
Vol. 6, No. 9, 2007

Direct Semantics of Extended State Machines

K. Lano, D. Clark

In this paper we present semantic profiles for UML 2 state machines, which are based
directly upon the structure of a state machine model, without requiring flattening or
other transformations on these models. The approach addresses many of the semantic
problems identified for state machines, and provides a basis for semantic analysis and
proof of behavioural compatibility between state machines.

1 INTRODUCTION

The state machine notation of UML is widely used and supports dynamic modelling
of applications ranging from reactive systems to web applications. However, there
remain a number of semantic problems with the notation, particularly in the areas
of transition priorities, history states [7] and generalisation [21].

In this paper we consider a substantial subset of UML 2 state machine notation
and assign an axiomatic semantics to this. This semantics is assigned directly to
the original models, and does not require pre-processing of the models to reduce
them to a more basic form. The advantage of this is that the semantics retains the
structure and context information of the model, making it easier to relate semantic
analysis results to the model.

We apply this semantics to some of the problems identified by other authors,
and to support semantic analysis of state machines using the B [1] formalism and
tools. We also use the semantics to give a precise set of conditions which ensure
behavioural compatibility between two state machine models.

In Section 2 we define the syntax of extended state machines, Sections 3 and
4 define their semantics. Section 5 considers how this semantics can be applied
to provide solutions for some of the ambiguities and omissions in UML semantics.
Section 6 gives criteria for behavioural compatibility. Section 7 shows how semantic
analysis is supported by the semantics. Section 8 gives a comparison with related
work.

2 EXTENDED STATE MACHINES

In [13, 15] we defined the syntax and semantics of a subset, UML-RSDS, of UML
2. UML-RSDS state machines have only basic states and no pseudostates. Here we
will extend this state machine notation to include additional features of composite

Cite this article as follows: Kevin Lano, David Clark: Direct Semantics of Extended State
Machines, in Journal of Object Technology, vol. 6, no. 9, 2007, pages 35–51,
http://www.jot.fm/issues/issues 2007 10/

http://www.jot.fm/issues/issues_2007_10/

DIRECT SEMANTICS OF EXTENDED STATE MACHINES

states, deferred events, compound transitions (modelled as transitions with sets of
sources and targets), history states and final states. Figure 1 shows the subset of
the UML 2 behaviour metamodel which we consider here. This omits junction,
choice, entryPoint, exitPoint and terminate pseudostates, exit and do actions, and
connection point references, and internal and local transitions, but otherwise is
identical to the state machine metamodel of [20].

In this paper we will mainly consider protocol state machines. These have tran-
sitions with postconditions instead of effects, and states without entry, exit or do ac-
tivities. We will however consider the semantics of history states for such machines.
State invariants will be allowed for both protocol and behavior state machines.

Figure 1: Behaviour metamodel

A basic state is a state with region.size = 0, other states are composite states. A
composite state with one region is termed an OR state, and a composite state with
more than one region is termed an AND state. The default initial state of an OR
state or region s will be denoted initials .

In addition to the constraints on the metamodel defined in [20], we require:

1. That regions and OR states always have a unique initial pseudostate, and
unique default initial state, and at most one final state.

2. That default transitions from history states must have target a top-level sub-
state of the container of the history state. The target state cannot be a
pseudostate.

36 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 SEMANTICS FOR UML STATE MACHINES

3. Similarly the default transition from an initial state must have target a normal
state in the same composite state at the same level as the initial pseudostate.

The notation s v s ′ means that s = s ′ or s is a (recursive) substate of s ′.

Normally if one region r of an AND state has a final state, so should all regions
of the AND state, otherwise a completion event from the AND state can never be
triggered by reaching the final state of r .

3 SEMANTICS FOR UML STATE MACHINES

We give first the semantics for simple state machines as used in [15], and then extend
this to the full metamodel of Figure 1. The semantics of protocol and behavior state
machines for a class C are incorporated into theories representing the semantics of
C . This enables semantic checks of the consistency of the state machine models
compared to the class diagram model.

The semantics is expressed in terms of temporal logic theories using the notation
of Real-time Logic (RTL) and Real-time Action Logic (RAL) [10]. The reason for
using this general framework is that related notations of UML, such as interactions,
require explicit treatment of the times of events.

