
Vol. 6, No. 9, Special Issue: TOOLS EUROPE 2007 2007

Improving Alignment of Crosscutting Fea-
tures with Code in Product Line Engineering

Christine Hundt, Technische Universität Berlin, Germany
Katharina Mehner, Siemens AG, Germany
Carsten Pfeiffer, Dehla Sokenou, GEBIT Solutions, Germany

Feature models used in product line engineering often include features that crosscut
other features. These features cannot be cleanly modularized using object-oriented
techniques and are the source of scattering and tangling in implementation modules.
This significantly complicates the traceability of features during the development and
maintenance of a product line and during the instantiation of a product.
This paper proposes a model-driven approach for mapping features to a design in the
aspect-oriented role-based language Object Teams. The approach has been evaluated
in an industrial case study for developing a security product line that can be applied
to several applications using aspect bindings.

1 MOTIVATION

One of the challenges of today’s software development is the management of variabil-
ity. While a standard software system may be inappropriate for many customers,
individual products become too expensive. Being able to provide different variants
of a software product reduces costs and means a significant advantage on the mar-
ket. Software product lines are an approach to conquer the demands of variable
products. A software product line is a set of products with common characteristics
that is developed from a common set of core assets.

Feature models are a means to capture commonalities and variabilities of a prod-
uct line. They often include features that crosscut other features. Using standard
object-oriented techniques, these features cannot cleanly be modularized. A cross-
cutting feature would affect more than one implementation module (scattering), and
an implementation module would realize different features (tangling). For variable
features, i.e. optional or exclusive features, sometimes a separate implementation
for each feasible combination is needed. This mis-alignment of features with im-
plementation modules significantly complicates the traceability of features during
the development and maintenance of a product line and during the instantiation
of a product. Generative techniques try to overcome this situation by generating
variable code into code fragments. The scattering and tangling still exists in the
generated code and the evolution of partly generated software is very difficult to
manage.

In this paper, we demonstrate how the aspect-oriented role-based programming

Cite this document as follows: Christine Hundt, Katharina Mehner, Carsten Pfeiffer, Dehla So-
kenou: Improving Alignment of Crosscutting Features with Code in Product Line Engineering,
in Journal of Object Technology, vol. 6, no. 9, Special Issue: TOOLS EUROPE 2007 2007,
pages 417–436,
http://www.jot.fm/issues/issues 2007 10/paper21

http://www.jot.fm/issues/issues_2007_10/paper21


IMPROVING ALIGNMENT OF CROSSCUTTING FEATURES WITH CODE IN PRODUCT LINE ENGINEERING

language Object Teams [8, 9] improves the alignment of features with code in the
implementation of a product line and in the instantiation of a product. Although the
Object Teams programming model was not designed for feature-oriented program-
ming and product line engineering it proved to be quite suitable for that. During
domain engineering, a software product infrastructure is built using a model-driven
approach for mapping a feature model to a design in Object Teams. In most cases,
a one-to-one correspondence between features and Object Teams implementation
modules can be realized. During application engineering a product instance is de-
rived using Object Teams mechanisms. Our approach also supports the implemen-
tation of a product line that is itself an aspect. Object Teams supports binding
the product instances as an aspect to a base application. Additionally, we propose
guidelines for providing flexible binding mechanisms in the case that product line
instances are to be bound as aspects to different applications. The approach has
been applied in an industrial case study to a security product line in Object Teams
as part of the practical evaluation project TOPPrax [23].

The paper is structured as follows. A brief introduction to feature-oriented
programming with Object Teams is given in Section 2. Section 3 presents rules for
mapping feature models to an Object Teams design and applies them to derive the
security product line infrastructure. Section 4 describes the instantiation principles
using Object Teams and their application to the security case study. The advantages
of our approach are discussed in Section 5 and its relations to other work in Section
6. Section 7 concludes and gives an outlook.

2 FEATURE-ORIENTED PROGRAMMING WITH OBJECT TEAMS

When establishing a product line, a feature model is often used during domain
engineering to capture commonalities and variabilities. The features drive the de-
velopment and maintenance of a product line and the product instantiation. Hence,
a seamless traceability of features through alignment of features with implemen-
tation modules is desirable. Variable features, i.e. optional or exclusive features,
need to be mapped to implementation modules that can be selected individually
during product instantiation. Seamless traceability also provides opportunities for
a model-driven development that has the potential for automation.

Our underlying notion of a feature is a characteristic or trait of a software system
that describes a coarse-grained requirement. In the context of product lines, a
feature is either common to all product line instances or serves to distinguish different
instances of a product line. A feature often describes something visible to the user
but it can also describe an implicit technical requirement.

A product line can be modeled using the feature model notation of [6]. The
feature model defines mandatory features (denoted as a filled dot above the feature
node) and optional features (denoted as an empty dot) as well as alternatives (de-
noted as an arc between features). The notation supports the constraints exclusion,

418 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



2 FEATURE-ORIENTED PROGRAMMING WITH OBJECT TEAMS

inclusion and influence relationships between features. Features are organized in a
hierarchy. Our notion of the relationships between features in such a hierarchy fol-
lows the commonly used semantics, i.e. part-of and is-a hierarchies. The influence
relationship can be considered as a crosscutting relationship to other features of the
same level and of sublevels.

