
Vol. 6, No. 9, Special Issue: TOOLS EUROPE 2007 2007

A Tool for Supporting and Automating the
Development of Component-based Embed-
ded Systems

Rafael L. Cancian, Marcelo R. Stemmer, Departement of Eletrical Engi-
neering, Federal University of Santa Catarina
Alexandre Schulter, Antônio A. M. Fröhlich, Departement of Computer
Science, Federal University of Santa Catarina

Embedded systems are comprised of hardware and software and usually run dedi-
cated applications in environments with highly restricted resources, such as memory
constrained devices, microcontrollers with low processing power, and wireless sensors
running on batteries. These systems must exactly match applications’ requirements,
with minimum support. The growth in application complexity and even more strong
constraints demand new approaches, methodologies, and tools to assist embedded sys-
tems development. Usually, in this domain, reuse of components, architectural trans-
parency, low overhead, and reconfigurability are essential features. The Application-
Oriented System Design (AOSD) method was created to deal with these issues, and
aims at guiding the development of embedded systems that exactly match application
requirements. To deliver each application a tailored run-time support system calls for
a good combination of object oriented techniques, the separation of functional and
non-functional aspects, some implementation techniques, and a sophisticated tool
that helps the developer in managing component configurations and automating the
generation of embedded systems.
This paper describes a configuration and system generation tool that is being success-
fully used with EPOS (Embedded and Parallel Operating System), an OS developed
using AOSD. This tool receives the application source-code (using EPOS API) as in-
put and, after a few mouse clicks, builds the entire computational support, comprised
by software and, if hardware is reconfigurable, the FPGA configuration file. This paper
also shows that the design of these tools allows them to be used for configuring and
building several other systems, not only EPOS. The development of this tool enabled
the configuration and generation of several embedded systems instances for several
different architectures in an automatic way. To illustrate this process and the tool’s
usage, this paper describes a case study of the generation of an embedded system
that supports a simple audio decoder application.

1 INTRODUCTION

Embedded systems are being extensively used in several industrial sectors as an
effective alternative to control machines, automobiles, domestic appliances, personal

Cite this document as follows: Alexandre Schulter, Rafael L. Cancian, Marcelo R. Stem-
mer, Antônio A. M. Fröhlich: A Tool for Supporting and Automating the Development of
Component-based Embedded Systems, in Journal of Object Technology, vol. 6, no. 9, Special
Issue: TOOLS EUROPE 2007 2007, pages 399–416,
http://www.jot.fm/issues/issues 2007 10/paper20

http://www.jot.fm/issues/issues_2007_10/paper20


A TOOL FOR SUPPORTING AND AUTOMATING THE DEVELOPMENT OF COMPONENT-BASED EMBEDDED
SYSTEMS

gadgets, and virtually every device that includes electronic components. Recent
statistics reveal that over 99% of the microprocessors produced nowadays are used
in embedded systems and that in 2005 the number of embedded systems in the
planet rose above the number of humans [9]. Besides growing in number, these
embedded systems are also becoming more and more complex as they benefit from
microchip advances.

In this context, the System-on-a-Chip (SoC) approach emerges as a compromise
between complexity and cost. Programmable Logic Devices (PLD) enable devel-
opers to evaluate complex designs in short periods of time by applying techniques
that are closer to software development than to traditional hardware development.
Getting a SoC out off a Field-Programmable Gate Array (FPGA), however, is not
a trivial task and requires an intricate engineering process. From the hardware per-
spective, much effort has been put in tools that assist designers in selecting and
configuring hardware components, or Intellectual Property (IP) blocks, and also in
generating the necessary glue logic. Indeed, some embedded systems can be com-
pletely implemented in hardware with this approach. Nonetheless, the more complex
the application is, greater is the probability it will need some sort of run-time system
to adequately support its execution on top of a (soft-core) processor.

From the software perspective, this research group has been exploring method-
ologies and tools to sustain the development of embedded systems as aggregates of
reusable components. One of the main challenges surmounted along this long-term
research concerns architectural transparency for the run-time support system. In the
realm of embedded systems, run-time support must often be provided under distinct
architectures. For instance, an application running on a simple 8-bit microcontroller
will probably be supported by a run-time library, while a multitask application run-
ning on a 32-bit microprocessor will probably require a microkernel. In order to
enable application portability, a component-based embedded system must present
the same interface in both cases. Indeed, the component should be the same, since
its interface and behavior remains the same; only the software architecture is differ-
ent. Our approach has so far enabled the development of run-time support systems
whose architecture can be defined according to particular application needs.

