres-
sion must be a subtype of the declared variable type. Error checking in JavaDemoTypes
is performed by a single traversal of the AST that collects errors and presents them to
the user. Figure 4 shows sample error checking for FieldDecl where the initialization is
type checked À using the type and subtype attributes. In the full Java compiler the error
method adds location information to the error message, e.g., filename and line number.

public void FieldDecl.errorCheck() {
À if(!getExpr().type().subtype(getTypeName().type()))

error("Field " + getName() + " assignment error");
}

Figure 4: Type checking field initialization.

Extensible subtype tests

The key to enable modular type system extensions is the possibility to add new kinds
of types and to extend the subtype relation to handle these new types. The previous
typechecking example uses the boolean attribute subtype to determine whether two types
are in the subtype relation or not. We use a straight-forward implementation of the subtype
test for S <: T that searches the direct supertypes of S transitively for T to determine if
S and T are in a subtype relation. Since all type declarations are represented by nodes
in the AST we can simply transitively follow the reference attribute that binds a type to
its direct supertype. This works well in practice due to the automatic caching of previous
subtype tests. New kinds of types can then be supported by adding node types to the AST
representing these types. The type binding rules need to be modified to use these new
types where appropriate, and the subtype attribute needs to be augmented to support these
new kinds of types.

To make the subtype relation extensible we need an implementation that allows for
modular specification of different rules for different combinations of types. These re-
quirements are very similar to binary methods where the target method is selected based
on both the receiver and its argument. Since Java only supports dispatch on the receiver
we use the double dispatch pattern [Ing86] to emulate a binary method by first dispatching
on the receiver and then performing a second dispatch on the argument. Figure 5 shows
the implementation of the subtype relation for the base language using double dispatch.
The first invocation, subtype À, reduces the polymorphic receiver to a monomorphic one
by the type dispatch inherent in method invocations. The target method, e.g., Á, reduces
the polymorphic argument into a monomorphic one by a second dispatch on that argu-
ment. Notice that this second dispatch reverses the relation from subtype to supertype
while also selecting a specific supertype computation based on the run-time receiver type,

462 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

5 NON-NULL TYPES EXTENSION

e.g., Â or Ã. The traditional use of double dispatch does not allow modular extensions,
but when combined with inter-type declarations the implementation can be done in a mod-
ular fashion. This enables us to provide specific equations for an arbitrary combination of
type kinds in the subtype relation.

/ / do ub l e d i s p a t c h p a t t e r n t o imp lemen t b i n a r y methods
À syn boolean TypeDecl.subtype(TypeDecl type);

eq ClassDecl.subtype(TypeDecl type) = type.superClassDecl(this);
Á eq NullDecl.subtype(TypeDecl type) = type.superNullDecl(this);

/ / t h e s u b t y p e r e l a t i o n i s r e f l e x i v e and t r a n s i t i v e
Â syn boolean TypeDecl.superClassDecl(ClassDecl type)

= this == type || type.superclass().subtype(this);
/ / a l l t y p e s are s u p e r t y p e s o f N u l l D e c l . . .

Ã syn boolean TypeDecl.superNullDecl(NullDecl type)= true;

Figure 5: Base language subtype relation computation.

5 NON-NULL TYPES EXTENSION

This section presents a modular non-null type extension to JavaDemoTypes based on the
type system by Fähndrich and Leino [FL03] introduced in Section 2. We add a non-null
type declaration and extend the subtype relation to cope with this new kind of type. In
Section 2, we used the suffix ’-’ to indicate non-null types. In our implementation, we will
instead use the Java annotation @NonNull, suggested in JSR-305, to annotate declarations
that should not be assigned a null value. The extension is divided into the following tasks:
add a representation of non-null types, extend the subtype relation to handle non-null
types, refine type binding rules, and detect possible null pointer violations. Finally, we
show how to extend the language to handle partially initialized objects using raw types.