Crosscutting features and variable features have been identified as the difficult
cases regarding alignment with implementation modules. The behavior of a cross-
cutting feature affects many other modules and these modules will become tangled
with the behavior of crosscutting features. For integrating the behavior of variable
features, mandatory modules will have to provide explicit hooks. For both cases, it
is desirable to modularize the behavior and to integrate it with the other behavior
without affecting the existing modules. Object-oriented modules are not sufficient
to capture features that crosscut other features. Their support for variable features
is limited to class-based inheritance.

The observation that object-oriented implementations of crosscutting require-
ments or features lead to tangling and scattering has been the origin of aspect-
oriented programming [11]. In order to provide a scalable approach, not only aspect-
oriented mechanisms for behavior interception at joinpoints are needed. A feature
is often not a singular behavior but adapts a collaboration of classes in an object-
oriented implementation of features. Therefore, support for modules that capture
a collaboration of crosscutting code and support for inheritance of collaborations is
required. This idea is pursued by aspect-oriented role-based languages like Object
Teams [8].

The Object Teams Programming Model

Object Teams [8, 9] is a modern programming model advancing object-orientation
with new modularization concepts. A full-featured development environment for
Object Teams (OTDT) is available [16] as a set of Eclipse plug-ins, including an
incremental compiler, code completion, structure views, a debugger, and more. As
Object Teams has evolved from Aspectual Components [13], it combines valuable
properties of the worlds of aspects and components. It introduces a new module
concept, the team. A team is a package that groups classes. At the same time, a
team is a class and therefore supports e.g. inheritance and instantiation. A team
instance is a container for objects defined within and provides a context for their
collaboration. The classes contained in a team are called roles, and they can dec-
orate other classes. A role is bound to a class by declaring a playedBy-relation. A
decorated class is called base. A base object can be decorated by zero or one role
instance per role class and per team instance. A role can interact with its base
object in two ways:

• A role class can specify callin method bindings. Thereby, a role instance inter-
cepts method calls to its base object in order to execute a role method (instead

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 419



IMPROVING ALIGNMENT OF CROSSCUTTING FEATURES WITH CODE IN PRODUCT LINE ENGINEERING

or additionally). In aspect-oriented programming, the elements referred to in
callin bindings are called join points1 [10].

• A role class can specify callout method bindings, allowing role instances to
forward method calls to base members (methods or fields).

Bindings can access any methods and attributes of the base objects including private
class members. Roles and their enclosing teams encapsulate behavior that can adapt
a collaboration of base classes in a specific context through the means of bindings.
The team concept is scalable in two respects: Firstly, a role of a team can itself be
a team. Secondly, the base class to which a role is bound can itself be a team or
even a role class of another team. Although there is no counterpart in the language
it is useful to use an adapts-relation to denote the relationship between a team and
the elements it adapts.

The adaptation capability of a team can be controlled at runtime. A team
instance can be activated or deactivated. If a team is active, all callin bindings are
enabled; if it is deactivated, they are effectless. Deactivating a team instance does
not affect its state nor the state of its contained roles. This state persists throughout
the life-time of the team instance. Besides activation at runtime, a team can also
be activated at program start time using a launch configuration. This implies that
a single instance of the team is created.

A team can be declared as abstract. An abstract team may contain abstract
roles that can be bound to base classes in a concrete subteam class. Roles in a
concrete team implicitly inherit from corresponding roles of the super team, where
correspondence is established by name equality between role classes. The distinction
between definition of roles and binding of roles to base classes is also used from a
methodological perspective to separate logic from binding and to make binding a
declarative programming paradigm. This essence is captured in the Connector pat-
tern. A subteam becomes a connector if it only declares callin and callout bindings.
Moreover, the binding step can be accomplished using a visual drag and drop editor
in the Object Teams development tooling (OTDT).

The modularization concepts of Object Teams (teams, roles) constitute units
capable of realizing the functionality of features, allowing for a better alignment of
features with implementation modules. The following sections detail the mapping
of features to Object Teams.

3 DOMAIN ENGINEERING WITH OBJECT TEAMS

Our domain engineering approach is driven by feature models from which an Object
Teams design of a product line infrastructure is derived. The aim is to align features

1 Method execution join points must be referred to explicitly in Object Teams. Even though
this is sufficient for our approach, a richer join point language, comparable to the one implemented
in AspectJ is in preparation.

420 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



3 DOMAIN ENGINEERING WITH OBJECT TEAMS

Figure 1: Mapping feature model elements to Object Teams

with modules of a programming model. We present in detail the mapping of features
to a static design in Object Teams. After the mapping, the behavior is implemented.

Mapping Features to Object Teams

Ideally, one feature should correspond to one module; in Object Teams terms: a
team. A team is the ideal unit to be selectively included in a program. This can
either be a compile-time decision or a launch time decision through team activation.

The mapping we present here is driven by the distinction between mandatory
and optional features and by the distinction between part-of, is-a and crosscutting
semantics of features. These mapping rules derive a static structure. In addition,
the feature model is mapped to Object Teams constructs that control the activation
of teams and roles at runtime. Provided that the semantic distinction between part-
of, is-a and crosscutting can be derived from a feature model, the static part of the
design can even be automatically generated using the following principles.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 421



IMPROVING ALIGNMENT OF CROSSCUTTING FEATURES WITH CODE IN PRODUCT LINE ENGINEERING

Structural Mapping

We define the following mapping (see Figure 1):

• Basically, each feature is mapped to a team (a). If a feature should not be
mapped, it has to be explicitly excluded from the mapping (b). This means
that the feature is fully described by its subfeatures and defines no additional
behavior.