Embedded applications usually don’t find adequate run-time support on all-
purpose operating systems and hardware. Application-Oriented System Design
(AOSD) is an useful solution for this kind of applications, as demonstrated in pre-
vious works [3] [4] [8] [2]. Application-Oriented Operating Systems (AOOS) are
targeted towards the applications, which means they are composed only from se-
lected software components that are adapted to finely fulfill application require-
ments. Additionally, an AOOS may be supported by a hardware platform created
by the composition and synthesis of proper hardware components. Delivering each
application a tailored run-time support system, besides requiring a comprehensive
set of well-designed software and hardware components, also calls for a sophisticated
tool that will help the developer in creating component configurations, a task that
includes the identification, selection, configuration, adaptation, and composition of

400 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



2 AOSD

those components.

In this work we present an approach to the configuration management of component-
based embedded systems which enables partial automation of the development pro-
cess of mobile and embedded applications, contributing to an increase in productiv-
ity. Also, the ability to easily generate optimized versions of an operating system
and a hardware platform for each of the applications that are going to use is of great
value in the domain of high performance embedded computing, since it results in
performance gains and resource usage optimization.

This paper is organized as follows: Section 2 briefly describes AOSD, our ap-
proach to the design of component-based embedded systems. Section 3 presents
the main concepts and structure of a tool that is able to configure and generate
embedded systems. Section 4 describes the details of a prototype implementation.
Section 5 presents a case study that demonstrates the use of this tool and the last
section presents some conclusions and a road map for future work.

2 AOSD

The Application-Oriented Systems Design method (AOSD) proposes strategies to
define components that represent significant entities in different domains. By ap-
plying variability analysis, as defined in the Family-Based Design (FBD) [7], AOSD
allows the modeling of independent abstractions and organizes them as family mem-
bers. Even independent and separated, these abstractions may have dependencies
from the environment to which they are applied. But abstractions that have envi-
ronment dependencies will be reused with difficulty in different scenarios. To reduce
environment dependencies and to increase re-usability of abstractions, AOSD adds
to the decomposition process the main concern of Aspect-Oriented Programming
(AOP): aspects separation. With this, it is possible to identify scenario variations
and to model them not as family members, but as scenario aspects.

The integrated utilization of these and other advanced software engineering tech-
niques allows the development of efficient methodologies for Embedded Systems De-
sign, both in basic software and in hardware domains. One of the first strategies is
the one proposed by [3], the EPOS (Embedded Parallel Operating System). EPOS
is a framework conceived through AOSD that combines concerns of FBD, OAP,
Object Oriented Design (OOD) and Static Meta Programming (SMP) to guide the
development of scenario independent component families that, by applying scenario
adapters, can be used in different environments and provide architecture trans-
parency [4]. Besides operating system components, it has been extended to deal with
hardware [8], allowing the design of hybrid components whose software/hardware
implementations are suitable. This approach has so far enabled the development
of run-time support systems with architectures that are defined according to the
particular needs of applications. Indeed, with all these features, it seems a promis-
ing approach to help solving the problems that currently limit efficiency in SoC

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 401



A TOOL FOR SUPPORTING AND AUTOMATING THE DEVELOPMENT OF COMPONENT-BASED EMBEDDED
SYSTEMS

development.

The main ideas behind AOSD are described below:

Families of scenario independent abstractions: during domain decompo-
sition, abstractions are identified from domain entities and grouped in families ac-
cording to their commonalities. Yet, during this phase, aspect separation is used
to shape scenario-independent abstractions, thus enabling them to be reused in a
variety of scenarios. These abstractions are subsequently implemented to give rise
to the actual software components.

Scenario adapters: as explained earlier in this article, Application-Oriented
System Design dictates that scenario dependencies must be factored out as aspects,
thus keeping abstractions scenario-independent. However, for this strategy to work,
means must be provided to apply factored aspects to abstractions in a transparent
way. The traditional approach to do this would be deploying an aspect weaver,
though the scenario adapter construct has the same potentialities without requir-
ing an external tool. A scenario adapter wraps an abstraction, intermediating its
communication with scenario-dependent clients to perform the necessary scenario
adaptations.

