
Vol. 6, No. 9, Special Issue: TOOLS EUROPE 2007, October 2007

Modularizing constructors

Viviana Bono, Dept. of Computer Science, Torino University
Partly supported by MIUR Cofin ’06 EOS DUE project
Jarosław D. M. Kuśmierek, Institute of Informatics, Warsaw University
Partly supported by the Polish government grant 3 T11C 002 27
and by SOFTLAB - Poland, Warsaw, Jana Olbrachta 94

Object-oriented class-based languages provide mechanisms for the initialization of newly
created objects. These mechanisms specify how an object is initialized and what infor-
mation is needed to do so. The initialization protocol is usually implemented as a list
of constructors. It is often the case that the initialization protocol concerns some orthog-
onal properties of objects. Unfortunately, if those properties have more than one op-
tion of initialization, the total number of constructors becomes exponential in the number
of properties.
In this paper, we propose an alternative protocol. In our approach, instead of defining
a list of constructors, it is possible to split blocks of definitions into smaller and compos-
able pieces, in order to obtain reduction in the size of the code, better reusability, more
expressiveness, and easier maintenance.

1 INTRODUCTION

Most object-oriented class-based languages are equipped with some form of specifica-
tions for the object initialization protocol. This protocol describes two aspects of the
initialization:

• What kind of information must be supplied to a class, to create and initialize an ob-
ject. A class may support more than one variant of object initialization, which
means that there may be more than one accepted set of such information.

• What code is executed during this initialization. The sequence of instructions which
should be executed depends on the kind of information supplied, therefore if the
class supports distinct sets of information to be supplied during the initialization,
then, for any such a set, a different sequence of instructions should be executed.

Usually, initialization protocols are specified by a list of constructors. Each construc-
tor corresponds to one accepted set of information and consists of:

• a list of parameters (names and types), specifying a set of information required
to initialize an object;

• a body, containing a list of instructions which must be executed in order to initialize
an object.

Unfortunately, this traditional initialization protocol (abbreviated with TIP from now
on) has some drawbacks: it requires additional copying of code, and it causes unneces-
sary dependencies. Therefore the code is harder to maintain and more vulnerable to the

Cite this document as follows: Viviana Bono and Jarosław D. M. Kuśmierek: Modularizing con-
structors, in Journal of Object Technology, vol. 6, no. 9, Special Issue: TOOLS EUROPE 2007,
October 2007, pages 297–317, http://www.jot.fm/issues/issues 2007 10/paper15

http://www.jot.fm/issues/issues_2007_10/paper15

MODULARIZING CONSTRUCTORS

versioning of libraries. Disadvantages of TIP are discussed in some detail in the next
section.

Our approach is based on the modularity and the composability of initialization blocks,
in order to increment expressiveness and flexibility, and to reduce the size of the code.
Our initialization protocol is presented by introducing a new Java-like language called
JavaMIP. We present JavaMIP by giving some examples, then by defining its semantics
by a translation into Java.

The paper is structured as follows. Section 2 discusses a list of problems induced by
the TIP approach and some solutions existing in actual languages implementations and/or
proposed in the literature. Section 3 introduces JavaMIP, first via a simple example, then
by presenting its syntactical constructs and its semantics by translation into Java. Section
4 comments on the performance of JavaMIP. Section 5 summarizes our approach and
makes some comparisons with related work. Section 6 concludes the paper presenting
some future work directions.

2 BACKGROUND

Problems with the most common approach

The TIP approach is present in most of the contemporary object-oriented languages like,
for instance, C++ [18], C] [10], Delphi [1], Java [9]. The main limitation of such an ap-
proach is the following: every time a programmer wants to reference an initialization
protocol of a class, he must define or reference explicitly the whole list of parameters, or,
in the case of inheritance, sometimes even repeat the whole list of constructors.

Nowadays large software systems, equipped with equally large libraries, are devel-
oped. If, on the one hand, the typical inheritance mechanisms scale well with respect to
reusing properties and methods of a class, on the other hand, they do not scale as well
with respect to reusing the initialization protocol, that is, the constructors.

We will analyze in more depth different flaws of TIP. We perform the analysis by
exploiting the Java syntax and some Java examples; however, most of the problems occur
in all of the mainstream object oriented languages.

TIP leads to an exponential number of constructors with respect to the number of
optional parameters. In classes like java.awt.TextArea, there is often one “full” con-
structor declared, containing the largest set of parameters. However, when some of those
parameters are optional, then additional constructors, with less parameters than the “full”
one, must be declared.

Moreover, most of the time, all desired constructors cannot be introduced, because it is
not allowed to place, in one class, two constructors with parameter lists of the same length
and compatible types of the corresponding parameters. Even though such two construc-
tors can represent two different subsets of parameters of the full one, the compiler will
not recognize which constructor to call at object creation time, because the constructor is

298 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

2 BACKGROUND

chosen via the types of its arguments. However, if the compiler could make such choice,
then most probably a lot of classes would contain all possible constructors, leading to an
exponential number of constructors.

TIP leads to an exponential number of constructors with respect to the number
of properties with different initialization options. If a class contains some properties,
where each of them can be initialized in more than one way, then the possible number of
initialization options (thus the number of constructors) is a multiplication of the numbers
of options of object properties. An example could be the combination of a property color
(with two options, RGB and CMYK) with a property position (with three options, Carte-
sian, polar, and complex) in a class ColorPoint, which induces six constructors. The Java
class java.net.Socket is a more sophisticated example that contains nine constructors,
due to this and to the previous described problem.