• Alternative features, mandatory or optional, are considered an is-a relation
to their super feature. They are mapped to teams that inherit from the team
corresponding to the super feature (c). In this case, subfeatures are considered
as extensions of their super feature.

• Non-alternative subfeatures are considered as part of their super feature. A
mandatory, optional or exclusive feature that is in a part-of relation to a super
feature is mapped to a team nested inside the team that corresponds to the
super feature (d).

If the super feature is marked as unmapped, the whole is lacking in the whole-
part relationship. In this case, a different mapping is used. Subfeatures are
mapped to independent teams (e).

• An influences-relationship between a feature and another feature has crosscut-
ting nature and is mapped to an adaptation between teams. The influencing
team has to adapt the team which it influences. If a feature has more than one
influences-relationship, the corresponding team has to adapt all teams which it
influences. The adaptation is realized by class (playedBy) and method (callin,
callout) bindings.

More fine-grained features can be mapped to roles of a team. Each of the roles is
introduced on the level of the given architecture and will be bound later. At present,
the internal structure must be implemented, e.g. using the role creation wizard of
the Object Teams Development Tooling. In the future, the internal structure should
be part of the feature model. Such an example will be discussed on a concrete level
in the section where we present the security product line example. Here, adapter
roles can be generated for subfeatures that describe a choice between different GUI
elements (see Section 4).

Controlling Selection, Activation and Instantiation

As stated above, mandatory, optional and alternative features are statically mapped
to structural elements in a one-to-one correspondence. The selection of features to be
contained in a concrete product line instance is done dynamically via instantiation
and activation of teams. Constraints (includes, excludes) should be enforced by the
tool used for product line instantiation.

422 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



3 DOMAIN ENGINEERING WITH OBJECT TEAMS

In addition, there may be constraints depending on dynamic conditions. If, for
example, a constraint only states that two features should never be active simul-
taneously within the same application, this can not be ensured statically. Such
constraints can be stated and enforced at run-time using guard predicates [17], a
feature of Object Teams which allows to further fine-tune a team’s activation at
runtime. Such constraints might be additionally annotated in the feature model.

In general, we propose to have a team that encapsulates the activation of teams.
As a consequence, only one team has to be activated (statically) via a launch con-
figuration. In the following, we call such a team an activation team.

Security as Product Line Aspect

In an object-oriented security implementation, one will typically find crosscutting
code. Authentication is tangled with authorization if the latter is present, and in
the implementation of authentication, login mechanisms and logout mechanisms are
tangled. This makes security an interesting candidate for applying our approach.

In this section, we describe the application of the mapping rules in an industrial
case study in which we have realized a product line for a security aspect. Secu-
rity was developed as a product line in order to accomodate the need for different
security requirements. Authentication should be supported and optionally autho-
rization. Both should be supported using different options, e.g. different kinds of
logins and different authorization models. The security implementation uses the
Java Authentication and Authorization Service (JAAS). Security was developed as
an aspect because it should be possible to non-invasively add it to existing applica-
tions, i.e. without changing them. This also facilitates independence from the tech-
nology used for their implementation, i.e. object-oriented or even aspect-oriented
technologies. Moreover, the aspect solution supports different ways of binding it to
a given application to increase re-use and flexibility.

Feature Model of the Security Component

The security component is intended to provide access control by user authentica-
tion and authorization. A user management stores login names and passwords. For
authorization, it is assumed that access restrictions for each user can be specified.
Authentication and authorization are the functional requirements detailed in the
following. Authentication is the minimal function required for access control. Au-
thorization is dependent on authentication. In the feature model (see Figure 2), this
is expressed by modeling authentication as a mandatory feature (filled dot above
feature node) while authorization is an optional feature (empty dot). If only authen-
tication is requested, the authenticated user has complete access to the application.

The minimal requirement for authentication is the login feature. Login is carried
out either through a user interface or through operating system user identification,

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 423



IMPROVING ALIGNMENT OF CROSSCUTTING FEATURES WITH CODE IN PRODUCT LINE ENGINEERING

Figure 2: Feature Model

in the feature model represented by the arc between the corresponding features.

An optional logout feature supports to explicitly log out from the system. In the
simplest variant, logout is implicit in the shutdown of the application. After logout,
a new user or the same must be able to re-login. Optionally, a timeout is available
to logout a user automatically after a configurable time span has elapsed without
user interaction.

The influences-relationship between the two options and the login feature has
the following characteristics. Logout and timeout both require the login feature and
influence its behavior. If selected, they can assume that the mandatory login feature
is present. Logout and timeout are not supported if login is realized by operating
system user identification. This constraint is realized by the excludes edge from “OS
User identification” to logout and timeout respectively.

Authorization is supposed to cover business objects containing data (per value)
but also workflows (per workflow) or certain operations (per operation). Different
access rights and different user roles are distinguished.

In the following, we concentrate on the authentication feature which in our case
is the more interesting feature considering the options and the binding to the base
application. Authorization is also implementated in the product line and is config-
ured via a configuration file which defines users and permissions in a usual way, so
that only a minimal set of bindings to the base system is needed.