Inflated interfaces: summarize the features of all members of a family, cre-
ating an unique view of the family as a super component. It allows application
programmers to write their applications based on well-known, comprehensive inter-
faces, postponing the decision about which member of the family shall be used until
enough configuration knowledge is acquired. The binding of an inflated interface to
one of the members of a family can thus be made by automatic configuration tools
that identify which features of the family were used in order to choose the simplest
realization that implements the requested interface subset at compile-time.

3 A CONCEPTUAL TOOL

Operating systems and hardware support designed according to the premises of
Application-Oriented System Design, besides all the benefits claimed by software
component engineering, have the additional advantage of being suitable for auto-
matic configuration and generation. The concept of inflated interface enables an
application-oriented operating system and its hardware support to be automatically
generated of out of a set of software and hardware components, since inflated in-
terfaces serve as a kind of requirement specification for the system that must be
generated. Our approach relies on a static configuration mechanism that allows the
generation of optimized versions of the operating system for each of the applications
that are going to use it.

The following is a detailed list of functionalities we have identified as require-
ments for a tool that addresses the problem: (i) Requirements analysis (auto-
matic): applications must be inspected and their requirements regarding the support

402 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



3 A CONCEPTUAL TOOL

system should be extracted. (ii) Component suggestions (automatic): compo-
nents that satisfy application needs should be identified. (iii) Component selec-
tion (semi-automatic): from a set of satisfactory components for an application, the
most adequate ones should be automatically selected, and the developer must be
allowed to select additional ones. (iv) Component configuration and compo-
sition (semi-automatic): default and critical components should be automatically
selected, traits and features of components should be configured by the tool with
default values and be modifiable. Also, the compliance to composition rules, such
as exclusivity of some component members, should be maintained. (v) Genera-
tion of systems and hardware (automatic): based on configurations created by
developers and components retrieved from a repository, system instances should be
generated and hardware should be synthesized. (vi) Cost estimation (automatic):
estimations of component costs, such as energy and silicon area, should be pro-
vided to the developer to assist him in choosing between components or between
component members that achieve the same task. (vii) Configuration validation
(semi-automatic): application and component dependencies should be tracked and
presented to the developers, as well as other configuration problems and restrictions,
such as restrictions regarding the chosen target hardware platform. The dependen-
cies that can be automatically solved should be, while the others should be left to
the developer to deal with.

And three main non-functional requirements to be considered: (i) Specific
Graphical User Interface (GUI): one that has good usability and leads to ef-
ficiency. (ii) Feedback to the developer: the developers should know what is
happening and, therefore, the actions that the tool automatically takes should be
notified to them. (iii) Automation: some steps should be done automatically or
by default.

We have organized these functionalities in three conceptual modules: Analyzer,
Configurator, and Generator. Figure 1 illustrates how these modules could be
used to assist an automatic or semi-automatic generation procedure of a system
instance to support the runtime of a specific application.

An application’s source code, previously written based on the interfaces of com-
ponents from a repository (the OS API), can be submitted to the Analyzer module.
This module searches for references to the interfaces, identifying what features are
necessary from each component, and elaborates a requirement specification that
includes methods, types, and constants used by the application. If a requirement
may be satisfied only by one component from the repository, the Analyzer can au-
tomatically choose it. If there are more than one, the components that meet the
requirements, along with cost estimations, are presented to the developer so that he
can choose the most adequate one. The primary output of the Analyzer is a set
of application dependencies, since the application depends on some components in
order to work properly. These dependencies feed the Configurator.

The Configurator module is logically divided in a Validator and a Configuration.
The components chosen with the help of the Analyzer are added to the Configuration

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 403



A TOOL FOR SUPPORTING AND AUTOMATING THE DEVELOPMENT OF COMPONENT-BASED EMBEDDED
SYSTEMS

Figure 1: An overview of the tool

and used by the Validator to build a dependency tree. By doing this, the Validator
is able to keep track of (1) aplication dependencies, (2) component dependencies, and
(3) component composition rules. (1) refers to the dependencies that exist between
application requirements and system components. (2) refers to the dependencies
that may exist between components and their traits and features. (3) refers to the
rules that should be followed when creating the Configuration, since some compo-
nent members may be exclusive, and critical components cannot be touched. Some
components are critical to any configuration, while others are critical to specific
target platforms.

Although the Validator leads the developer to choose only the components
that are necessary and adequate, he can interact with the Configurator to add and
remove components from the Configuration and modify their features and traits.