TIP forces unnecessary code duplication. Let us assume that we have two attributes
characterizing the state of an object, for example the usual position and color from a class
ColorPoint (see Figure 1 on page 305). If those attributes can be initialized in multiple
ways (the position can by supplied by three different coordinate systems and the color by
two different palettes), then we would need six constructors where most of pairs of those
constructors share some common code (see the Java example in Section 3).

TIP makes the extension of a class by a new subclass cumbersome. In most cases,
the designer of a subclass wants only to modify the initialization protocol of a parent
class, not to redefine the parent’s protocol completely. However, using the TIP approach,
he must declare the whole resulting protocol in a subclass. Let us consider, for example,
a class of blinking buttons, which blink for some time after clicking. It is possible to
declare it by extending the class of ordinary buttons, for example javax.swing.JButton,
which has five constructors. Some information is needed for such a button, for instance
the frequency of blinking and the time for which the button must blink. Therefore, the
subclass must contain five constructors, as the parent class. Additionally, the declaration
of each of those constructors will begin with the identical parameters of the corresponding
constructor in the parent class, but it will contain two additional parameters, time and
frequency. This may lead also to code duplication.

Modifications of existing classes force unnecessary changes in subclasses. Let us
imagine such a situation:

• there exists class C1 with some constructors;
• another class C2 is declared by another developer as a subclass of C1. Class C2

needs some additional initialization information, so it has all parent constructors
redeclared by adding one parameter Par’, which is needed by subclass C2. Then,
all those constructors will most probably call the corresponding constructors in the
base class C1 and execute some sequence of code concerning Par’;

• another constructor is added to C1. Unfortunately, the class C2 will not inherit
automatically the corresponding constructor. This class, depending on the language
design, will either retain the original constructor without the additional parameter
Par’, or it will not inherit it at all (as it is in case of Java), but it will never inherit
the modified version (with the extra parameter) of this constructor, which could be

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 299

MODULARIZING CONSTRUCTORS

instead the intention of the subclass designer.

Overloaded constructors make safe-looking changes non-conservative. When
a Java (or C++ or C]) class contains many different options of initialization implemented
as many different constructors, the choice of the constructor actually called during object
creation is done in the same way as the choice of an overloaded method variant. Thus, it
suffers the same problems, as this example shows:
interface I1 {...}
interface I2 {...}
class C1 implements I1, I2 {...}
class C2 implements I2 {...}

class ClassWithOptions
{ ClassWithOptions (I1 a, I2 b);

ClassWithOptions (I2 a, I1 b);
}
new ClassWithOptions(new C1(), new C2());

This code will compile, because only one of constructors of class ClassWithOptions
matches the last new. But if the class C2 is enriched in order to make it implement also
the interface I1, then this “safe-looking” change will make the previous code not working
because the last new will be ambiguous. Notice that this is not a problem in languages in
which it is possible to name constructors (e.g., in Delphi), therefore the overloading can
be avoided.

In languages with checked exceptions TIP forces unnecessary dependencies. In
Java, if a constructor of a parent class throws some exceptions and it is called by a con-
structor of a subclass, the subclass constructor must repeat the whole list of exception
declarations. While the repetition of such declarations in normal methods is important,
because methods have choices (to catch the exceptions, or throw them further), the situa-
tion with constructors is different. A constructor cannot catch the exceptions of a super-
class, therefore the repetition of the declarations is a not justified additional work for the
programmer, and even worse: it creates unneccessary dependencies.

As an effect, when a superclass constructor is refined by replacing one exception
with two other subexceptions of the original one (which is a conservative extension),
this refinement is not visible in the subclasses.

Traditional mixins also suffer the same problems. A mixin is a class parameterized
over a superclass, that was introduced to model some forms of multiple inheritance and
improve code modularization and reusability, [17, 4, 8, 2]. Mixins can be combined with
other mixins and/or applied to a class to obtain a fully-fledged subclass; the class argument
plays the role of the parent. A mixin declaration, like any other subclass declaration, may
contain declarations of new constructors 1, which, in turn, may reference the superclass
constructors.

Those dependencies between constructors cause similar problems as within classes,
and constrain the number of possible mixin applications. Therefore, while, on the one

1In fact, not all mixin-related proposals allow some form of constructors.

300 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

2 BACKGROUND

hand, mixins are designed for a wider reuse than classical subclasses, on the other hand,
the problems with initialization protocol may occur more often. Also the designers of Jam
[2] have noticed this problem. In order to simplify the matter, they decided to disallow
the declarations of constructors in mixins, thus forcing programmers to write constructors
manually in all classes resulting from mixin application.

Some proposals to solve the initialization problems

There are at least six techniques which designers use to solve some of the problems con-
cerning initialization:

1. by avoiding explicit initialization protocols, with the optional support of some for-
mal specification languages,

2. by declaring a constructor with one parameter of type “container” containing all the
initialization parameters (such as, for example, of type Vector or of type Dictionary),

3. by using default parameter values,
4. by referencing parameters by name,
5. by using the constructor propagation mechanism of Java Layers, [5],
6. and by using the object factories mechanism.

The first two solutions are, in fact, programming techniques which can be used in
most object-oriented languages, while the last four ones are actual language features im-
plemented in existing languages or languages extensions. In the following section, we
will discuss those solutions in more detail.