Deriving the Architecture of the Security Component

The resulting architecture of our example – the security component – is shown in
Figure 3. This architecture skeleton can be directly generated from the feature
model. Comparing the given architecture with the feature model from Figure 2, we
see that the teams are derived directly from the feature model. The feature and the
corresponding team are marked with the same number.

The features access control and authentication are not mapped, according to

424 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



3 DOMAIN ENGINEERING WITH OBJECT TEAMS

Figure 3: Architecture of the security component

Figure 4: Internal structure of LoginTeam and LogoutTeam

mapping (b) from Figure 1. For subfeatures of authentication, mapping (e) is used.
For subfeatures of the features login and authorization, mapping (c) applies. Re-
loginTeam is a nested team inside LogoutTeam, following mapping (d). Mapping
(f) is used for all features that crosscut other features, e.g. LogoutTeam adapts
LoginTeam.

Internal Structure of the Security Aspect

Since each of the features of the security component must be bound to different
points in the base system, we need to refine the internal structure of the teams, that
is, define the roles that are played by elements of the base system.

The internal structure of two of the teams is given in Figure 4: the structure of
the team implementing the login feature (LoginTeam) and that of the team imple-
menting the logout feature (LogoutTeam). Note that finally the ReloginTeam was
refactored to the more general role LoginManager.

Note the naming conventions of the roles: roles that are played by other teams
of the security component are named manager roles (e.g. the role LoginManager
of team LogoutTeam that is played by LoginTeam). Roles that adapt the base
system are called adapter roles (the role ApplicationAdapter of the LoginTeam and
the roles ViewAdapter and ButtonAdapter of the LogoutTeam). All other roles are

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 425



IMPROVING ALIGNMENT OF CROSSCUTTING FEATURES WITH CODE IN PRODUCT LINE ENGINEERING

Figure 5: Dependent Activation pattern

played by normal Java classes which implement some functionality of the security
component that cannot or need not be implemented in a role or a team, e.g. the
role LogoutListener in team LogoutTeam which is played by a listener class that
processes events from logout buttons.

The LoginTeam implements a variant of the Dependent Activation pattern [21].
The Dependent Activation pattern allows to activate teams with different activa-
tion contexts (e.g. at application start or after an initialization) without writing
different code on the abstract level. For team activation at application startup, the
constructor of the concrete team simply calls its activation method. If aspect activa-
tion should be performed only after an initialization of the base application, a callin
binding must be declared on the concrete level. The structure is illustrated in Figure
5 showcasing the SecurityManager team which is responsible for the activation of
all teams that are implementing selected features.

Similarly the LoginTeam’s functionality can be triggered either at application
start or after a set of initialization methods are performed (like initializing the GUI
or connecting to a database), i.e. by calling the login method directly from the team’s
constructor or by binding the role ApplicationAdapter in a subteam and connecting
its login method to an appropriate base method.

The LogoutTeam has four roles. The first of them, the LoginManager holds
the reference to (adapts) the LoginTeam, following the design of the influences-
relationship. The next two roles ViewAdapter and ButtonAdapter must be bound
to the base application on the concrete level. The ViewAdapter is responsible for
re-initialization of the view after logout and re-login. The role ButtonAdapter is a
role that implements fine-grained features, here the functionality that adds a logout
button and a menu item to the GUI of the base system to allow users to logout.
The last role LogoutListener is only used to notify other roles in the team, e.g. the
ViewAdapter role, when a logout event is fired. It would have been possible to
implement roles with different responsibilities in different nested teams in the team
LogoutTeam but as there are only four roles we decided against nested teams in this
case which also included to replace the nested team ReloginTeam by a role.

426 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



4 APPLICATION ENGINEERING WITH OBJECT TEAMS

4 APPLICATION ENGINEERING WITH OBJECT TEAMS

Deriving a concrete product instance from the product line infrastructure should
merely be a selection process based on the feature model. However, if the product
line is an aspect itself as in the case of the security example, an additional step of
binding the instance to a base application is necessary.

Instantiation Process

The general instantiation process consists of selecting the features and hence the
corresponding teams, and of specifying instantiation and activation for these teams.
For instantiation and activations, there exist several different possibilities:

• All selected teams are instantiated via launch configuration. This kind of
feature selection is only applicable if all features are represented by single team
instances. If more instances of one team are needed, one of the alternatives
below needs to be chosen instead. This is e.g. the case if a cardinality is
specified for a feature in the feature model.

• The activation follows the Dependent Activation pattern. The activation is
controlled by one additional team, the ActivationTeam. This team is activated
at start-up, and is responsible for instantiating and activating all teams that
implement features.
This solution can control team (feature) activation in a flexible way and also
manage feature dependencies.

• In an even more flexible solution, each feature or each set of features can be
controlled by its own activation manager. These activation managers are acti-
vated via launch configuration or via a global team that activates all activation
managers. The latter offers a scalable architecture where each activation man-
ager can activate a set of other activation managers which activate a set of
features or again another set of activation managers.

If the product line instantiation is to be bound as an aspect, an additional
step has to be performed between selection and instantiation. After features are
selected, a concrete level is generated, consisting of skeletons of subteams of all
selected teams. These skeletons only include the set of inherited roles with no
additional functionality and no binding. These team skeletons are connectors that
can be bound to the base system in the next step.