The last step in the system development process is accomplished by the Generator
module. Internally, it works by generating a set of keys that represent the current
valid Configuration, binding the interface used by the application to specific com-
ponent members existent in the repository, and activating the scenario aspects even-
tually identified as necessary to satisfy the constraints dictated by the application
or by the configured execution scenario. On the hardware side, the Generator pro-
duces a list of mediators that were included in the Configuration, specifying which
ones are associated to IP blocks. These blocks are reusable hardware components,
specified in a Hardware Description Language (HDL) or in an intermediate format,
such as netlists.

The last step in the system development process is accomplished by the Generator
module. Internally, it works by generating a set of keys that represent the current
valid Configuration, binding the interface used by the application to specific com-
ponent members existent in the repository, and activating the scenario aspects even-

404 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



4 PROTOTYPE IMPLEMENTATION

tually identified as necessary to satisfy the constraints dictated by the application
or by the configured execution scenario. On the hardware side, the Generator pro-
duces a list of mediators that were included in the Configuration, specifying which
ones are associated to IP blocks, which are simple reusable hardware components,
specified in a Hardware Description Language (HDL) or in an intermediate format,
such as netlists.

The Generator module translates the keys into parameters for a statically metapro-
grammed component framework and executes the compilation of a tailored system
instance. In addition, whenever a SoC needs to be tailored, the Generator produces
a synthesis configuration file that holds the parameters for configuring IP blocks and
the information necessary to glue the IPs in a SoC. Written in a hardware descrip-
tion language, this configuration file and the selected IP blocks are handed over to a
third-party tool, which performs the translation of the SoC specification into netlists.
Finally, by considering the target PLD technology, these netlists are translated into
a configuration bitstream.

4 PROTOTYPE IMPLEMENTATION

A proof-of-concept Java implementation of the tool described in the previous section
has been developed and some details of its operation at the current development
stage are given here.

Analyzer

The Analyzer applies a technique that involves the compilation of the application’s
source code, a look at the resulting object files, and the identification of unresolved
symbols that refer to methods and/or constants from the ’System’ namespace. By
doing this, it is able to identify the usage of the operating system API. The references
to the API are extracted by an external Perl script and output in the form of a
XML file. The file is used by the tool to generate application dependencies, and the
subsequent suggestions of satisfactory components.

Figure 2 depicts the Analyzer GUI. This interface allows a developer to specify
application implementation files and include directories containing header files, to
visualize the code (right side), and to ask for requirements extraction. The require-
ments are exhibited in a tree structure (left side), which shows component families
and members that satisfy the requirements. From the tree, the user may indicate
the families and members to be included in the configuration.

We can observe a message console at the bottom of the figure. This console also
accompanies the Configurator and Generator interfaces and shows all the relevant
notifications, warnings, and error messages that must be delivered to the developer,
relieving him from having to deal with dialog box windows.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 405



A TOOL FOR SUPPORTING AND AUTOMATING THE DEVELOPMENT OF COMPONENT-BASED EMBEDDED
SYSTEMS

Figure 2: The Analyzer interface

Configurator

The strategy used to describe components in a repository and their dependencies
plays a key role in making the configuration process possible. The description must
be complete enough so that the Configurator will be able to automatically iden-
tify which abstractions better satisfy the requirements of the application without
generating conflicts or invalid configurations and compositions.

The component description language we adopted is based on XML and is focused
on describing each component individually. As shown below, a component is defined
by a family and its set of member. A family description also includes an interface

declaration, an optional set of dependency, an optional set of trait, and a common

package that holds type and constant declarations that are common to all family
members.

<!ELEMENT family (interface, dependency*, trait*, common, member+)>

<!ELEMENT interface (type, constant, constructor, method)*>

<!ELEMENT common (type, constant)*>

<!ELEMENT member (super, interface, trait, cost, feature, dependency)*>

A family’s interface summarizes the features of the whole family, including
constants, constructors, and methods. Each member of a family is also described
by an interface, which designates a total or partial realization of the family’s in-
terface. Additionally, a member is described by an optional super declaration, an

406 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



4 PROTOTYPE IMPLEMENTATION

optional set of trait, dependency, and feature declarations, and a required cost

declaration.

The super element determines the inheritance from other members in the family,
while a trait designates a configurable information that can be set by the develop-
ers, via the Configurator, in order to influence the instantiation of a component.
A trait can also be used to specify configuration parameters that cannot be auto-
matically figured out, such as the number of processors in a target machine or the
amount of memory available.