Each UML class and model is represented as a temporal logic theory, which has
semantic elements representing structural and behavioral features of the class or
model, and axioms defining their properties. A generic instance of C is represented
as a theory IC , the class itself by a theory ΓC , and models M by a theory ΓM

composed from the theories of the classes of M .

The following temporal logic notations are used to define the semantics:

1. The times←(op(p), i),→(op(p), i), ↑(op(p), i), ↓(op(p), i) of sending, request
arrival, activation and termination of an operation execution (op(p), i). These
are enumerated by the index i : N1 in order of the reception times→(op(p), i).

2. Formulae P}t , denoting that formula P holds at time t , and expressions e~t
denoting the value of expression e at time t .

As an example of this logic, we define the meaning of UML time triggers. A
relative time trigger after T on a transition away from a state s represents that the
transition should be taken if the state has remained occupied for at least T time
units continuously:

duration(ϕs)~now ≥ T

where ϕs expresses that s is occupied, and

duration(P)~t =
max ({0} ∪ {x : TIME | ∀ y : TIME · t − x ≤ y ∧ y ≤ t ⇒ P}y})

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 37

DIRECT SEMANTICS OF EXTENDED STATE MACHINES

Protocol State Machines

The semantics of a protocol state machine SC of a class C (for example, as in Figure
2) is expressed as follows in the instance theory IC :

1. The set of states (normal states, including final states) is represented as a new
enumerated type StateSC , and a new attribute c state of this type is added to
IC . The axiom

c state ∈ StateSC

holds. Local attributes of the state machine are represented as attributes of
IC .

2. We specify the initialisation c state := initialSC of this attribute to the default
initial state of SC . This initialisation is invoked by the C constructor operation
initC (“When an instance of a behaviored classifier is created, its classifier
behavior is invoked”, page 420 of [20]).

3. Each transition tr from a state src to a state trg , triggered by m(x), with
guard G and postcondition Post , is represented as an additional pre/post
specification of m (page 521 of [20]):

(c state = src ∧ G)

is added as an additional disjunct of the precondition of m(x), and

(c state = src ∧ G)@pre ⇒ (c state = trg ∧ Post)

as an additional conjunct of the postcondition.

Figure 2: Protocol state machine

Only operations with at least one transition in the state machine have such
derived constraints – other operations are assumed not to change the state
(page 521 of [20]).

38 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

4 SEMANTICS FOR EXTENDED STATE MACHINES

4. State invariants Invs have the semantics:

(StateInv) :
c state = s ⇒ Invs

The semantics of a flat behavioral state machine can also be defined in the
instance theory of its associated class, using composite actions [15].

4 SEMANTICS FOR EXTENDED STATE MACHINES

We extend the semantics of flat protocol state machines to state machines with OR
and AND composite states, compound transitions and history and final states. The
additional complexity introduces the possibility of alternative semantics, especially
in the areas of transition priority and history state behaviour.

For each OR state s in the state machine, we define a state attribute states :
States where States represents the set of normal states (including final states) directly
contained in s . Regions of an AND state are also represented by a type and an
attribute in the same manner (and so must be named). Each such OR state/region
has a default initial state initials and each states is initialised to this value. If a final
state is present, it is denoted by finals . If s has a history pseudo-state as a direct
substate, then an attribute lasts : States ∪ {unset} is also introduced, to record the
last active top-level substate of s . This is initialised to the value unset to indicate
that no state of s has previously been occupied. When a final state of s is entered,
lasts is reinitialised to unset .

If the history state is a deep history, then a lastss variable is added for each OR
substate and subregion ss of s .

The top level states of the state machine itself are also represented by an attribute
state : State.

For each state x in the state machine diagram, a predicate ϕx can be defined,
which expresses that x is part of the current state configuration of the state machine
(Table 1).

State s State predicate ϕs

Top-level state state = s
Immediate substate of
OR state/region r ϕr ∧ stater = s

Table 1: State predicate

A predicate InitialStates expresses that the (recursive) initial state of s is occu-
pied (Table 2).