Binding to the Base System

The last step of deriving a product from the product line aspect is to bind the
product line aspect to a base system. This step is specific to our approach —

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 427



IMPROVING ALIGNMENT OF CROSSCUTTING FEATURES WITH CODE IN PRODUCT LINE ENGINEERING

“normal” product lines don’t need any special binding to a base system. Note that
we use the term “binding” here, because this kind of integration is not a standard
object-oriented integration nor an integration using techniques of an object-oriented
framework. Instead, it uses non-invasive techniques of aspect-oriented programming
languages, and does not require code to be written.

As we have already derived the connector team skeletons, we only have to define
the base classes of the roles in the connector teams and some method bindings:

• Callin bindings trigger all unreferenced methods.

• Callout bindings delegate abstract methods of the role to its base.

Both kinds of binding are supported by the Object Teams binding editor which
generates the bindings after we have visually connected role and base methods in
the editor. For both kinds of bindings, we apply patterns from [21] to be flexible in
the binding process.

For callin binding, we use the Feature Selection pattern2 [21]. Selecting imple-
mented features on the abstract level is done through callin-binding the methods
that implement the features to base methods. Unbound methods have the effect,
that the corresponding features are not supported by the derived product.

For callout binding, we use the Uniform Role Access pattern [21]. Object Teams
allows to hide the implementation of an interface from the client. In contrast to
object-oriented languages, the implementation cannot only be provided by a subclass
(or here better: a subaspect) of the abstract class, the implementation can also be
delegated to the base class of the given aspect (here: role) via callout binding.
This abstracts away from how and where a given interface is implemented. We use
this pattern because sometimes we have to implement a bit of functionality in the
connector team. This is mostly the case if we cannot find a suitable binding point
in the base system, for example if a requested functionality is not provided by the
base system. Currently, the OTDT’s binding editor is not “feature-selection-aware”
and allows to bind any method of the base system, i.e. also features that are not
selected for the given product. For future versions, we plan to extend the binding
editor to only provide the binding of selected features (selective binding editor).

Instantiation of the Security Product Line

In our case study, security was added to a disposition application for monitoring
stock levels and creating orders. This application exists in an object-oriented vari-
ant and an aspect-oriented implementation using Object Teams. Both variants have
been developed by the industrial partners in the TOPPrax project [23]. Here, we de-
scribe the instantiation and binding of a concrete product from the security product
line aspect to the aspect-oriented variant.

2 Note that although this pattern is called Feature Selection it is not a general solution for
feature selection since only fine-grained subfeatures that are implemented as roles are selected.

428 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



5 DISCUSSION

We concentrate on the two features login and logout, which were mapped to two
teams in the product line, and for which two connector skeleton teams are derived
now: the team AODispoLoginTeam and AODispoLogoutTeam. For the instantiation,
we follow the Dependent Activation pattern and add a team AOSecurityManager
that activates these two teams. In the connector teams, we describe the bindings
but also have to specify initializations required for login and for GUI configuration.
The team AODispoLoginTeam is responsible for initializing the used login module
in the team constructor. The login method that calls the login function is called
after the GUI is initalized. The abstract team LogoutTeam defines two methods in
the role ButtonAdapter for adding logout buttons and menu items to the GUI. This
functionality is selected by applying the Feature Selection pattern to the concrete
instance of the security component in the team AODispoLogoutTeam. This means
that the add button methods are executed via callin binding after the relevant part
of the GUI is initialized. For the disposition component variant, both a logout
button and a menu item are added. The team AODispoLogoutTeam also has to
specify some initialization code for the configuration of buttons.

We bound the same instantiation also to the object-oriented order system. Here
the difference was that we only needed a logout button, but not a menu item. We
also instantiated the same features, i.e. logout and login, for the object-oriented
variant of the disposition. While the bindings were different in some cases, some of
the initialization code was the same as for the aspect-oriented variant. Therefore,
we subsequently factored out the commonalities as an additional layer.

5 DISCUSSION

Our approach aimed at improving the alignment of mandatory and variable features
with implementation modules in order to support seamlessness in a model-driven
fashion. The improved alignment should also facilitate the selection and instan-
tiation process. Furthermore, we proposed patterns for achieving flexible binding
possibilities for a product line instance that is to be used as an aspect.

Object Teams for Product Line Infrastructures

We applied the approach in developing a flexible security solution. Either there was
a one-to-one correspondence between features and teams or between features and
roles contained in teams, or features could be merged with super features in the case
of features that do not bear functionality themselves. A one-to-one mapping for all
leaf features could be established, which facilitates the instantiation. The security
product line consists of 12 teams with a total of 46 roles. The feature model also
contained influence-relationships. They were mapped to adapts-relations in the
implementation, avoiding tangling and scattering due to influence-relationships.

While we were implementing a security aspect with Object Teams, Object Teams

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 429



IMPROVING ALIGNMENT OF CROSSCUTTING FEATURES WITH CODE IN PRODUCT LINE ENGINEERING

itself is not restricted to that. Teams and their roles do not need to be bound to a
base application but can be used like ordinary classes.