The description of the interfaces in a family and its members is the main source
of information for the Configurator, but correctly assembling a component-based
system goes far beyond the verification of syntactic interface conformance: non-
functional and behavioral properties must also be conveyed. For this purpose,
the component description language includes two special elements: feature and
dependency. These elements can be applied to virtually any other element in the
language to specify features provided by components and dependencies among com-
ponents that cannot be directly deduced from their interfaces. Enriching the de-
scription of components with features and dependencies can significantly improve
the correctness of the assembly process, helping to avoid inconsistent component
arrangements.

If the family is hardware mediator type or hardware IP type, the member de-
scriptions must also declare arch and mach, which specify the architecture and ma-
chine the member is compatible with. More details and examples of the description
language can be found in [10] [11].

The Configurator GUI is depicted in Figure 3. It allows the developer to see
the list of components included in the configuration (left side). Through the config-
uration desktop pane (right side), all the components, as well as the configuration’s
target platform, can be viewed and modified with the help of their respective con-
figuration frames, although the default values for their features and traits are often
adequate. The Configurator automatically includes the minimum necessary com-
ponents and allows the developer to include other ones. However, currently it does
not identify unnecessary or redundant components. Despite not being implemented,
this could be achieved simply by analyzing the dependencies.

The Validator also has a graphical interface that opens up in the Configurator
window. It shows the current collection of dependency problems and other miscella-
neous ones, such as incorrect information describing component, target, or general
configuration characteristics.

Generator

The Generator allows a developer to launch processes that invoke the operating sys-
tem’s makefiles, causing the system instance generation, and processes that invoke
synthesis tools that build the hardware platform. Before these generation processes

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 407



A TOOL FOR SUPPORTING AND AUTOMATING THE DEVELOPMENT OF COMPONENT-BASED EMBEDDED
SYSTEMS

Figure 3: The Configurator interface

can be executed, a set of directive files are created, including traits files and a
’keys file’ that guide the generation. Also, the application may be compiled by the
Generator with parameters that consider the system that was just built for it. Our
approach aims at generating real systems, not only simulated ones. A limitation
of this Generator is its inability to estimate properties (memory and silicon area,
latency, power consumption, etc.) of the final system before really building it.

The Generator interface, as depicted in Figure 4, is very straightforward. It
shows informative output from the processes launched by their respective buttons.
Some logic is applied to allow the actions a developer can take. For instance, it is not
permitted to build the system or hardware before the ’Config’ action is taken, since
that action causes the generation of the directives needed by the building processes.

This tool was designed to assist developers in executing the procedure depicted
in Figure 1 in a simple, direct, and semi-automatic manner. The GUI and its
usability have an important role, since it must greatly reduce the work a developer
is required to do in comparison to what would be performed manually without tool
assistance. Several conveniences, such as action keys, pop-up menus, icons, and
intuitive responses are provided by it, and all the elements are organized in a way
to make a clear separation of the activities related to analysis, configuration, and

408 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



5 CASE STUDY AND RESULTS

Figure 4: The Generator interface

generation steps, although the developer is able to go back and forth through the
steps.

5 CASE STUDY AND RESULTS

In order to evaluate the prototype implementation described in Section 4 and its
support for the requirements listed in Section 3, we performed some case studies
involving the automatic or semi-automatic generation of different kinds of embed-
ded applications, such as multimedia, automotive control, wireless sensor networks,
energy aware mobile systems [1] [5] for different platforms/architectures, such as
AVR, MIPS, SparcV8, PPC405, and IA32.

In this paper we present a simple audio player application. The case study we will
describe here was performed with the help of the EPOS component-based operating
system and a Xilinx prototyping board as the target hardware platform. In order
to avoid similar figures, all screenshots previously shown in this paper depict this
case study.

The Xilinx board used as target contains a Virtex-II FPGA. Besides two built-in
PowerPC 405 CPUs in that board (not used), a LEON2 soft-core processor was syn-
thesized along with other IP blocks to create a system-on-a-chip. This board is tar-
geted towards multimedia application prototyping and some of its available devices

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 409



A TOOL FOR SUPPORTING AND AUTOMATING THE DEVELOPMENT OF COMPONENT-BASED EMBEDDED
SYSTEMS

are: Memory Management Unit (MMU), Floating Point Unit (FPU), Time Stamp
Counter (TSC), Interrupt Controller (IC), Data Service Unit (DSU), Watchdog,
Universal Asynchronous Receiver/Transmitter (UART), Timer, Network Interface
Card (NIC), Audio Decoder, Video Decoder, and Display Controller [6].