Using these predicates, the state-changing behaviour of transitions can be ex-
pressed as pre and post conditions. The enabling condition enc(tr , s) of a transition

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 39

DIRECT SEMANTICS OF EXTENDED STATE MACHINES

State s InitialStates

OR state, initials basic states = initials
OR state, initials composite states = initials ∧ InitialStateinitials

AND state conjunction of InitialStater for each region r of s

Table 2: Initial state predicate

tr

s →op[G]/Post t

from a state s is ϕs ∧ G , conjoined with ¬ (ϕss ∧ G ′) for each different transition

tr ′ : ss →op[G′]/Post ′ tt

triggered by op on a state ss , ss 6= s , ss v s .

This expresses that tr is only enabled on s if higher-priority transitions for the
same trigger operation/event are not enabled.

The complete enabling condition of tr is the conjunction of the enabling condi-
tions from each explicit source of tr (tr may be a compound transition with multiple
source states sources(tr)):

enc(tr) = ∧s∈sources(tr) enc(tr , s)

The precondition derived from a transition tr triggered by op is then enc(tr).

The enabling condition is a critical semantic aspect which can be defined in
different ways to produce different semantic profiles for state machines. We could
use an alternative definition enc ′(tr), which is the conjunction of enc(tr , s) for each
explicit and implicit source s of tr . Implicit sources are those AND state regions
which contain no explicit source of tr but will be exited when it takes place.

For the postcondition, there are several cases. A predicate Targettr expresses
what state(s) are directly entered because of the transition tr (Table 3).

In the third and fourth cases, tr0 is a transition identical to tr except that it is
targeted at the default history state of p. In the third case tri is a transition identical
to tr except that its target is si , the substate of p equal to lastp . The difference
between shallow and deep history is that in the former, composite substates of the
last active state will be entered at their initial state, whilst with deep history they
are entered at their last active state, defined by the predicate LastStatep (Table 4).
In the final case, tf is a transition composed from tr followed by any completion-
triggered transitions triggered by reaching t , from p or (recursively) from superstates
of p.

For transitions with multiple targets, the conjunction of the Target predicate for
each target is taken.

40 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

4 SEMANTICS FOR EXTENDED STATE MACHINES

State t Targettr

composite state InitialStatet

basic non-history state ϕt

shallow history state in OR-state/region p (lastp@pre = unset ⇒ Targettr0) ∧
with direct substates (lastp@pre = s1 ⇒ Targettr1) ∧
{s1, ..., sm} ... ∧

(lastp@pre = sm ⇒ Targettrm)
deep history state in OR-state/region p (lastp@pre = unset ⇒ Targettr0) ∧

(lastp@pre 6= unset ⇒ LastStatep)
final state finalp Targettf

Table 3: Target state predicate

State s LastStates

OR state, lasts basic states = lasts
OR state, lasts composite states = lasts ∧ LastStatelasts

AND state conjunction of LastStater for each region r of s

Table 4: Last state predicate

In addition to the postcondition describing the direct target, the transition may
also cause other states to be reinitialised. After taking account of the effect of
history and final states, for each AND composite state x , if transition tr causes x
to be entered, then all the regions of x which do not contain an actual target of
tr must be reinitialised. This additional effect (which may apply to several AND
compositions) is expressed by a predicate ReInittr .

The complete postcondition of tr is the conjunction of its explicit postcondition,
its target state predicate(s), and ReInittr .

Axioms 1 and 2 of Section 3 can therefore be restated using the stater variables
for each OR state and region r . Axiom 3 applies with the pre and postconditions
derived from each transition as described above. Axiom 4 holds in the form

ϕs ⇒ Invs

for each state s .

Other elements of UML state machine notation can also be given a semantics:

1. If event e is deferred in state s , which also has a set of explicit transitions
tri : si →e[Gi]/Posti ti for e, where si v s , then this means that e cannot be
consumed unless one of these transitions is enabled:

∀ i : N1 · (ϕs ⇒ enc(tr1) ∨ ... ∨ enc(trn))}↑(e, i)

This is in accordance with the semantics of [20], whereby substates which
accept an event override superstates which defer it.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 41

DIRECT SEMANTICS OF EXTENDED STATE MACHINES

2. Internal transitions→e[G]/Post of state s are expressed as pre and post-conditions
of e with the form ϕs ∧ G and (ϕs ∧ G)@pre ⇒ ϕs ∧ Post

The semantic definition for behavioral state machines is similar, except that we
need to define the sequence of actions executed by a transition, in addition to the
target state predicate.