Implementing the product line with Object Teams has further advantages over
traditional object-oriented approaches. The product line can be built in a continuous
process, starting from a concrete product. As the Object Teams language supports
all stages of genericity that are necessary to implement a product line, transitions
between different technologies can be avoided. Generative techniques, e.g. using
Frames [15], do not provide a smooth transition starting from existing code.

Most of the described steps from the feature model to a concrete product can be
performed using generative techniques. When the whole tool chain is implemented,
engineering of a product line aspect and instantiating a concrete product line can
be done using model-driven techniques.

Aspects as Product Lines

It was feasible to develop security as a complex aspect that can be bound to base
applications that have been implemented not only with object-oriented techniques
but also with aspect-oriented techniques. The security component adapts the dispo-
sition component’s controller which adapts the disposition view and the disposition
business object layer. Our case study has shown that Object Teams scales very well
in that respect. Using aspect-oriented techniques for binding security to an exist-
ing applications avoids that the existing application has to be changed and that
security is scattered over a number of classes as security is typically a feature that
crosscuts many other functionalities. The same technique of selecting features from
the product line applies to the binding of the product line aspect to a given base
component.

In most cases, the instantiation process only comprises the definition of a set
of connectors using the Object Teams binding editor to bind features to a base
application. In cases where the signature of a base method is not compatible with
that of the role method to be bound, a parameter mapping has to be specified.

Sometimes, additional implementation can be necessary to adapt features of the
product line to special needs of the base application. The only cases we encountered
are the ActivationTeam where a team constructor must be implemented (or can be
generated) when using the start-up activation and the LoginTeam and LogoutTeam
where some initializations are done in the team constructor but can also be config-
ured using a configuration file. We also created the resources for the international-
ization and implemented the configuration of the buttons in the DispoLogoutTeam
and some initialization for the login process (here: which login module to use) in the
DispoLoginTeam. The fact that we had to implement extra code in the connectors
does not affect the alignment, though.

The security component is able to adapt different base systems, as we have shown
with different other base systems in the context of the case study. Moreover, we agree

430 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



5 DISCUSSION

with [18] that implementing a security solution using aspect-oriented programming
techniques is more flexible than container-managed security.

We observed that there are even commonalities during instantiation and binding
that could be further exploited. In our case study, we factored out a common layer
for binding to the aspect-oriented and the object-oriented variant of the disposition
application.

The paradigm used for creating a concrete instance of a product line is a declar-
ative one that is smoothly integrated with the overall imperative paradigm. The
enabling of the selected features typically requires to establish callin and callout
bindings by writing declarative code. A special graphical binding editor eases this
task. It must be noted that these bindings are added on top of the implementation
code; they do not tangle the handwritten code. Also, the generation of skeletons
and the binding to the base application could be automated.

Evolution of Product Line and Base System

Managing the evolution of a product line asks for how the concrete products are
affected by a change of the product line they are derived from. As there exists a
tracebility from product line to concrete derived products, changes of the product
line can be traced to modular incremental changes in the concrete product. This
facilitates the maintance of the product line. For evolution, three cases have to be
considered, the addition of a new optional feature, the addition of a new mandatory
feature, and the change of existing features. We have developed different changes
and enhancements of the security component and the adapted base systems to see
how this affects the product line, concrete product line instances and base systems.
Examples for changes are the introduction of a new authorization kind (optional
feature) or the modification of the login process (mandatory feature).

The addition of an optional feature has no effect on the concrete product line
instances nor the base systems except for the case where the new feature will be
selected and integrated into an existing product line instance. In this case, only a
team implementing the new feature needs to be created as well as a connector-team
to bind the feature to the base system. Additionally, a suitable activation mechnism
needs to be provided. Adding a mandatory feature can lead to a lot of changes in
existing products derived from the product line depending on the grade of interaction
between existing features and the new feature. Changing existing features can result
in changes in both the product line instances and the base system. As base system
and aspect are coupled via interfaces, only a change in an interface potentially leads
to changes in the base system but normally, only the binding must be adjusted to
the new interface. This also holds for changes in the base.

If the product line is an aspect, one has to consider the problem that the set of
selected joinpoints can potentially change during evolution. A solution to the latter
problem could be to perform the evolution (e.g. tool-supported refactoring) of both

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 431



IMPROVING ALIGNMENT OF CROSSCUTTING FEATURES WITH CODE IN PRODUCT LINE ENGINEERING

aspect and base system together. A lot of research is done in this area, for example
in [24, 7]. But in the case of a product line, this is not always the right solution.
Often, the product line itself is developed and maintained independently from the
users of the product line which implement and maintain the concrete product line
instances.

6 RELATED WORK

In this section, we compare our work with other approaches aiming at the improve-
ment of software product line engineering.

Sochos et al. [19, 20] also identify the problem that features are often scattered
and tangled in system components and suggest a stronger mapping between features
and the implementation architecture. Their FArM (Feature-Architecture Mapping)
method iteratively transforms an initial feature model to derive architectural com-
ponents. Several transformations suggest the integration of (crosscutting) features
into existing functional features by enhancing their specifications. Even if the trans-
formation decisions are documented in traceability links, this integration causes
a tangling of originally separated features. In contrast, the more flexible aspect-
oriented mechanisms of our approch allow to continuously preserve the separation
of features down to the implementation.