Non-null type representation

Each type is represented by a type declaration node in the AST, e.g., a class declaration
node is used to represent its corresponding type. Since non-null types are not declared
explicitly we add them to the AST on demand when being used. Figure 6 shows attributes
that bind a possibly-null declaration to its non-null counterpart À and vice versa Á. The
first time a non-null type is requested we build a NonNullDecl node that is attached to the
AST as a child to its possibly-null counterpart. The NonNullDecl also delegate all member
lookups to the possibly-null type Â.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 463

PLUGGABLE CHECKING AND INFERENCING OF NON-NULL TYPES FOR JAVA

ast NonNullDecl : TypeDecl ::= <Name:String > Extends:TypeName
BodyDecl* ImplicitTypeDecl:TypeDecl*;

/ / l i n k p o s s i b l y−n u l l t y p e and t h e non−n u l l c o u n t e r p a r t
À inh TypeDecl NonNullDecl.possiblyNull();

eq TypeDecl.getImplicitTypeDecl().possiblyNull() = this;
Á syn TypeDecl TypeDecl.nonNull() {

TypeDecl typeDecl = new NonNullDecl("@NonNull " + getName(),
new TypeName(getExtends().getName()), new List(), new List()

);
return addImplicitTypeDecl(typeDecl);

}
/ / d e l e g a t e member f i e l d lo ok up t o p o s s i b l y−n u l l t y p e

Â eq NonNullDecl.memberField(String name) =
possiblyNull().memberField(name);

Figure 6: Compute the non-null counterpart of a possibly-null type and vice versa.

Extend subtype relation to non-null types

The subtype extension to handle non-null types is straightforward when using double dis-
patch and reference attributes. Figure 7 adds the new subtype rules for non-null types. The
equation for superNullDecl(NullDecl type) À is for instance overridden for NonNullDecl to
be false, effectively removing the (NullDecl,NonNullDecl) pair from the subtype relation.

/ / s u b t y p e r u l e s
eq NonNullDecl.subtype(TypeDecl type) = type.superNonNullDecl(this);
syn boolean TypeDecl.superNonNullDecl(NonNullDecl t) = false;

/ / S− i s a s u b t y p e o f a T i f S i s a s u b t y p e o f T
eq ClassDecl.superNonNullDecl(NonNullDecl type)

= type.possiblyNull().subtype(this);
/ / S− i s a s u b t y p e o f a T− i f S i s a s u b t y p e o f T
eq NonNullDecl.superNonNullDecl(NonNullDecl type)

= type.possiblyNull().subtype(possiblyNull ());
/ / a p o s s i b l y−n u l l t y p e i s n o t a s u b t y p e o f a non−n u l l
eq NonNullDecl.superClassDecl(ClassDecl type) = false;
/ / n u l l i s n o t a s u b t y p e t o a non−n u l l t y p e

À eq NonNullDecl.superNullDecl(NullDecl type) = false;

Figure 7: Modular extension of the subtype relation to include non-null types.

Refine type binding and error checking

With the new subtype relation in place, and attributes to bind a possibly-null type to its
non-null counterpart, we need to refine a few type equations to use these new types and
add checks for possible null-pointer violations. Figure 8 shows the refined equations for

464 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

5 NON-NULL TYPES EXTENSION

both FieldDecl and ClassInstanceExpr. The type of a field is refined to be non-null if it has
a @NonNull modifier À. The base type is found through the TypeName binding and its non-
null counterpart is referred using the nonNull() attribute. All newly instantiated objects
are guaranteed to be non-null and therefore bound to a non-null type Á. We use these
refined types to prevent possible null-pointer violations by detecting field reads that may
dereference a null-pointer reference Â. If the qualifier to a field name is of a possibly-null
type, there might be a null pointer violation at run-time and we instead raise a compile-
time error. The extended subtype attribute ensures that a field declared non-null can not
be assigned a possibly-null typed value.