Solution 1. A class written using the approach of avoiding explicit initialization
protocols contains one parameterless constructor (or none), while the real initialization
process is implemented in a list of ordinary methods. Those methods must be called
on objects explicitly after their creation. Here is an example. Instead of declaring the
following class:

class ColPoint {
ColPoint(int x,int y,int R,int G,int B) {...}
ColPoint(int x,int y,int C,int M,int Y,int K) {...}
}

one might declare a class with a parameterless constructor, and a set of methods respon-
sible for the initialization:

class ColPoint
{ ColPoint();
void setPosition(int x, int y)
void setColRGB(int R, int G, int B)
void setColCMYK(int C, int M, int Y, int K)

}

In a program written in such a manner, a class may contain many small methods,
each of them responsible for different options of a different layer of the initialization,

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 301

MODULARIZING CONSTRUCTORS

so that enough level of modularity is achieved. However, a programmer using this class
has to figure out by himself, consulting some documentation, how to initialize its objects
properly, in order to establish the object invariants. Additionally, it will not be statically
verified by the compiler if an object is properly initialized and if the object invariants are
established. As an effect, the programmer may create an object from the class and make
any of the following errors: (i) forget to call some of the methods responsible for the
initialization; (ii) call too many of them; (iii) call them in an incorrect order.

Existing formal specification languages, like JML, [13] and the Design by Contract in
Eiffel, [15], can allow some verification of this protocol. However, such approaches re-
quire to specify additional assertions, which is, in general, a difficult and time-consuming
task. Additionally, due to the general nature of assertions and to a great freedom of pos-
sible combinations, those assertions can be checked during the execution of the program,
but they cannot be verified statically. A statical verification is sometimes possible with
the support of theorem provers, but usually such tools require some manual support from
the programmer.

Solution 2. Constructors may have one parameter of a “container” type, such as
Vector or Dictionary. The container structure will contain values of all the initializa-
tion parameters, for instance indexed by their names. Then, a constructor may perform
a dynamic verification inside, like in the following example:

class ColorPoint
{ ColorPoint (Dictionary d)
{ if ((d.get("R")<>null) && ...) {... /* process RGB data */ ...}

else if ((d.get("C")<>null) && ...) {... /* process CMYK data */...}
else throw new Exception ("Wrong parameters!!");

}
}
This approach has the following disadvantages:

• the class contains one constructor which must perform a lot of checks for miscella-
neous cases of the initialization process;

• it does not allow any static checking of the parameters.

Solution 3. There is another mechanism which, in principle, was not designed to
solve those problems, but can be used to solve one of them: methods and constructors
with default parameter values (which is present, for example, in Delphi [1] and C++ [18]).
Thanks to this mechanism, it is possible to declare less constructors, being possible to treat
some parameters as optional. This mechanism does not help, though, when it is necessary
to have a mutually exclusive choice among different parameters (of different types).

Solution 4. Another feature which can be found in some languages (but not in any
of the main-stream ones like Java and C]), which may help, is referencing parameters of
methods and constructors by their names, that is, not necessarily by passing the actual
parameter values in the order in which they are declared. Such an approach, present for
example, in Flavors [17], Objective-C [11], and Ocaml [14] solves two problems:

• it discards some of the ambiguities caused by constructor’s overloading, because
parameters with the same (or compatible) type can have different names;

302 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 THE JAVAMIP APPROACH

• it allows a wider use of default parameter values because normally we can use de-
fault values only for a sequence of parameters being a suffix, while in this approach
it is possible to leave as default any of the available parameters.

However, this feature only solves problems of optional parameters and discards some am-
biguities, but does not prevent an exponential number of constructors and code duplication
in the case of multiple options of initialization of orthogonal object properties.

Solution 5. The Java Layers language [5], has a feature called “constructor propaga-
tion”, which can be illustrated by this example 2:

class Class1
{ propagate Class1(String s) {I_1;}
propagate Class1(int i) {I_2;}

}
class Class2<T> extends T
{ propagate Class2(int j) {I_3;}
}

With such declarations the class Class2<Class1> would in fact have the same list of
constructors as the following class:

class Class3
{ Class3 (String s, int j) {I_1; I_3;}
Class3 (int i , int j) {I_2; I_3;}

}
This approach solves the problem of the exponential number of constructors if the

sets of options of parameters are in different classes. However, this can only do a Carte-
sian product of sets of constructors from different classes. Therefore, if we want to write
a subclass of a class C with the purpose of adding another option for initializing the ex-
isting set of properties declared in C, then we cannot do this using Java Layers. This will
be re-addressed with an example in Section 5, in order to be compared directly with our
approach.

Solution 6. A recent work concerning initialization protocols is [6]. It shows how
object factories can be integrated in a language like Java in a way they use the same syntax
as for normal object creation. Using this approach, it is possible to override the construc-
tors of a class, and even to instantiate an interface. As an effect, in some situation this
reduces the amount of code which needs to be written. However, in this approach, each
allowed set of initialization parameters must correspond to one constructor, therefore, in
general, it does not avoid the problem of the exponential growth.

3 THE JAVAMIP APPROACH

In order to solve the above mentioned problems, we developed an approach based on the
idea of splitting big constructor declarations into smaller and composable parts, the ini-

2The example is a modified version of an example taken from the web page of the Java Layers
http://www.cs.utexas.edu/∼richcar/cardoneDefense.ppt. Also the syntax is slightly mod-
ified to look more Java-like.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 303

MODULARIZING CONSTRUCTORS

tialization modules, called also from now on ini modules. The decomposition mechanism
will still allow the static verification of declarations of the required parameters and of the
object creation expressions.