Framed aspects [15] combine aspect-oriented programming with frame technol-
ogy. Aspect-oriented frames allow to define placeholders for several selectable fea-
tures. A specification defines the selected features. The binding process is based on a
set of composition rules that define the instantiation of the given frames. The place-
holders try to overcome specific problems of AspectJ, an aspect-oriented extension
to Java. In AspectJ, there is no inheritance between advice in aspects. This means
that aspects can only be specialized by redefining pointcuts and abstract methods.
The inheritance hierarchy is limited; only abstract aspects can be specialized. It is
also not possible to refine different concerns together, since this is not supported for
aspects. In our approach, instead of defining a specification, a connector is generated
based on the features selected, and composition rules are provided by the mapping
rules of features to Object Teams. While in framed aspects a feature is mapped to
a frame, in Object Teams a feature is mapped to a team.

The Pure Variants approach [22] aims at product line development for constraint
environments. A variant management tool is used for feature selection while the fea-
ture implementation is based on AspectC++, an aspect-oriented extension to C++.
Like in our approach, the configuration of a product line instance is reduced to the
creation of aspect bindings. Compared to ObjectTeams, AspectC++ (like AspectJ)
has no concept of collaboration supporting the realization of features (aspects) with
more complex structure and behavior. Also the focus of [22] is more on generating
small and efficient code than on reusability of the aspects implementing the features.

There is a long tradition of using mixin composition for realizing software prod-

432 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



7 SUMMARY AND OUTLOOK

uct lines [5]. Team inheritance in Object Teams is related to mixin layers by its focus
on collaborations and collaboration inheritance. However, using mixin composition
alone it is not possible to develop truely independent views since the final mixin
composition statically creates one large structure which must hold all individual
features. There is no mechanism for bridging mismatches between different views.
Object Teams add aspect binding as a second dimension of composition with elab-
orate support for independent views and their composition. By realizing individual
features as views (aspects) a far better decoupling can be achieved.

More recently, [14] has evaluated several recent technologies regarding their suit-
ability for feature-oriented development. Their results are mostly positive, which
means advanced modularization techniques are indeed very useful for feature-oriented
development. In our work on product lines, we identified the concept of roles as play-
ing a central role in modeling and implementation. The explicit and rich support
for roles is missing from those approaches discussed in [14].

The work in [2, 3] takes feature-oriented programming a step further by inte-
grating aspects with mixins in order to improve feature-oriented programming. The
finding is that the integration unites the crosscutting facility of aspects with the
facility of mixins to define individual adaptations. However, in the mixin layer, fea-
tures are implemented in a layered way with a combination of features on different
layers whereas our approach allows to combine feature on the same layer and to
refine features independently from each other. No layered architecture is needed.

The relevance of model-driven approaches in product line engineering was already
shown in traditional software development (see e.g. [12]) and has now reached aspect-
oriented software development, as research projects in the area show. In [1], the
importance of generative techniques in product line engineering is stated.

7 SUMMARY AND OUTLOOK

In this paper, we have proposed an approach for using a feature model to drive the
development and instantiation of a product line. In order to improve the alignment
of crosscutting features with code, we have mapped features to Object Teams. We
evaluated the use of Object Teams for developing a product line with a security
aspect.

In most cases, mandatory as well as optional features were mapped to individual
implementation modules in Object Teams. This provides ideal traceability, support-
ing maintainability and evolvability. An instance of the security product line is a
complex aspect that can be bound to arbitrary base applications using declarative
binding mechanisms of Object Teams. The bindings are contained in a layer of so
called Connector teams. Only a few additional implementations were needed in the
connectors to realize specific initializations.

Using object-oriented techniques instead to build a product line requires to create

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 433



IMPROVING ALIGNMENT OF CROSSCUTTING FEATURES WITH CODE IN PRODUCT LINE ENGINEERING

a new module for each combination of variants, as there is no mechanism with which
a variant can be superimposed on a default module. This situation is alleviated by
using design patterns. But patterns still require that hook methods are present in
the default module.

Instantiating a product line can be more than just selecting features but may also
require providing additonal parameters for values (e.g. timeout duration, installation
paths), algorithms (e.g. an encryption algorithm) or required external components
(e.g. a database system). With Object Teams, we are flexible enough to provide
these functions through direct implementation in the connector teams as in the
authentication feature or via configuration files as done in the authorization feature.

The security component has shown flexibility using a set of patterns that improve
reusability of aspects. These patterns support the activation, implementation and
binding of aspects and especially aspects that themselves are product lines.

Currently, the implementation of the instantiated product line contains all vari-
ants in the abstract teams. In the future, an optimizing compiler could easily remove
all code that is not used for a specific product line instance in order to produce lean
systems. The Object Teams development tooling (OTDT) facilitates the derivation
of a concrete product and its bindings to the base system at this stage. Future
enhancements that add support for product lines can improve the instantiation of a
product line aspect.

The proposed approach can be ported to other languages and frameworks that
support the ideas of aspectual components [13] supporting role-based and collaboration-
based modularisation mechanisms (e.g. CaesarJ [4]).

REFERENCES

[1] M. Anastasopoulos, T. Forster, and D. Muthig. Optimizing Model-driven De-
velopment by Deriving Code Generation Patterns from Product Line Architec-
tures. In OOSE’05, at Net.ObjectDays’05, Erfurt, 2005.