/ / d e t e c t @NonNull m o d i f i e r
À refine Base eq FieldDecl.type() = modifier("@NonNull") ?

getTypeName().type().nonNull() : getTypeName().type();
/ / i n s t a n t i a t e d o b j e c t s are non−n u l l

Á refine Base eq ClassInstanceExpr.type()
= Base.ClassInstanceExpr.type().nonNull();

/ / d e t e c t a t t e m p t t o d e r e f e r e n c e p o s s i b l y−n u l l t y p e s
refine BaseErrorCheck void FieldName.errorCheck() {

BaseErrorCheck.FieldName.errorCheck();
Â if(isQualified() && qualifier().type().mayBeNull())

error("Qualifier may be null");
}
syn boolean TypeDecl.mayBeNull() = true;
eq NonNullDecl.mayBeNull() = false;

Figure 8: Refine type binding and error checking when using non-null types.

Raw types

The extensions done so far assume that all fields have been assigned non-null values
before they are accessed. However, as illustrated by Figure 1 in Section 2 this can not be
guaranteed when allowing virtual dispatch in constructors. The problem is that this may
reference a partially initialized object within a constructor in which the fields may not yet
have been assigned. Fähndrich and Leino therefore introduce raw types that may hold
references to such objects, in which all member fields are assumed to be possibly null
[FL03]. Raw objects originate as this in constructors but they may escape constructors
by being the receiver of a method invocation, an argument to a method invocation, or the
right hand side in an assignment. Fields and parameters may therefore be annotated as
being raw to allow such assignments, and methods annotated as raw may be invoked on
partially initialized objects. We introduce raw type declarations (ast RawDecl : TypeDecl)
and extend the subtype relation for raw types (using the same implementation technique
as for non-null types) with the following rules: A <: Araw and Braw <: Araw i f f B <: A.

Both possibly-null and non-null types are thus subtypes of the corresponding raw
type. This also means that raw types are not subtypes of Ob ject but rather the Ob jectraw

type. The print() method, in Figure 1 in Section 2, would have to be declared @Raw or

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 465

PLUGGABLE CHECKING AND INFERENCING OF NON-NULL TYPES FOR JAVA

else the call from the constructor in A would result in a type error since Araw is not a
subtype of A. If we had dereferenced b in that context there would be a possible null
pointer violation and we would have to guard that operation with an explicit comparison
b != null. Figure 9 adds node types for constructors and methods to support programs
where partially initialized objects are exposed.

ast ConstrDecl : BodyDecl ::= <Name:String > Block;
ast MethodDecl : BodyDecl ::= TypeName <Name:String > ParamDecl* Block;
ast ParamDecl ::= <Modifiers:String > TypeName <Name:String >;
ast ParamName : Expr ::= <Name:String >;
ast MethodInv : Expr ::= <Name:String > Arg:Expr*;
ast AssignExpr : Expr ::= LValue:Expr Expr;

Figure 9: Extend the base language with constructors and methods.

Detect partially initialized objects

Raw types force the actual type of this to change in certain contexts, e.g., within con-
structors and methods annotated as being raw. Figure 10 refines the implementation for
the type of this in these contexts using the inherited attribute thisType() which defines
the actual type for a particular context À. Equation Á sets the type to be raw in the
constructor body, and equation Â takes annotations on methods into account. The Java
language specification prescribes that fields in the same class can not be used in an ini-
tialization of another field unless they are declared before that field. This actually allows
us to consider the type of this in the initialization of a field not to be raw Ã. We finally
need to add an additional check to verify that the receiver of a method call is a subtype of
the declared method receiver Ä.

refine Base eq This.type() = thisType();
À inh TypeDecl This.thisType();
Á eq ConstrDecl.getBlock().thisType() = enclosingType().raw();
Â eq MethodDecl.getBlock().thisType() = modifier("@Raw") ?

enclosingType().raw() : enclosingType().nonNull();
Ã eq FieldDecl.getExpr().thisType() = enclosingType().nonNull());

refine BaseErrorCheck void MethodInv.errorCheck() {
BaseErrorCheck.MethodInv.errorCheck();
TypeDecl qualifierType = isQualified() ?

qualifier().type() : thisType();
if(!qualifierType.subtype(decl().methodThisType ()))

Ä error("Qualifier not compatible");
}

Figure 10: Compute the rawness state of this in a certain context.