5 SOLUTIONS FOR SEMANTIC PROBLEMS

Many of the semantic problems identified in [7] remain in the UML 2 state machine
notation definitions of [20]. In particular, the definitions of transition priority have
not been improved and remain ambiguous: “The priority of joined transitions is
based on the priority of the transition with the most transitively nested source
state” (page 547 of [20]). Page 548 of [20] gives an algorithm for calculating the
fired set of transitions when an event occurs, this algorithm involves starting from
“innermost nested simple states”, which does not resolve cases such as Figure 3,
reproduced from [7]. We assume that all the transitions are triggered by the same
event and have true guards.

Figure 3: Priority examples

Our semantics defines solutions to the problems of ambiguity and imprecision
of UML identified in [7] for transition priority and history states. For priority the
semantics implies that a transition t has priority over another t ′ in state s if t is
enabled in this state and t ′ is not.

For history states, the semantics means that the history of an OR state/region
is always unset by entering a final state (page 536 of [20]), and that this history is
independent of the history of any other state in the model.

42 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

5 SOLUTIONS FOR SEMANTIC PROBLEMS

Transition priorities

We define that transition t has priority over transition t ′ (for the same trigger) in a
state s if

ϕs ⇒ enc(t) ∧ ¬ enc(t ′)

In the example of Figure 3 we have:

enc(t0) ≡ stater1 = s1 ∧ states1 = ss1
enc(t1) ≡ stater1 = s1 ∧ states1 6= ss1 ∧ stater2 = s2 ∧ states2 6= ss2
enc(t2) ≡ stater3 = s3 ∧ states3 = ss3 ∧ statess3 = sss3 ∧

statesss3 = ssss3 ∧ stater4 = s4 ∧ states4 6= ss4
enc(t3) ≡ stater3 = s3 ∧ states3 = ss3 ∧

statess3 = sss3 ∧ statesss3 6= ssss3 ∧ stater4 = s4 ∧ states4 = ss4
enc(t4) ≡ stater2 = s2 ∧ states2 6= ss2
enc(t5) ≡ stater2 = s2 ∧ states2 = ss2 ∧ stater3 = s3 ∧ states3 6= ss3
enc(t6) ≡ stater3 = s3 ∧ states3 = ss3 ∧ statess3 6= sss3

When no clear highest priority transition exists from a particular state combi-
nation, such as s0, ss2, ssss3 and ss4, then no transition is enabled.

Non-determinism still remains possible in UML state machines, in the cases:

1. Two transitions with the same priority can be enabled at the same time from
the same state (conflicting transitions). For example, t0 and t4 and t6 are all
enabled in the state ss1, s2, ss3 (not sss3) and x4.

2. The order of entry actions to orthogonal regions, exit actions from orthogonal
regions, and actions on transitions executed in orthogonal regions as part of
the same event reaction are undefined (page 547, [20]).

3. The choice of enabled transitions exiting a choice point is not defined (page
555, [20]).

The first indicates a potential inconsistency in a state machine model and should
be eliminated: it can be checked statically, since the enabling conditions (omitting
transition guards) consist only of equalities and inequalities over finite sets. The
second can be modelled using a parallel execution operator || [15], which permits
either concurrent or interleaving implementations. The third indicates an ambiguous
model, which should be made unambiguous by refining the conditions concerned.