[2] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. Combining Feature-Oriented
and Aspect-Oriented Programming to Support Software Evolution. In AM-
SE’05, at ECOOP’05, Glasgow, 2005.

[3] S. Apel, T. Leich, and G. Saake. Aspectual mixin layers: Aspects and features
in concert. In ICSE’06, Shanghai, 2006.

[4] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An Overview of CaesarJ.
In Transactions on Aspect-Oriented Software Development I, volume 3880 of
LNCS, pages 135 – 173. Springer, 2006.

[5] D. Batory and Y. Smaragdakis. Building Product-Lines with Mixin Layers. In
Workshop on Object Technology for Product-line Architectures, at ECOOP’99,
Lisbon, 1999.

434 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



7 SUMMARY AND OUTLOOK

[6] K. Czarnecki and Eisenecker U.W. Generative Programming: Principles, Tech-
niques and Tools. Addison-Wesley, 2000.

[7] J. Hannemann. Aspect-Oriented Refactoring: Classification and Challenges. In
LATE’06, at AOSD’06, Bonn, 2006.

[8] S. Herrmann. Object Teams: Improving Modularity for Crosscutting Collabo-
rations. In Net.ObjectDays’02, volume 2591 of LNCS, Erfurt, 2002. Springer.

[9] S. Herrmann and C. Hundt. ObjectTeams/Java Language Definition.
http://www.objectteams.org/def/0.9/index.html.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An Overview of AspectJ. In ECOOP’01, volume 2072 of LNCS, pages 327–353,
Budapest, 2001. Springer.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Loingtier,
and J. Irwin. Aspect Oriented Programming. In ECOOP’97, number 1241 in
LNCS, pages 220–243, Jyväskylä, 1997. Springer.

[12] S. D. Kim, H. G. Min, J. S. Her, and S. H. Chang. DREAM: A Practical
Product Line Engineering Using Model Driven Architecture. In ICITA’05,
Sydney, 2005.

[13] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with Aspectual Com-
ponents. Technical report, Northeastern University, Boston, April 1999.

[14] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features in
Advanced Modularization Technologies. In ECOOP’05, volume 3586 of LNCS,
pages 169–194, Glasgow, 2005. Springer.

[15] N. Loughran and A. Rashid. Framed Aspects: Supporting Variability and
Configurability for AOP. In ICSR’04, volume 3107 of LNCS, pages 127–140,
Madrid, 2004.

[16] Object Teams home page. http://www.ObjectTeams.org .

[17] S.Herrmann, C. Hundt, K. Mehner, and J. Wloka. Using Guard Predicates for
Generalized Control of Aspect Instantiation and Activation. In DAW’05, at
AOSD 2005, Chicago, 2005.

[18] P. S lowikowski and K. Zieliński. Comparison Study of Aspect-Oriented and
Container Managed Security. In AAOS’03, at ECOOP’03, Darmstadt, 2003.

[19] P. Sochos, I. Philippow, and M. Riebisch. Feature-Oriented Development
of Software Product Lines: Mapping Feature Models to the Architecture.
In Net.ObjectDays’04, volume 3107 of LNCS, pages 138–152, Erfurt, 2004.
Springer.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 435



IMPROVING ALIGNMENT OF CROSSCUTTING FEATURES WITH CODE IN PRODUCT LINE ENGINEERING

[20] P. Sochos, M. Riebisch, and I. Philippow. The Feature-Architecture Mapping
(FArM) Method for Feature-Oriented Development of Software Product Lines.
In ECBS’06, Potsdam, 2006.

[21] D. Sokenou, K. Mehner, S. Herrmann, and H. Sudhof. Patterns for Re-usable
Aspects in Object Teams. In NODe’06, at Net.ObjectDays’06, Erfurt, 2006.

[22] O. Spinczyk and D. Beuche. Aspect-Oriented Product Line Development in
Constrained Environments. In RICE’03, at OOPSLA’03, Anaheim, 2003.

[23] TOPPrax Project. http://www.topprax.de.

[24] J. Wloka. Towards Tool-supported Update of Pointcuts in AO Refactoring. In
LATE’06, at AOSD’06, Bonn, 2006.

ABOUT THE AUTHORS

Christine Hundt is a Ph.D. student at Technische Universität
Berlin. Her research interests are aspect-oriented software develop-
ment, optimization of aspect-oriented systems and virtual machine
support for aspect-oriented program execution.

Katharina Mehner works for Siemens Corporate Technology since
2007. Her current research areas include software product line en-
gineering, service-oriented architecture and aspect-oriented software
development. From 2004 to 2006 she worked at Technische Univer-
sität Berlin in the TOPPrax project. She holds a PhD in Computer
Science from University of Paderborn.

Carsten Pfeiffer is a software engineer at GEBIT Solutions in
Berlin, Germany. Stimulated by his thesis and the work at his pre-
vious employer, the Fraunhofer FIRST research institute, his in-
terests include advanced software modularization and composition
concepts.

Dehla Sokenou finished her PhD thesis in 2005 at Technische
Universität Berlin, focussing on model-based testing techniques for
object-oriented software. Since 2006, she is Senior Software Engineer
at GEBIT Solutions. Her research interests include model-driven re-
quirements engineering and testing.

This work has been supported by the German Federal Ministry for Education and Research
(BMBF) under the grant 01ISC04 (Project TOPPrax).

436 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9