466 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

6 AUTOMATIC NON-NULL TYPE INFERENCE

Discussion

We have implemented a full non-null type extension to Java 1.4 using the same techniques
as described in the previous sections. The main differences are that we need to extend
error checking, e.g., overriding of methods with the new rules, and dealing with interfaces.
Interfaces are added as a new kind of node type and equations are provided for that node
type in the same way as the equations in Figure 5. Interfaces also affect the subtype
relation in that each type may have several direct supertypes. The implementation checks
multiple supertypes, but is otherwise very similar to the one for JavaDemoTypes.

We have used the same techniques to implement parameterized types in Java 5. The
subtype relation is extended similar to the non-null extension, but dynamically built types
do not delegate lookups to their base types. Instead we build method and field signatures
where the use of type parameters have been replaced by type arguments for that particular
parameterization. This allows the name binding framework to provide bindings to meth-
ods and fields that reflect the instantiated type parameters. The standard type checking
can then be re-used even for type checking member access in paramterized types.

6 AUTOMATIC NON-NULL TYPE INFERENCE

The extended type system relies on annotations to separate possibly-null from non-null
references. This section presents a technique to infer such annotations automatically in
library code, e.g., the JDK. This allows users to start using non-null types in new code
without having to guard all uses of libraries with null-checks. It also enables the user to
gradually refactor legacy code to annotated code, moving the barrier between annotated
and non-annotated code. The approach can also be used to detect candidates for possible
null pointer errors, i.e., dereferencing references that are inferred to be possibly null.

Infer the non-null type property

The purpose of the type inference is to add as many non-null annotations as possible
without violating the extended subtype rules. For each language construct that may be
annotated we compute whether it is safe to replace its type T by its non-null counterpart
T− or not. It is considered safe if all subtype checks where the type is used still pass after
the replacement. Consider the following code snippet for an element in a linked list:

class Element {
Element next , pred;
void remove() { pred.next = next; }

}

The assignment of the field next depends directly on itself and the computation of whether
the possibly-null type can be replaced with a non-null type is thus circular. This naturally
leads to iterative fix-point computations that are conveniently implemented using circular

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 467

PLUGGABLE CHECKING AND INFERENCING OF NON-NULL TYPES FOR JAVA

attributes. The computation is guaranteed to terminate since the value domain of the non-
null property forms a boolean lattice and the equation has bottom value true and a meet
operation that reaches top for a single false element.

Figure 11 shows how to infer the non-null property for parameters and fields. Param-
eters are considered non-null unless they are assigned a possibly-null value À. Fields are
somewhat more complicated in that they must also be definitely assigned at the end of
every constructor Á. However, this property needs to be computed by the Java compiler
for blank final fields anyway, and is reused as is. Both parameters and fields depend on
the non-null property of the expression values that they are assigned to and we therefore
compute the non-null property of expressions as well. Newly created objects are always
non-null Â similar to equation Á in Figure 8. FieldNames need the rawness property to be
computed to allow for safe refinement to non-null types Ã. ParamNames that are not refined
to non-null may still be considered non-null when guarded by a null comparison Ä.

syn boolean ParamDecl.isNonNull() circular [true] {
for(Iterator iter = assignedValues(); iter.hasNext();)

À if(!((Expr)iter.next()).isNonNull()) return false;
return true;

}
syn boolean FieldDecl.isNonNull() circular [true] {

for(Iterator iter=assignedValues(); iter.hasNext();)
if(!((Expr)iter.next().isNonNull())) return false;

for(Iterator iter = enclosingType().constructors();iter.hasNext();)
Á if(!((ConstrDecl)iter.next()). definitelyAssigns(this))

return false;
return true;

}
syn boolean Expr.isNonNull() circular [true];

Â eq ClassInstanceExpr.isNonNull() = true;
Ã eq FieldName.isNonNull() =

decl().isNonNull() && !qualifier().isRaw();
Ä eq ParamName.isNonNull() =

decl().isNonNull() || guardedByNullCheck(getName());

Figure 11: Infer the non-null property.