This approach is implemented as a part of a larger project, the design of a new mixin-
based language called Magda, but in order to study the main ideas and effects of our
approach we start by extending the Java language3 into JavaMIP.

A Java-like example

We illustrate the main ideas of our approach by providing an example, first in Java (in
Figure 1), then in JavaMIP (in Figure 2).

In the Java version, the class ColorPoint suffers from the fact that two orthogonal
aspects of the object creation must be put into every constructor. Notice that, if we had
abstracted the “color” property by creating a mixin, then we could not apply such a mixin
to a 3DPoint.

In Figure 2 there is the same example written in JavaMIP, with the initialization
protocol is split into“pieces”. When the line new ColorPoint[angle:=0.7, rad:=4,
c:=0, m:=1, y:=1, k:=0] is executed, an object of class ColorPoint is created and
then the initialization protocol proceeds as follows:

1. the ini module M5, dealing with the optional parameters c,m,y,k of ColorPoint,
is called;

2. after converting the colors in RGB, M5 calls the M4, the “main” ini module of
ColorPoint (that actually stores the color in the state variables),

3. which, in turn, invokes the appropriate parent ini module, which, in this case, is M2,
the one for polar coordinates, which are translated into Cartesian ones;

4. this will eventually call the M1, which is the “main” ini module of the class Point,
that actually stores the Cartesian coordinates in the state variables.

The initialization of the object is therefore performed in a modular fashion. In a class,
instead of a list of constructors, we have a list of ini modules introduced by a syntactic
construct initializes. Each ini module contains a new [...] instruction, which either
calls another ini module in the same class, or another ini module from the superclass. For
instance, an intermediate call to an ini module would be performed if we add another ini
module in the ColorPoint class: ColorPoint (z) initializes (c,m,y,k) {...}.
Then an object created via new ColorPoint[angle := 0.7, rad:=4, z:=...] will
be initialized first by executing the ini module concerning z and then the computation will
go on as described above.

Therefore, class ColorPoint written in the JavaMIP language: (i) is simpler; (ii)
does not dependent on the number of parent ini modules; (iii) does not contain any code
duplication; (iv) can be easily abstracted to extend a 3DPoint class with a property color.

3We could also apply the same changes to C++ and C], or even to Jam [2] and MixedJava [8]. The
differences would be insignificant.

304 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 THE JAVAMIP APPROACH

// Class of points definable by three different coordinate systems
class Point
{ float x, y; //object state variables

Point (float x, float y)
{ this.x = x; this.y = y; }

Point (Complex comp)
{ x = comp.x; y = comp.y; }

//the third parameter is required only for the compiler
//to distinguish between this one and the (x,y) constructor
Point (float angle, float rad, boolean PolarDef)
{ x:=cos(angle)*rad; y:=sin(angle)*rad; }

}

// Class of colored points whose color is definable by two different
// color palettes
class ColorPoint extends Point
{ float r, g, b; //object state variable

//Here are constructors (for three different coord. systems) with RGB
ColorPoint (float x, float y, float r, float g, float b)
{ super(x,y);

this.r = r; this.g = g; this.b = b;}
ColorPoint (float comp, float r, float g, float b)
{ super(comp);

this.r = r; this.g = g; this.b = b;}
ColorPoint (float angle, float rad, boolean PolarDef,

float r, float g, float b)
{ super(angle, rad, PolarDef);

this.r = r; this.g = g; this.b = b;}

//While here are constructors with CMYK
ColorPoint (float x, float y, float c, float m, float y, float k)
{ super(x,y);

r = somefun1(c,m,y,k); g = somefun2(c,m,y,k); b = somefun3(c,m,y,k);}
ColorPoint (Complex comp, float c, float m, float y, float k)
{ super(comp);

r = somefun1(c,m,y,k); g = somefun2(c,m,y,k); b = somefun3(c,m,y,k);}
ColorPoint (float angle, float rad, boolean PolarDef,

float c, float m, float y, float k)
{ super(angle, rad, PolarDef);

r = somefun1(c,m,y,k); g = somefun2(c,m,y,k); b = somefun3(c,m,y,k);}
}

Figure 1: Point and ColorPoint – Java code

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 305

MODULARIZING CONSTRUCTORS

class Point
{ float x,y;

// M1 - main "ini module" for Point
required Point (float x, float y) initializes ()
{ new []; this.x = x; this.y = y; }

// module declaring that comp can be supplied instead of (x,y)
optional Point (Complex comp) initializes (x,y)
{ new [x:=comp.x, y:= comp.y]; } //this instructions say how the

//translation from comp to (x,y) is done

// module responsible for translation of the polar coordinates
optional Point (float angle, float rad) initializes (x,y)
{ new [x:=cos(angle)*rad, y:=sin(angle)*rad];}

}
//this is an expression creating a Point with polar coord:
new Point [angle := 0.7, rad:=4];

class ColorPoint extends Point
{ float r, g, b;

// M4 - main "ini module" for ColorPoint
required ColorPoint (float r, float g, float b) initializes ()
{ new []; //calls the appropriate ini modules in the parent class

this.r = r; this.g = g; this.b = b; };