If we take the stronger definition of enabling, enc ′ from Section 4, then many
cases of transitions which conflict under the enc definition no longer conflict. t0
for example has the implicit source r2, which is disabled if t4 is enabled. How-
ever, this definition is further from the visual representation, since it requires the
determination of the (possibly non-obvious) implicit sources of transitions.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 43

DIRECT SEMANTICS OF EXTENDED STATE MACHINES

History states

The UML documents also do not clearly define the meaning of history states. Page
523 of [20] states “deepHistory represents the most recent active configuration of the
composite state that directly contains this pseudostate (eg, the state configuration
that was active when the composite state was last exited)”. This suggests a se-
mantics where ‘most recent active’ means ‘the state from which the composite state
was last exited’. But page 528 of [20] says instead that deep history can be defined
even if no exit from the composite state has taken place. We assume that ‘most
recent active’ means ‘most recently active before the transition to the history state’,
regardless of whether the transition came from inside or outside of the composite
state.

Our semantics also resolves the problems of history states described by [7]. Figure
4 illustrates the problems identified in [7].

Figure 4: Example of history states

These problems are:

1. It is not clear if default transitions from history states must go to normal non-
final states (not pseudostates or final states). We have enforced this restriction.

2. The notion of ‘last active’ state is ambiguous, it is not clear if this can include
final states of composite states (cf. example 3 below). We enforce that final
states cannot be considered as being last active states, instead, entry to a final
state resets the record of the last active state in the composite state. The
reason for this decision is that we consider final states only have a meaning as
a signal that the containing state has completed its activity.

3. Do history states of nested states affect deep history entry to these states? In
our semantics they do not, only the last active states of these states determine
the target of a deep history entry to an already visited state (cf. example 1
below).

44 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

5 SOLUTIONS FOR SEMANTIC PROBLEMS

4. Does the reset of the last active state in a composite state p on entry to p’s
final state also reset the records of last active state in its substates? In our
semantics it does not, the reset only applies to p (cf. example 2 below).

Tables 5, 6 and 7 illustrate the effect of our semantics in some scenarios of
Figure 4. We assume that all transitions have different triggers, and that only t8
has a completion event trigger.

Transition new state new value of last2 new value of last4
t0 1 unset unset
t3 2, 4, 6 4 6
t5 1 4 6
t2 2, 4, 5 4 5
t7 2, 3 3 5
t6 2, 3 3 5

Table 5: History example 1

In Table 5 the most recently occupied substate of state 2, prior to the transition
t6 to 2’s history state, is the actual destination of this transition, in this case it is
the state 3.

Transition new state new value of last2 new value of last4
t0 1 unset unset
t2 2, 4, 5 4 5
t10 2, final2 unset 5
t5 1 unset 5
t4 2, 4, 5 4 5

Table 6: History example 2

In Table 6 the history of state 2 is unset by the transition t10 to its final state,
but the history of state 4 is not unset, since it never enters its final state in this
example.

Transition new state new value of last2 new value of last4
t0 1 unset unset
t2 2, 4, 5 4 5
t9 2, final2 unset unset
t5 1 unset unset
t1 2, 4, 6 4 6

Table 7: History example 3

In Table 7 the transition t9 leads to the final state of state 4 and triggers t8
which also unsets state 2’s history, thus subsequent entry to the history state of 2
uses the default history transition of this state.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 45

DIRECT SEMANTICS OF EXTENDED STATE MACHINES

6 BEHAVIOURAL COMPATIBILITY

Behavioural compatibility is the requirement that the specified behaviour of a su-
perclass object should not be violated by a subclass object.

In the UML 2 documents various transformations on state machines are proposed
for extending a superclass state machine to a subclass machine (page 548 of [20]):
splitting a source state, adding states to a composite state, etc. The transformations
aim to preserve the capability of clients to invoke particular sequences of operations,
however the behaviour of these same sequences of operations may be unexpected to
the client who only knows the superclass specification.

In particular, transitions should only have their target state replaced by a more
specific state (corresponding to a strengthened postcondition) rather than an arbi-
trary state (as in [20]), and it is valid for transitions to be entirely replaced by a set
of more specific transitions for the same trigger.

To ensure semantic behavioural compatibility, we can define three syntactic con-
ditions on the protocol state machine C of a subclass CC of a class AC and the
protocol state machine A of AC [11, 12]:

1. Refinement: For every state s of C , there is a state σ(s) of A, and for every
transition tr of C triggered by an operation of AC there is a transition σ(tr)
of A such that:

(a) σ(s) is initial in A if s is initial in C .