The legacy code differs from newly developed client code in that we allow possibly-
null pointers to be dereferenced. There may thus be null-pointer violations in legacy code,
but this is necessary to enable us to compile it without having to add manual annotations.
However, the inferred non-null annotations are always safe and we can therefore use the
legacy code without introducing new null-pointer violations in client code.

Infer raw types for partially initialized objects

The non-null inference checks whether a field is read from a partially initialized object,
in which case the result must always be considered possibly null. We therefore need
to compute the rawness property for expressions including this. Figure 12 shows the

468 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

7 EVALUATION

implementation of these properties. A method is raw if any receiver is raw À while this

is raw in raw methods Á and in constructors Â. The computation for thisTypeRaw() is
very similar to the implementation in Figure 10 and differs in that a boolean property is
computed rather than an actual type, and also in the possibility of circularities.

syn boolean MethodDecl.isRaw() circular [false] {
for(Iterator iter = receiverExprs(); iter.hasNext();)

À if(((Expr)iter.next()).isRaw()) return true;
return false;

}
syn boolean Expr.isRaw() circular [false];
eq This.isRaw() = thisTypeRaw();
inh boolean This.thisTypeRaw() circular [false];

Á eq MethodDecl.getBlock().thisTypeRaw() = isRaw();
Â eq ConstructorDecl.getBlock().thisTypeRaw() = true;

Figure 12: Infer the raw property.

7 EVALUATION

We have presented JavaDemoTypes and shown how to extend its type system with non-
null types, raw types, and inference of these properties in legacy code. The same tech-
niques are used in the JastAdd Extensible Java Compiler and we compare these imple-
mentations to to validate that the techniques scale up to full languages. Figure 13 shows
the module sizes for the non-null extension for JavaDemoTypes as well as Java. The
Java extension includes additional checks that ensure that modifiers are only used in valid
contexts, and also includes support for more fine-grained type rawness. Even when this
functionality is included, the full extension is only 56% larger than the extension for
JavaDemoTypes. As a comparison, the size of the complete Java compiler is close to
14.000 lines of code. The extension is thus only a small fraction of the full compiler.

Module Demo Java Responsibility
NonNull 43 72 Add non-null type representation, extend subtype relation,

detect non-null modifiers, and detect unsafe dereferences.
Raw 73 99 Add AST representation of raw types. Extend subtype rela-

tion. Include raw modifiers in type computations.
Guard 26 30 Check if a possibly-null variable is guarded by explicit com-

parison to null.
Check n/a 20 Check for valid modifiers. Not included in JavaDemoTypes.
Total 142 221

Figure 13: The size for each module in the non-null type extension for JavaDemoTypes
and the corresponding size for the JastAdd Extensible Java Compiler. All sizes are number
of lines of code excluding comments and whitespace.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 469

PLUGGABLE CHECKING AND INFERENCING OF NON-NULL TYPES FOR JAVA

We do a similar comparison for the type inference implementation in Figure 14. While
still being fairly compact (< 3.3 % of the full compiler size), the refinement algorithm for
full Java is roughly ten times larger than for JavaDemoTypes. The reason is that the
type inference extension is not as deeply integrated in the compiler as the non-null type
extension, but merely adds additional computations on top of existing analyses. The base
compiler converts and propagates types according to the operations in an expression tree.
The type extension reuses that code for new types as well, e.g., non-null types and raw
types. When we infer the non-null property, on the other hand, we need to implement that
propagation in all language constructs in the base Java compiler.

Module Demo Java Responsibility
NonNull 19 112 Infer the non-null property.