// M5 - optional "ini module",
// allowing the initialization of color via CMYK palette
optional ColorPoint (float c, float m, float yc, float k) initializes (r,g,b)
{ float R1=somefun1(c,m,yc,k);

float G1=somefun2(c,m,yc,k);
float B1=somefun3(c,m,yc,k);
new [r:=R1, g:=G1, b:=B1]; //calls the main "ini module" of ColorPoint

}
}
//this is an expression creating a ColorPoint with polar coord. and CMYK color:
new ColorPoint [angle := 0.7, rad:=4, c := 0, m:= 1, yc:=1, k:=0];

Figure 2: Point and ColorPoint – JavaMIP code

306 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 THE JAVAMIP APPROACH

The JavaMIP constructs

The new construct. As shown in the example in Section 3, the initialization protocol of
an object is modularized. The code performing this task is included in different modules,
some of which may be in the class the object is being created from, while some others are
in the class’ ancestors. The execution of those modules is controlled by the new construct,
which has two forms:

• an expression containing a class name and a list of parameters equipped with their
actual values via initialization expressions: new Class1[p1:=e1, ..., pn:=en]

• an instruction containing only a list of formal parameters equipped with their actual
values via initialization expressions: new [p1:=e1,..., pn:=en];

The first form is an expression and it is used when a Java new would be used, therefore
it creates an object, but it also indicates the class Class1 from which the initialization
protocol will start to look for the appropriate first ini module, that will be chosen according
to the list of parameters supplied.

The second form is an instruction and it dispatches the call to another ini module,4

which can be either in the current class or in the parent class. The second form is therefore
used inside the ini modules themselves, as we will soon see.

The initialization module. The initializes keyword introduces the new form of
initialization module. It is named after the class (as in Java), and replaces the classical
Java constructor. An ini module contains two lists of parameters and has the following
syntax:

{required ‖ optional } Class1 (T1 p1[=e1],...,Tn pn[=en])
initializes (p1,..., pk) [throws ...] {I1; new[p1:=e1,..., pn:=en]; I2;},
where I1 and I2 may be empty.

The parameters in the first list are called input parameters, while the parameters in
the second list are called output parameters. The input parameters are declared by the
current ini module. The output parameters refer to input parameters already declared
in other ini modules placed either in the same class and written above the current ini
module, or placed in an ancestor class. Each input parameter name must be different
from the names of input parameters of other modules in the hierarchy of a given class.
Each input parameter can be associated with its default value denoted by the expression
ei. The keyword required denotes that the input parameters associated to an ini module
must be supplied (by default or by the output parameters of other ini modules) during
object initialization, thus the execution of the corresponding ini module is mandatory.
The keyword optional denotes that those parameters are optional, thus the execution of
the corresponding ini module is not mandatory. Default values of input parameters are
only allowed in required modules. It is important to notice that the names used for the
parameters of the initialization modules do not have any necessary relation to the field
(instance variable) names.

Any of those lists of parameters can be empty:
4Except in the last ini module placed at the top of the hierarchy.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 307

MODULARIZING CONSTRUCTORS

• The list of output parameters can be empty:
... Class1 (T1 p1,...,Tn pn) initializes () {I1; new []; I2;}.
This can be utilized when there are some input parameters that are used during the
object initialization, but they are not exploited to calculate any parameters of other
ini modules. In the most common case, such input parameters will be used to
initialize some of the fields of the created object.

• The list of input parameters can be empty:
required Class1 () initializes (p1,..., pk)
{I1; new [p1:=e1,..., pn:=en]; I2;}.
This can be used in a situation when a class C has some initialization parameter, but
these are not required by a subclass C′: the designer might have decided that for C′

some parameters can be, for instance, constants, or can be read from some configu-
ration file (this will be done in the ei). Such modules are always executed, therefore,
for the uniformity of the syntax, we decide to always mark them as required.

• Both of those list can be empty:
required Class1 () initializes() {I1; new []; I2;}.
This is used when a class must perform some actions not connected explicitly with
the initialization of instance variables, like acquiring some resources, registering
the object in some collections, initializing its subcomponents, etc.

The throws clause denoting a list of exceptions which can be thrown by a module has
exactly the same syntax of the typical Java throws clause.

The list of supplied parameters of a new instruction is strictly defined by the context:
its list of parameters must be equal to the list of the output parameters of the ini module
in which this new occurs.

Intuitively, the ini module has four main tasks:
• a specification task: it declares new parameters (the input parameters), which must

(or can) be supplied to a new expression at object creation time. Additionally,
it specifies another list of parameters (the output parameters) that are considered
supplied when the ones of the first list (the input ones) are supplied.

• a translation task: it supplies the code to translate the input parameters into the
output parameters, which are the parameters for the next ini modules to be executed;

• an initialization task: it contains code initializing the state variables of an object by
using the input parameters, or some other means;

• a control task: it dispatches the call to the next ini module to be executed via the new
instruction.

Type checks, which must be performed to ensure the soundness of the above defined
constructs, are left out of the present paper for lack of space, and can be found in [12].

A semantics for JavaMIP

The only differences between Java and JavaMIP concerns the object initialization pro-
tocol, therefore we define a semantics of JavaMIP via a translation function into Java,

308 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 THE JAVAMIP APPROACH

which, for most of the fragments of code, will be an identity function.