(b) σ(tr) : σ(s)→ σ(t) in A if tr : s → t in C .

(c) tr and σ(tr) have the same trigger.

(d) Posttr ⇒ Postσ(tr)

This means that any behaviour of C must satisfy the specifications of be-
haviour of A. σ is termed an abstraction morphism.

2. Adequacy: For each state s of A there is at least one state s ′ of C such that
σ(s ′) = s . The disjunction of the state invariants of all such s ′ is equivalent
to the state invariant of s . If s is initial in A, so is one of the s ′ in C .

For each transition tr : s → t in A there are transitions tr ′ : s ′ → t ′ of C such
that σ(tr ′) = tr , for every state s ′ such that σ(s ′) = s . The disjunction of
guards of the tr ′ with source a particular such s ′ should be equivalent to the
guard of tr .

This means that behaviour defined in the superclass must also be defined in
the subclass.

3. Locality: If a new operation op of CC has a transition tr : cs → ct in C for
which σ(cs) 6= σ(ct), or which modifies any data feature of AC , then op must
(in terms of its effect on the data of AC and state of A) be expressible as a
procedural combination of operations of AC .

46 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

6 BEHAVIOURAL COMPATIBILITY

These conditions can be formally deduced from the requirement that the semantics
of CC together with C , as a theory, is a theory extension of the theory of AC and A
[11]. Refinement and adequacy also correspond to the usual definition of refinement
in state-based system specification [1]. The locality condition is a consequence of
the frame axiom [8], and corresponds to Liskov’s composition requirement for new
operations introduced in subclasses [18], with respect to observational equivalence
under the query operations of the superclass: it ensures that clients of the subclass
do not see unexpected behaviour – new transitions and pathways between states not
present in the superclass specification.

This definition can also be used for extended state machines, with the additional
restriction that σ must respect state nesting: if s vC s ′ then σ(s) vA σ(s ′).

In addition, if a transition tr of C has multiple sources s1, ..., sn , then σ(tr)
must have the set σ(s1), ..., σ(sn) as its set of sources. Similarly for target states.

If s ′ is initial in an OR state or region s in C , then either σ(s ′) = σ(s), or σ(s ′)
is initial in σ(s).

For extended state machines the abstract and concrete states are both defined
as state configurations, in terms of tuples of OR and region state variables. The
condition of adequacy means that for each abstract state (configuration) s , every
concrete state (configuration) s ′ which abstracts to s must have the same possible
behaviour as s with regard to the operations of the generalised model.

Using the above conditions, we can verify that many generalisation transforma-
tions on state machines are semantically correct:

1. A postcondition of a transition can be strengthened.

2. A transition can be split into several cases from the same source state, with
guards logically partitioning the original guard, and with targets equal to the
original target [5].

3. A new region can be added to a concurrent composite state, provided this
region has no trigger in common with transitions which exit the existing com-
posite state. It is valid to refer to the state of this region in the transition
guards of other regions – provided that all possible states of the new region
are alternatives in the guards of the refined transitions from any particular
state (Figure 5).

Other generalisation transformations can be proved correct by direct reference
to the semantics. For example, introducing a deferral of an event leads to a stronger
semantic theory for a state machine, and hence a semantic subtyping. Introducing a
history pseudostate into an OR-state/region without a history pseudostate is also a
refinement, as is interchanging H and H ∗ pseudostates in a region/OR-state which
contains only basic substates.

Once a transformation has been proved correct, it can be used as required to
produce or verify correct refinements, without requiring repetition of the proof.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 47

DIRECT SEMANTICS OF EXTENDED STATE MACHINES

Figure 5: Adding a region

7 SEMANTIC ANALYSIS

Semantic analysis of UML models is necessary to ensure their internal consistency
and their correctness with respect to requirements. Instead of writing new analy-
sis tools, the UML-RSDS tools utilise translations to the formal notations B and
SMV to make use of the existing industrial-strength tools for these notations. The
translations are based directly on the semantics given above, so that the translations
preserve the meaning of the UML models and enable immediate interpretation of
analysis results in terms of the original models.