The application’s source code is written in C++ and is listed below (the same
that appears in Figure 2). As we can see, only one method from the EPOS API is
called, the play(Log Addr sound, Seconds length, Sample Rate sample rate,

Bit Depth bit depth, Sound Mode mode) method from the PCM Audio Player ab-
straction. The parameters indicate that a 16-bit stereo sound stream sampled at
44.1 khz and stored at the 0x40080000 address should be played for 3 seconds.

// PCM_Audio_Player Test Program

#include <utility/ostream.h>

#include <audio_player.h>

#include <framework.h>

__USING_SYS

int main()

{

PCM_Audio_Player audio_player;

audio_player.play(0x40080000, 3, Audio_Player::S44100, Audio_Player::B16, Audio_Player::STEREO);

return 0;

}

The PCM Audio Player abstraction provides functionalities related to controlling
the reproduction of uncompressed digital audio streams represented with Pulse Code
Modulation (PCM). PCM is a standard for digital audio in computers and compact
disks (CD) and is the usual output of audio decompressors, such as MPEG-1 Layer
3 (MP3) decoders.

The following is a description of the actions and interactions between a developer
and the tool when the audio player application is submitted to begin the procedure:

• The Analyzer identifies a reference to the play() method and suggests the
PCM Audio Player abstraction component to satisfy this requirement. (see
Figure 2)

• The developer interacts with the Analyzer and confirms that this component
can be added to the Configuration.

• The Configurator acknowledges that the PCM Audio Player component is
now an application dependency and adds it to the Configuration.

• The developer specifies that the target platform is a Virtex II Pro. (see Fig-
ure 3)

• The Validator informs the developer that PCM Audio Player depends on the
Audio Decoder mediator component.

410 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



5 CASE STUDY AND RESULTS

• Among the Audio Decoder members, the Configurator suggests and auto-
matically selects the AC97 member, because it is the only mediator compatible
with the target’s architecture and available devices. The developer opts for
maintaining the selection of this type of decoder.

• The AC97 member from the Audio Decoder component depends on the AC97

member from the Audio Decoder IP hardware component.

• The developer authorizes the inclusion of the Audio Decoder IP component
and its AC97 member is automatically selected.

• Besides these player and decoder components, three critical components are
automatically included by the Configurator and cannot be removed: CPU,
Machine, and Thread. The CPU component is the most critical. The Machine

component mediates the platform architecture and is automatically configured
with trait values (architecture, processor, memory, etc.) that conform to the
target the developer has previously chosen. The CPU and Machine are hard-
ware mediators and, because of this, need to be compatible with the target’s
architecture. The Configurator automatically selects their members based
on this requisite. Finally, the Thread component is included to support the
runtime of the application, even though it is not multi-threaded.

• When the developer finishes interacting with the Configurator to solve the
dependencies that have appeared, the Validator allows the generation process
to occur.

• The developer pushes some of the Generator buttons, causing the system gen-
eration. This consists of compiling the highly customized instance of EPOS,
calling the Xilinx Synthesis Tool (XST) to build the hardware, compiling the
application, and linking the resulting object files to create a bootable image.
This image is a few kilo bytes in size and is ready to be uploaded to the
hardware’s memory and tested (see Figure 4).

Figure 5 depicts the components included in this case study’s configuration and
the dependencies existent between them.

We found that this tool is adequate for the use case described here, since it
satisfies the requirements elicited in Section 3: application analysis; component sug-
gestions, component selection, configuration, and composition; generation of system
software and hardware; configuration validation; specific graphical interface; feed-
back to the developer; and partial automation. Cost estimations, though, is a
requirement that currently is not fully supported, since no meaningful estimations
for each of the components are calculated.

Several other applications, components, and target platforms were tested with
the tool. Its strong points are its fast and simple operation and its internal design
that features good maintainability and extensibility. Another aspect to consider is

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 411



A TOOL FOR SUPPORTING AND AUTOMATING THE DEVELOPMENT OF COMPONENT-BASED EMBEDDED
SYSTEMS

Figure 5: Component diagram of the audio player system configuration

the possibility of using it to configure and generate other component-based operating
systems. This would be possible if such systems provide some of the facilities EPOS
does: a component repository properly described in a language the tool knows how
to interpret and a set of makefiles that provide building rules.

6 CONCLUSIONS

In this paper we dealt with the problem of developing embedded systems. Even with
component-based design, current solutions do not address efficiently architectural
transparency, performance, configuration and generation of application oriented em-
bedded systems. We have shown the basic concepts of Application-Oriented System
Design methodology that was developed to solve these problems and we focused
here on the final phase of development.