It is worth noticing that it is possible to write directly Java code in a style inspired by
the code resulting from the translation of JavaMIP. However, such Java code could not
be statically verified, as it is instead JavaMIP code, see [12]. In fact, the translation we
present in this section leads directly to the implementation of a preprocessor javamip2java
[16], which performs those static checks.

The main ideas of the translation are the following:

• every ini module is translated into two methods: the first method contains all the
instructions from the ini module that are before the new [...] call, followed by
instructions assigning the expressions supplied by the new to the corresponding
parameters; the second method contains all the instructions that are after the new
[...] call;

• every new expression creating a new object is converted into a sequence of calls to
the ini modules (in fact, to those pairs of methods mentioned in the previous point);

• the values of the initialization parameters calculated by the current module to be
passed later to another module will be held in additional container objects.

The reminder of the section presents the details of the translation. At the end of this
section (on page 306), there is Figure 3 presenting the result of the translation of the
Point class from Figure 2, which can be useful for understanding the translation details.

Passing of the initialization parameters. In order to pass the initialization parame-
ters during the execution of the initialization process, we need, for every class, a special
class of objects (called containers) used for passing the initialization parameters between
the ini modules.

Therefore, for each JavaMIP class C1 extending a class C2 we declare a class C1 Init5

as a subclass of the corresponding parent’s class C2 Init, and for each input parameter
of each ini module of class C1 we declare a public field with the same type and name. For
instance, for the JavaMIP class ColorPoint (see Figure 2) we have:
class ColorPoint_Init extends Point_Init
{ public float r, g, b;
public float c, m, y, k;

}
Translation of the initialization modules. Every ini module declaration (let be

the following one the i-th of its class):

Class (T1 g1, ..., Tk gk) initializes (f1, ..., fn) throws Ex1, ..., Exe

{ I1; new [f1:=e1, ..., fn:=en]; I2; },

is substituted with two resultless methods.

The first method is named PreMethodi, and it has the following parameters:
• the container of the initialization parameters, of type Class Init and name init

(we assume that this name is not used elsewhere in the program). This will be used
by this method to store the output parameters of the ini module;

5We assume that this will not cause any name clash.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 309

MODULARIZING CONSTRUCTORS

• plus the input parameters of the ini module.

The second method, named PostMethodi, has the same parameters as the input parame-
ters of the ini module. Those methods have the following declarations:

void PreMethodi(Class Init init, T1 g1, ..., Tk gk) throws Ex1, ..., Exe

{ I1;

init.f1 = e1;

...

init.fn = en;

}
void PostMethodi(T1 g1, .., Tk gk) throws Ex1, ..., Exe

{ I2; }

In the resulting code, all ini modules are removed from the program, leaving only the Pre-
and Post-methods. As the effect, in such translated code, no class has any constructor in
the sense of Java.

Translation of an object creation expression. For this expression we must build
a sequence of instructions which will perform the initialization process. Those instruc-
tions will actually: (i) create a new object and pass the initialization parameters which
are supplied explicitly in the Exp; and (ii) call some Pre-methods and Post-methods in
a specific order.

Therefore, we build a linear ordering on the ini modules triggered by the object cre-
ation expression (we call them “activated”, see the definition below), which will determine
the order of the calls to Pre-methods. Post-methods will be called in the opposite order
with respect to the one of Pre-methods. The order induces a dispatch resolution that is
part of the translation of the object creation expression.

Let Exp = new Class [p1:=e1,..., pn:=en] be an object creation expression. We
say that a ini module declared in Class or one of its superclasses is activated by Exp if
each of its input parameters: (i) has a default value, or (ii) is one of the p1 ... pn, or (iii) is
an output parameter of another ini module activated by Exp.

Then we can build a construction order, which is a linear ordering of the activated
modules, called from now on CO(Exp). The comparison relation for this order is “later”,
with respect to the order of execution. We put in CO(Exp):

• all the activated ini modules declared in Class. We put them into CO(Exp) in an
reverse order with respect to that of the declarations in the JavaMIP code;

• we execute recursively the same procedure for the direct superclass of the current
class and append the result to CO(Exp).

Notice that, if we have dependencies between modules, for example R1 = Class (T1
b, T2 c) initializes (a) and R2 = Class (T3 d) initializes (b,g), where the
common parameter is b, then R2 will always be before R1 in CO. Therefore it is possible
to control the order of execution of the ini modules by changing their mutual order in the
classes. Only combinations which do not make sense are disallowed.

310 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

3 THE JAVAMIP APPROACH

The construction order determines the ordering within the initialization process. All
Pre-methods corresponding to the activated ini modules will be executed following this
order, and then the Post-methods will be called following the opposite order. Thus, those
calls will be simulating the call stack of dispatch defined by the new calls placed inside
the various ini modules.

Summarizing, every expression Exp =new Class [...] will be implemented by
a sequence of instructions which will perform the following five tasks:

1. create an uninitialized object;
2. create an object responsible for passing parameters (the container);
3. set in the container all parameters passed explicitly (directly) by the Exp, with their

respective values;
4. Each parameter which is not supplied explicitly by Exp is set in the container with

its default, taken from the definition of the module in which the parameter is de-
clared.

5. call the Pre-methods of the activated ini modules according to the construction order
CO(Exp), and passing to them the appropriate input parameters and the container;

6. call the Post-methods of the activated ini modules in the reverse order with respect
to the construction order CO(Exp), and passing to them the appropriate input pa-
rameters.