The UML-RSDS tools express the semantics of a state machine for a class by
extending the class diagram with additional enumerated type definitions for the
States types of Section 4, new attributes of the class for each states variable, and
new pre and postconditions of the operations.

Figure 6: Translation example

For example, the state machine of Figure 6 for a class C is interpreted as the
following definition of op:

op()

48 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

8 RELATED WORK

pre: state_C = s & state_r1 = s1 or state_C = s & state_r2 = s2
post: ((state_C = s & state_r1 = s1)@pre => state_C = s & state_r1 = t1) &

((state_C = s & state_r2 = s2)@pre => state_C = s & state_r2 = t2)

In the translation to B, each class is interpreted in a B module, called a machine
[13]. The structure of these modules corresponds closely to that of the class. For this
example, a machine of the following form would be produced for class C , expressing
the instance theory IC :

MACHINE C SEES SystemTypes
VARIABLES state_C, state_r1, state_r2
INVARIANT state_C : StateC & state_r1 : State_r1 &

state_r2 : State_r2
INITIALISATION state_C := s || state_r1 := s1 || state_r2 := s2
OPERATIONS
op =
PRE state_C = s & state_r1 = s1 or

state_C = s & state_r2 = s2
THEN

IF state_C = s & state_r1 = s1 THEN state_r1 := t1 END ||
IF state_C = s & state_r2 = s2 THEN state_r2 := t2 END

END

END

Proofs of consistency and validation properties can then be carried out using a
toolkit for B such as B4free [3] or the B Toolkit [4].

Translation to SMV allows temporal properties of specifications to be verified
[2].

An additional facility in the UML-RSDS toolset supports automated application
of model transformations, such as the behaviour refinements described in Section
6. Also a search facility is provided, which attempts to construct an abstraction
morphism between two state machines.

8 RELATED WORK

Many approaches to defining the semantics of UML state machines use flattening
to reduce a state machine with composite states and features such as history states
to simple finite state machines in which there are only non-composite states and
simple (single source, single target) transitions without pseudostates [6, 19]. The
problem with this approach is that the structure of the original model will be lost
and the number of states and transitions to be considered increase significantly. For
example, the simple parallel machine of Figure 6 expands to the flattened model of

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 49

DIRECT SEMANTICS OF EXTENDED STATE MACHINES

Figure 7. In this version the meaning of the model is less clear, and its semantic
representation is more complex.

Figure 7: Flattened parallelism example

As far as possible, our semantics represents the meaning of state machines in
notations which are close to UML class diagram and OCL notations. The semantics
may therefore be more accessible to UML users than semantics which use external
formalisms such as Petri Nets ([19]) or term algebras ([17]). An axiomatic semantics
is also well-suited for use with logic-based semantic analysis tools such as B. Com-
pared to [17] we do not represent sync states, however we can express the semantics
of time-triggered transitions using the RAL formalism [15], extending [17].

The approach of [16] is close to ours, but translates directly into B from stat-
echarts, instead of utilising an underlying axiomatic semantics. Elements of UML
state machine notation such as time triggers, which require a temporal logic seman-
tics, are not handled by this approach.

9 FUTURE WORK

For behavior state machines, there are unclear semantics concerning entry actions
and do activities, in particular. We can use the idea that entry actions are designed
to establish state invariants (the state is stable when these invariants hold true –
page 546 of [20]), and therefore they occur just before entry of the state, meaning
that a transformation which moves the entry actions to the end of the actions of
each incoming transition of the state is an equivalence. Do activities op which are
continuously executed while in a state s also may be designed as refinements of state
invariants. They satisfy an axiom of the form

ϕs ⇒ #active(op) = 1

where #active(op) counts the number of active executions of op at a time.

50 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

10 CONCLUSION

A do-once activity of state s , which generates a completion event on its termina-
tion, can be modelled as an initial transition to a final state (within s if s is basic,
or in a new region of s otherwise).

10 CONCLUSION

We have defined an axiomatic semantics for a large part of UML 2 state machine
notation, using the informal OMG Superstructure definition of the semantics as
the basis. Our semantics resolves ambiguities and incompleteness in the informal
semantics, in the areas of transition priority and history behaviour. It is used as the
basis for semantic analysis using proof and model-checking tools, in the UML-RSDS
toolset [14], and these have been applied to large reactive system case studies [9].