Raw 14 134 Infer the raw property.
Guard 8 45 Detect variables guarded by explicit null check.
Output n/a 30 Include inferred properties in pretty printer.

Def-Use n/a 113 Bind definitions to uses, e.g., assignments.
Flatten n/a 24 Conservatively merge methods with the same signature.
Total 41 458

Figure 14: The size for each module in the type inference extension for JavaDemoTypes
and the corresponding size for the JastAdd Extensible Java Compiler. All sizes are number
of lines of code excluding comments and whitespace.

Inference performance

We have evaluated the type inference algorithm using a substantial part of the JDK stan-
dard class library as a benchmark and measured the inferred non-null property in that
body of code. Roughly 100.000 source lines from the following packages in JDK 1.4.2
were included in the analysis: java.lang, java.util, java.io.

Our primary use of the inference algorithm is to automatically detect non-nullness
properties of the APIs in legacy code. When we annotate new code we would otherwise
have to assume all legacy code to return possibly-null types. We are thus mostly interested
in the non-nullness property for return values. The % Non-null return column in Figure 15
shows the percentage of reference typed return values that the inference algorithm con-
cludes are non null. A substantial part of the return values can thus be considered non
null when used by annotated code instead of assumed possibly null.

However, additional insights can be gained from the analysis. We can use the inferred
types of expressions to find possible null-pointer violations in the legacy code. We thus
partition the code into blocks that are safe from null-pointer violations and blocks where
null-pointer violations may occur. The % Safe dereferences column in Figure 15 shows
the percentage of locations in the code where the language prescribes a possible null
pointer exception, but where the inference algorithm inferred the non-nullness property.
The # Safe dereferences column shows the number of dereferenced non-null references.

470 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

8 RELATED WORK

Non-null return Safe dereferences
% # % #

Non-null + raw 24 % 259 71 % 8580
Non-null 24 % 252 69 % 8354

Figure 15: The result from non-null inference in terms of successful type refinements

Raw types allow for safe non-null declaration of fields that are accessed in partially
initialized objects. Without raw types these declarataions would have to be considered
possibly-null. To see if we benefit from the analysis we compute the same property with
raw types disabled and consider such fields possibly-null. The first line shows the results
with raw types enabled, while the second line shows the result without raw types. The
total number of non-null return values is slightly increased when using raw types. The
total benefit may seem minor, but the increased cost of inferring raw types is very small.

Inference speed

To evaluate the speed of our inference algorithm we compare the execution times for our
inference implementation, the base compiler, and the standard javac compiler for refer-
ence. Figure 16 shows the execution times for our benchmark as described above. We
included the time for javac as a reference to show that the JastAdd design to structure
the compiler is reasonably fast while still providing excellent support for modularity and
extensibility. The generated JastAdd based compiler is roughly three times slower than
javac. The cost for checking non-null types is negligable, but the additional cost of infer-
encing compared to normal compilation is roughly 50%. We conclude that the execution
speed for the analysis is reasonably high even for fairly large programs.

Non-Null + Raw Non-Null Base Compiler javac
time 9.1 s 9.0 s 6.4 s 2.5 s

Figure 16: Execution speed with and without various type inference computations

8 RELATED WORK

This paper shows how the type system in a Java compiler can be extended in a modular
fashion using JastAdd. Polyglot is an extensible Java front-end based on imperative pro-
gramming using visitor patterns and relies on explicit passes to schedule computations
[NCM03]. It has been extended with various type related concepts, e.g., parametrized
types [BLM97] and predicate dispatch [Mil04]. The JastAdd system, in contrast, is based
on declarative extensions through attribute grammars. To our knowledge, there is no im-
plementation of non-null types in Polyglot.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 471

PLUGGABLE CHECKING AND INFERENCING OF NON-NULL TYPES FOR JAVA

We base our type extension on the work on non-null types for object-oriented lan-
guages, as presented by Fähndrich and Leino [FL03]. Their approach differs from earlier
work on non-null types by taking inheritance and object initialization into account and
they did a prototype implementation for C#. We have implemented their type system as a
modular extension for Java and extend their approach by adding a simple but effective in-
ference algorithm in order to handle legacy code that does not have non-null annotations.