Since a new Class [...] expression can occur in a bigger expression, we must en-
close all the above instructions in a method. Let us assume that for Exp = new Class[p1:=
e1, ..., pk:= ek]) we have CO(Exp) = (cp1, cp2, ..., cpn). Then, the effect of the
translation of this expression from JavaMIP to Java will be the following method (placed
inside the same class where the method containing Exp is declared):

static Class1 UniqName (T1 v1, ..., Tk vk) throws Ex1, ..., Exe

{ Class1 obj=new Class1(); //1. creates an non-initialized object

Class1 Init i=new Class1 Init(); //2. creates container for parameters

i.p1=v1; ... i.pk=vk; //3. sets all explicit parameters

i.pd1=e1; ... i.pdl=el; //4. sets all default-supplied

obj.PreMethodcp1(i, i.p1
1, ..., i.pk1

1); //5. calls the Pre-methods

...

obj.PreMethodcpn(i, i.p1
n, ..., i.pkn

1);

obj.PostMethodcpn(i.p
1
n, ..., i.pkn

1); //6. calls the Post-methods

... // with the same parameters as Pre-

obj.PostMethodcp1(i.p
1
1, ..., i.pk1

1);

return obj;

}

where the set Ex1, ..., Exe is the set of all the exceptions declared to be thrown by
CO(Exp). Moreover, the new Class1[p1:=e1,...:= ek] expression is replaced by
the expression UniqName (e1, ..., ek).

The result of the traslation of class Point can be found in Figure 3. It is easy to see
that, in the case of such simple classes, some of the genarated methods are empty and

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 311

MODULARIZING CONSTRUCTORS

therefore unnecessary. In fact, the implementation of the language [16] eliminates such
empty methods and the respective calls.

4 EMPIRICAL EVALUATION

Some tests on JavaMIP were performed by exploiting the preprocessor javamip2java,
which is a translator from JavaMIP to Java (see [16]) and it is based on the semantics
by translation we presented. The preprocessor also performs the static checks described
in [12], ensuring that each new expression creates a fully initialized object, and that the
whole initialization process is confluent (a formal proof of a confluence property can be
found in [3]).

Larger examples of code, presenting in detail some benefits of the modularization,
can also be found at [16]. In particular, our performance benchmarks show that the object
creation using ini modules of JavaMIP is in between 0% and 40% slower than using Java
traditional constructors, depending on the complexity of the example.

Additionally, it is worth noticing that, if the modular initialization protocol were em-
bedded in the language itself, it would be significantly faster. For example, the Init does
not have to be a fully-fledged garbage-collected object allocated in heap. It would perform
better as a local structure kept in the stack-frame of the UniqName method. Therefore, we
believe that the present performance costs of our approach are not significant, and should
not be a objection against the integration of our modular initialization protocol in a new
language.

Moreover, to emphasize the effects of the modularization, we performed some mea-
surements on the code. We have chosen a few Java classes with a nontrivial initialization
protocol, designed the modular initialization protocol for them, and measured the com-
plexity of the signatures by counting the number of constructors/ini modules, and the total
number of parameters of all constructors/ini modules (to take into account the sizes of all
pieces of the protocol). The results, with comparison to Java, are the following:

constructors parameters
class name Java JavaMIP Java JavaMIP
java.util.Formatter 14 5 23 7
java.math.BigDecimal 18 8 35 14
javax.swing.JCheckBox 8 4 12 4
java.awt.Dialog 14 7 34 7

5 CONCLUSIONS

In this paper we addressed the problems of reusability and maintenance of code by ana-
lyzing and (hopefully) solving problems related to object initialization, which is, in our
opinion, a cornerstone for modularity. We presented a new approach to the design of the
initialization protocol, which has the following advantages over the TIP approach:

312 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

5 CONCLUSIONS

public class Point {
float x, y;
void PreMethod_0(Point_Init ___init, float x, float y)
{}//this is empty since the corresponding module does nothing before new[];

void PostMethod_0(float x, float y)
{ this.x = x;

this.y = y; //the actual instructions of the ini-module
}

void PreMethod_1(Point_Init ___init, Complex comp)
{ ___init.x=comp.x; //instructions responsible for passing

___init.y=comp.y; //calculated parameters to the subsequent ini-module
}

void PostMethod_1(Complex comp) {}

void PreMethod_2(Point_Init ___init, float angle, float rad)
{ ___init.x=cos(angle)*rad;

___init.y=sin(angle)*rad;
}

void PostMethod_2(float angle, float rad) {}
}

public class Point_Init
{ public float x, y;

public Complex comp;
public float angle, rad;

}

static Point UniqueMethod(float angle, float rad)
{ Point obj = new Point();
Point_Init i = new Point_Init();
i.angle = angle;
i.rad = rad;
obj.PreMethod_2(i, i.angle, i.rad);
obj.PreMethod_0(i, i.x, i.y);
obj.PostMethod_0(i.x, i.y);
obj.PostMethod_2(i.angle, i.rad);
return obj;

}

UniqueMethod(0.7, 4); //result of the translation of the "new" expression

Figure 3: Translation of the class Point into Java

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 313

MODULARIZING CONSTRUCTORS

• It reacts better when a superclass is extended: if a parent class is extended with some
new optional parameter, then the subclass gains automatically the corresponding set
of options of instantiation.

• It reduces the number of “constructors” from exponential to linear: different aspects
of instantiation can be defined separately.