The axiomatic semantics approach has the advantage of expressing UML seman-
tics in a high-level manner, in a formalism which is similar to, but independent of,
UML.

REFERENCES

[1] J-R Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

[2] K. Androutsopoulos, Verification of Reactive System Specifications using Model
Checking, PhD thesis, King’s College, 2004.

[3] B4free, http://www.b4free.com, 2007.

[4] B-Core UK Ltd., The BToolkit, 2006.

[5] S. Cook, J. Daniels, Designing Object Systems: Object-oriented Modelling with Syn-
tropy, Prentice Hall, 1994.

[6] W Damm, B Josko, A Pnueli, and A Votintseva. A discrete-time UML semantics for
concurrency and communication in safety-critical applications. Science of Computer
Programming, (55):81–115, 2005.

[7] H. Fecher, J. Schonborn, M. Kyas, W-P de Roever, 29 New Unclarities in the Se-
mantics of UML 2.0 State Machines. In Formal methods and software engineering
ICFEM 2005, volume 3785 of LNCS, pages 52–65. Springer, 2005.

[8] J Fiadeiro and T Maibaum. Sometimes “tomorrow” is “sometime”. In Temporal
Logic, volume 827 of Lecture Notes in Artificial Intelligence, pages 48–66. Springer-
Verlag, 1994.

[9] P. Kan, Specification of Reactive Systems using RSDS, PhD thesis, King’s College
London, 2006.

[10] K. Lano, Logical Specification of Reactive and Real-Time Systems, Journal of Logic
and Computation, Vol. 8, No. 5, pp 679–711, 1998.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 51

DIRECT SEMANTICS OF EXTENDED STATE MACHINES

[11] K Lano, D Clark, K Androutsopolous, and P Kan. Invariant-based synthesis of
fault-tolerant systems. In FTRTFT. Springer-Verlag, 2000.

[12] K Lano, D Clark, and K Androutsopolous. From implicit specifications to explicit
designs in reactive system development. In IFM ’02, 2002.

[13] K. Lano, D. Clark, K. Androutsopoulos, UML to B: Formal Verification of Object-
oriented Models, IFM 2004.

[14] K. Lano, Constraint-Driven Development, to appear in Information and Software
Technology, 2007.

[15] K. Lano, A Compositional Semantics of UML-RSDS, submitted to SoSyM, 2006.

[16] D. Le, E. Sekerinski, S. West, Statechart Verification with iState, FM 06, Canada,
2006.

[17] J. Lilius, I. Paltor, The Semantics of UML State Machines, Turku Centre for Com-
puter Science, TUCS technical report 273, 1999.

[18] B Liskov and J Wing. Specifications and their use in defining subtypes. In ZUM ‘95
Proceedings, volume 967 of LNCS. Springer-Verlag, 1995.

[19] J. Merseguer, J. Campos, S. Bernardi, S. Donatelli, A compositional semantics for
UML state machines aimed at performance evaluation. In M. Silva, A. Giua, and J.M.
Colom, editors, Proc. of the 6 Int. Workshop on Discrete Event Systems (WODES
2002), 2002.

[20] OMG. UML superstructure, version 2.0. OMG document formal/05-07-04, 2005.

[21] A Simons. A theory of regression testing for behaviourally compatible object types.
In 3rd Conf. UK Software Testing Research (5-6 September), pages 103–121, 2005.

ABOUT THE AUTHORS

Dr Kevin Lano Kevin Lano is a Reader in Software Engineering in
the Department of Computer Science at King’s College London. He has
been involved in the combination of object-oriented and formal methods
for many years, in the EROS and pUML groups, and in many UK and
European projects. He can be contacted at Kevin.Lano@kcl.ac.uk

Dr David Clark David Clark is a lecturer in the Department of Com-
puter Science at King’s College London. He is a member of the Software
Systems and Modelling Team within the department’s Software Engineer-
ing Research Group. He may be contacted at David.J.Clark@kcl.ac.uk.
See also http://www.dcs.kcl.ac.uk/staff/david/

52 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