JavaCOP is a framework for adding pluggable type systems to Java [ANMM06]. The
authors present an impressive number of type systems in this framework, including non-
null types. However, it is not clear how they deal with partially initialized objects. The
Annotation Processing Tool (apt) for Java is a set of reflective APIs to process program
annotations. The system provides no API to method bodies and can thus not be used as is
to implement a non-null type system. There are several static analysis systems that detect
possible null pointer violations in Java code. FindBugs analyzes class files annotated with
non-null annotations [HSP05]. A major difference is that our compiler extension may use
any computation in the base compiler while these systems use domain-specific languages
where only a restricted part of the compiler infrastructure is accessible. The Java Mod-
eling Langauge (JML) is a specification language used to annotate implementations with
behavioral interfaces [BCC+05]. It supports a non-null type system, where non-null is
the default. This is a sensible choice as shown by Chalin and James that came to the con-
clusion that more than 2/3 of all references are non-null through a series of case studies
[CJ07]. ESC/Java2 is a static checker that can be used to detect null-pointer violations
[FLL+02]. It uses theorem provers to infer non-null properties, which potentially is a
more exact approach than using a type system, but also much more expensive.

Type qualifiers [FFA99] allow types to be refined by adding a qualifier to a type name,
e.g., non-null. This is a simple but highly useful form of subtyping. A framework is
presented that extends the type rules in C to propagate the qualifiers through a program.
There are publicly available systems with extensible type qualifiers without any automatic
soundness proofs with implementations for C (CQUAL) and Java (JQUAL). Semantic
Type Qualifiers [CMM05] provide an impressive framework and language to specify and
automatically prove soundness of extended types by refining types using type qualifiers.
An automatic theorem prover is used to prove soundness of various properties including
non-null types for C. Our implementation is larger than the corresponding type qualifier
definitions, but we can take other properties than propagation of types into account when
refining types, e.g., definite assignment, null comparisons, etc.

9 CONCLUSIONS AND FUTURE WORK

We have shown how the JastAdd extensible Java compiler can be extended with non-
null types. A type inference implementation that automatically infers non-null types in
legacy code has also been presented, detecting around 24% of method returns and 70% of
dereferences as non-null in JDK library code. Our modular implementation constitutes a
strong case for using ReCRAGs and JastAdd as an infrastructure for pluggable type sys-
tems. The resulting implementation, including both the non-null checker and the non-null

472 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

9 CONCLUSIONS AND FUTURE WORK

inferencer, is less than 700 lines of JastAdd code, and is available at the JastAdd website
[EH]. While being a whole-program analysis, the inferencer performance is sufficiently
fast for practical use, running in less than 10 seconds on 100.000 lines of JDK code.

Future work includes some refinements of the implementation. Raw types can be split
in more fine-grained types where objects are only raw up to a certain class. Constructors
in ancestral superclasses are guaranteed to have completed, making sure that non-null
fields in those inherited parts of the object are properly initialized. Currently, raw upto is
used in the non-null checker, but not yet in the non-null inferencer. The implementation
will also be extended to support elements in arrays as described by Fähndrich and Leino
[FL03]. References to arrays are handled in the same way as other references but the
elements of an array are always possibly null in our implementation.

References

[ANMM06] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for im-
plementing pluggable type systems. In Proceedings of OOPSLA’06, pages
57–74. ACM Press, 2006.

[BCC+05] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. Software
Tools for Technology Transfer, 7(3):212–232, June 2005.

[BLM97] J. A. Bank, B. Liskov, and A. C. Myers. Paramterized Types and Java. In
Proceedings of POPL’97, pages 132–145. ACM Press, 1997.

[BLS04] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming sys-
tem: An overview. In CASSIS 2004, volume 3362 of LNCS. Springer, 2004.