We have presented a tool that assists developers in configuring and generating
software and hardware support for embedded systems taking as base a collection
of reusable components developed according with the Application-Oriented Sys-
tem Design methodology, their dependencies and composition rules. The prototype
implements the requirements listed in Section 3, and effectively identifies, selects,
configures, adapts, and composes those components, generating real and functional
embedded systems. Steps are performed automatically whenever possible by the
current prototype and some hints are given when design decisions are required. The
developer can focus on his application, not on the underlying support system, which
leads to a faster development process and, incidentally, shorter time-to-market for

412 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



6 CONCLUSIONS

commercial products.

As a case study, an example of a configuration process for a simple but real
application was presented, as well as the current limitations of the model due to
the need of manual selection when more than one different component satisfy the
required interface. We believe that it represents an important step in the direction
of a fully automated generation since we have promoted the generation of software
and hardware support and SoC instances in the same generation flow according to a
well defined methodology. The strategy currently realized does not represent a com-
plete solution to automate the process of generating SoC-based embedded systems
(whereas the programmer still takes some decisions regarding the selection of more
than one different realization for a component). We believe a more detailed costs
model for components and the inclusion of a smarter algorithm to perform design
exploration could automatically solve most of the situations. However, some deci-
sions will seldom be fully automatic, such as choosing the best real-time scheduler
component that garantees deadlines will be meet based only on application source
code and on component interfaces.

The components existent in our repository were identified and defined with the
AOSD approach, which starts with domain analysis, identification of families, iden-
tification of members and aspects. Since great attention is required when performing
these steps, the actual specification of components and their features does not re-
quire much effort. A developer needs only to implement their code and add some
lines of description in configuration rules files. The maintainance of these compo-
nents is also not a hard task, since abstraction components will seldom be modified,
and hardware mediator ones have different implementations for each platform they
refer to.

Our road map for future work includes simple improvements, such as the imple-
mentation of a convenient GUI that shows numbers and charts that better represent
the system, to make the Configurator responsible for finding out if there are any
unnecessary, redundant, or not very adequate components, to include convenient
repository manipulation functionalities to help developer in managing component
implementations, and to provide a simple source code editor for the Analyzer.

Finally, the results obtained with Application-Oriented System Design, the EPOS
framework, and the tool described in this paper are so far encouraging. Research
in progress is looking forward to improve the costs model for components and allow
intelligent design space exploration for automatic and adaptive component selection
and partitioning. With this, our approach would not only automatically generate
systems that match applications requirements, but also design requirements, such
as as maximum silicon area or power consumption.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 413



A TOOL FOR SUPPORTING AND AUTOMATING THE DEVELOPMENT OF COMPONENT-BASED EMBEDDED
SYSTEMS

REFERENCES

[1] Lucas Francisco Wanner Arliones Stevert Hoeller Junior and Antônio Augusto
Fröhlich. A hierarchical approach for power management on mobile embedded
systems. In Proceedings of the 5th IFIP Working Conference on Distributed
and Parallel Embedded Systems, pages 265–274, Braga, Portugal, 2006.

[2] Roberto de Matos Danillo Santos, Rafael Cancian and Antônio Augusto
Fröhlich. Advantages and disadvantages of application-oriented system de-
sign in embedded systems design. In Proceedings of 4th International IEEE
Conference on Industrial Informatics, pages 904 – 909, Cingapura, 2006.

[3] Antônio Augusto Fröhlich. Application-Oriented Operating Systems. PhD the-
sis, GMD - Forschungszentrum Informationstechnik, Sankt Augustin, Germany,
2001.

[4] Antônio Augusto Fröhlich and Wolfgang Schröder-Preikschat. Scenario
adapters: Efficiently adapting components. In Proceedings of the 4th World
Multiconference on Systemics, Cybernetics and Informatics, Orlando, USA,
2000.

[5] Augusto Born de Oliveira Lucas Francisco Wanner, Arliones Stevert Hoeller Ju-
nior and Antônio Augusto Fröhlich. Operating system support for data acquisi-
tion in wireless sensor networks. In Proceedings of the 11th IEEE International
Conference on Emerging Technologies and Factory Automation, pages 582–585,
Prague, Czech Republic, 2006.

[6] T. Tierens P. Pelgrims and D. Driessens. Overview: Excalibur, leon, microblaze,
nios, openrisc, virtexii pro. Technical report, DE NAYER Instituut, 2003.

[7] David Lorge Parnas. On the design and development of pro- gram families. In
IEEE Transactions on Software Engineering, pages 1–9, 1976.

[8] F. V. Polpeta and A. A. Fröhlich. Hardware mediators: a portability artifact
for component-based systems. In Proceedings of the International Conference
on Embedded and Ubiquitous Computing, volume 3207 of LNCS, Aizu,Japan,
Aug. 2004.

[9] P. Pop. Embedded systems design: Optimization challenges. CP-AI-OR 2005
Invited Talk, May, 31 2005. Embeded Systems Lab (ESLAB), Linköping Uni-
versity, Sweden.

[10] Gustavo Fortes Tondello and Antônio Augusto Fröhlich. Configuration manage-
ment of embedded operating systems using application-oriented system design.
In Proceedings of the 5th Argentine Symposium on Computing Technology (part
of the 33rd Argentine Conference on Computer Science and Operational Re-
search), Córdoba, Argentine, 2004.

414 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



6 CONCLUSIONS

[11] Gustavo Fortes Tondello and Antônio Augusto Fröhlich. On the automatic con-
figuration of application-oriented operating systems. In Proceedings of the 3rd
ACS/IEEE International Conference on Computer Systems and Applications,
pages 120 – 123, Cairo, Egypt, 2005.

ABOUT THE AUTHORS

Alexandre Schulter works as an IT analyst at Dataprev, a brazil-
lian public company. In the past he has worked as a researcher
and software developer at several laboratories in the Technological
Centre, Federal University of Santa Catarina, Brazil. He holds the
MSc (2006) and Bachelor (2003) degrees in Computer Sciences, and
his areas of interest include Information Systems, Component-based
Systems, Computer-Aided Software Engineering, Distributed Sys-
tems, Grid Computing, and Security. schulter@inf.ufsc.br. See also
http://www.inf.ufsc.br/˜schulter.

Rafael Luiz Cancian is a PhD canditate in Electrical Engineer-
ing at the Federal University of Santa Catarina, Master (2000) and
Bachelor (1997) in Computer Sciences at the Federal University of
Santa Catarina (UFSC). Currently he is a professor of the Com-
puter Sciences Department at University of Vale do Itajáı - UNI-
VALI (Itajáı, Brazil), and associated researcher of the Laboratoty
of Software and Hardware Integration (LISHA/UFSC) and the Lab-
oratory of Embedded and Distributed Systems (LSED/UNIVALI).
cancian@das.ufsc.br. See also http://www.das.ufsc.br/˜cancian.

Marcelo Ricardo Stemmer is a PhD in Industrial Automa-
tion (1991) (WZL / RWTH-Aachen, Germany), Master (1985) and
Bachelor (1982) in Electrical Engineering (1985) (Federal Univer-
sity of Santa Catarina - UFSC). Currently he is a professor at
the Department of Automation and Systems (DAS) of the Federal
University of Santa Catarina (Florianópolis, Brazil), and head of
the Intelligent Industrial Systems (S2i) research group at UFSC.
marcelo@das.ufsc.br. See also http://www.das.ufsc.br/˜marcelo.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 415

mailto:schulter@inf.ufsc.br
http://www.inf.ufsc.br/~{}schulter
mailto:cancian@das.ufsc.br
http://www.das.ufsc.br/~{}cancian
mailto:marcelo@das.ufsc.br
http://www.das.ufsc.br/~{}marcelo


A TOOL FOR SUPPORTING AND AUTOMATING THE DEVELOPMENT OF COMPONENT-BASED EMBEDDED
SYSTEMS

Antônio Augusto Medeiros Fröhlich is a PhD in Computer En-
gineering (Technical University of Berlin), MSc in Computer Science
(Federal University of Santa Catarina), and Bachelor in Computer
Science (Federal University of Rio Grande do Sul). Currently he is
an associate professor at the Computer Science Department of the
Federal University of Santa Catarina (Florianópolis, Brazil), head of
the Laboratory for Software/Hardware Integration (LISHA) at Fed-
eral University of Santa Catarina, and external research associate
at the Fraunhofer FIRST within the Software Engineering Group
(Berlin, Germany).
guto@lisha.ufsc.br. See also http://www.lisha.ufsc.br/˜guto.

416 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

mailto:guto@lisha.ufsc.br
http://www.lisha.ufsc.br/~{}guto