[Bon] D. Bonniot. Why programs written in Nice have less bugs.
http://nice.sourceforge.net/safety.html.

[Bra04] G. Bracha. Pluggable Type Systems. In OOPSLA’04 workshop on revival
of dynamic languages, 2004.

[CJ07] P. Chalin and P. James. Non-null References by Default in Java: Alleviat-
ing the Nullity Annotation Burden. In Proceedings of ECOOP’07, LNCS.
Springer, 2007.

[CMM05] B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers. In Pro-
ceedings of PLDI’05, pages 85–95. ACM Press, 2005.

[EH] T. Ekman and G. Hedin. The JastAdd compiler compiler system.
http://jastadd.cs.lth.se.

[EH04] T. Ekman and G. Hedin. Rewritable Reference Attributed Grammars. In
Proceedings of ECOOP’04, volume 3086 of LNCS. Springer, 2004.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 473

PLUGGABLE CHECKING AND INFERENCING OF NON-NULL TYPES FOR JAVA

[EH07] T. Ekman and G. Hedin. The JastAdd Extensible Java Compiler. In Pro-
ceedings of OOPSLA’07, 2007.

[FFA99] J. S. Foster, M. Fähndrich, and A. Aiken. A Theory of Type Qualifiers. In
Proceedings of PLDI’99, pages 192–203. ACM Press, 1999.

[FL03] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types
in an object-oriented language. In Proceedings of OOPSLA’03, pages 302–
312. ACM Press, 2003.

[FLL+02] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In Proceedings of PLDI ’02,
pages 234–245. ACM Press, 2002.

[Hed00] G. Hedin. Reference attribute grammars. In Informatica (Slovenia), 24(3),
2000.

[HM03] G. Hedin and E. Magnusson. JastAdd: an aspect-oriented compiler con-
struction system. Science of Computer Programming, 47(1):37–58, 2003.

[HSP05] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a static
analysis to find null pointer bugs. In Proceedings of PASTE ’05, pages 13–
19. ACM Press, 2005.

[Ing86] D. H. H. Ingalls. A Simple Technique for Handling Multiple Polymorphism.
In Proceedings of OOPSLA’86, pages 347–349, 1986.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold. An overview of AspectJ. In Proceedings of ECOOP’01, volume 2072
of LNCS, pages 327–355. Springer, 2001.

[Knu68] D. E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127–145, June 1968. Correction: Mathematical Systems The-
ory 5, 1, pp. 95-96 (March 1971).

[Mey05] B. Meyer. Attached types and their application to three open problems of
object-oriented programming. In Proceedings of ECOOP’05, volume 3586
of LNCS. Springer, 2005.

[MH03] E. Magnusson and G. Hedin. Circular reference attributed grammars - their
evaluation and applications. ENTCS, 82(3), 2003.

[Mil04] T. Millstein. Practical Predicate Dispatch. In Proceedings of OOPSLA’04,
pages 345–364. ACM Press, 2004.

[NCM03] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible
compiler framework for Java. In Proceedings of CC’03, volume 2622 of
LNCS, pages 138–152. Springer, 2003.

474 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

9 CONCLUSIONS AND FUTURE WORK

ABOUT THE AUTHORS

Torbjörn Ekman is a Research Fellow at the Computing Laboratory
at Oxford University, United Kingdom. He received a PhD from Lund
University in 2006. His research interests include extensible compilers,
scriptable refactorings, domain-specific languages, and aspect oriented
programming. He can be reached at torbjorn@comlab.ox.ac.uk

Görel Hedin is an Associate Professor of computer science at Lund
University, Sweden. She received a PhD from Lund University in 1992.
Her research interests include object-oriented languages and systems,
compilation technology, domain-specific languages, and agile method-
ologies. She has served on the program committees of many interna-
tional workshops and conferences including ECOOP, CC, and LDTA.
She can be reached at gorel@cs.lth.se.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 475

mailto:torbjorn@comlab.ox.ac.uk
mailto:gorel@cs.lth.se