• As an effect, it discards code duplication: if a subclass must add something to the
initialization protocol, it does not have to reference all the parent constructors.

• It removes redundant repetitions of exception declarations that may cause unneces-
sary dependencies.

• It discards ambiguities introduced by constructor overloading.

Notice that our approach to object initialization is independent from the type system
(whether it is structural or nominal), from the subtyping rules, and from the presence
of overloading. We believe that, thanks to this independency, and to the possibility of
a backward compatibile interpretation of TIP, our approach is a good proposal for the
development of new languages, as well as extensions of existing languages.

Our idea is modelled via a Java modification, JavaMIP, but it could be applied in gen-
eral to most of the existing object-oriented languages. In particular, it can also be applied
to a language equipped with mixins (such as those in [2, 8]), with the benefit of extending
the number of allowable combinations of mixins. In fact, as long as mixins do not need
referencing nor modifying constructors of the parent classes, they allow the desired level
of code modulation and reusability. But when a mixin needs to have something to do with
the initialization of objects, the designer has two choices: (i) either defining the construc-
tors in the resulting classes after the application of mixins, but this very often requires
copying the code; (ii) or define them in mixins, if the language allows this, thus reducing
their reusability. With our approach, a mixin would not have to reference explicitly the
parent class constructors, therefore it can be applied to classes with different initialization
protocols, sharing some common part, maybe even only one initialization parameter. As
an effect, it makes mixins a more reusable and expressive tool, while keeping a good level
of static checking of the initialization protocol.

There exists a companion paper to the present one, [3], that models a calculus called
called FJMIP, which is the core of JavaMIP, in order to state and prove the soundness of
our approach. Moreover, a prototype implementation of a preprocessor javamip2java is
available at [16], together with some working examples.

There are other different works connected not with the reusability only, but specifically
with the problem of constructors. One idea which is connected closely with out research
and solves some (but not all) problems related to constructors is referencing the formal
parameters of functions (e.g., methods and constructors) by name. Such an approach can
be found for example in Flavors [17]. However, the Flavors language lacks on the statical
type-checking side.

Another work, presented in [7], is a study on constructors for a mixin-based pro-
gramming style in C++, where mixins are implemented by using templates. The paper
describes some of the problems we have also pointed out, and proposes a solution for the
problem on the non-composability of mixins (see Section 2). Nevertheless, the proposal

314 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

6 FUTURE WORK

solves this problem only, moreover it requires automatic generation of additional C++
code, which in fact can be exponential in the size of all mixin code. It also requires the
declaration of additional type parameters in each mixin, which must be passed to the con-
structors of its ancestor classes. This may cause some overhead when programming large
libraries of mixins.

The most closely related work to ours is the Java Layers language, which is an exten-
sion of Java with mixins equipped with a tool called constructor propagation. It solves
some (but not all) problems related to constructors, as described in Section 2 as Solution
5. One of the things that cannot be done in the Java Layers approach is, as we men-
tioned before, the addition of new options of initialization of some properties defined in
the original class. The following JavaMIP code (which is an extension of the example
of Figure 2), in the Java Layers approach would require copying all combinations of the
propagated constructors:

class HSBColorPoint extends ColorPoint {
optional HSBColorPoint(float h, float s, float b)

initializes(r, g, b) {...}
}

6 FUTURE WORK

The purpose of this paper was to present our approach to object initialization in its essen-
tial form, but some modifications/extensions are already work-in-progress: (i) assigning
names to ini modules. This would allow the overriding of the implementation of ini mod-
ules (not of the lists of parameters), as for virtual methods; (ii) introducing a disable
operation for disabling some of the parent class’ ini modules; (iii) allowing the hiding
of some of the initialization modules. Further research can be done with respect to the
application of the modularization approach also to methods, not only to constructors. It
would be useful in some cases to avoid many overloaded versions of the same method.

Acknowledgments. The authors would like to thank the anonymous referees for help-
ing to improve this paper, Pawel Urzyczyn for inviting the first author to Warsaw, and
Marcin Kowalczyk for many fruitful discussions on object-oriented languages.

REFERENCES

[1] Delphi Language Guide. Borland Software Corporation, 2004.

[2] D. Ancona, G. Lagorio, and E. Zucca. Jam – a smooth extension of Java with mixins.
In Proc. ECOOP ’00, volume 1850 of LNCS, pages 145–178. Springer-Verlag, 2000.

[3] V. Bono and J. Kuśmierek. Featherweight JavaMIP: a calculus for a modular object
initialization protocol. Accepted for pubblication in FCT ’07 Proc., 2007.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 315

MODULARIZING CONSTRUCTORS

[4] G. Bracha and W. Cook. Mixin-based Inheritance. In Proc. OOPSLA ’90, pages
303–311. ACM Press, 1990.

[5] R. J. Cardone. Language and Compiler Support for Mixin Programming. PhD
thesis, The University of Texas at Austin, 2002.

[6] T. Cohen and J. Gil. Better construction with factories. Journal of Object Technol-
ogy, July/August 2007, 2007. To appear.

[7] U. W. Eisenecker, F. Blinn, and K. Czarnecki. A solution to the constructor-problem
of mixin-based programming in C++. In First Workshop on C++ Template Pro-
gramming, 2000.

[8] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and Mixins. In Proc. POPL
’98, pages 171–183. ACM, 1998.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaT M Language Specification.
Addison-Wesley, Sun Microsystems, 2005.

[10] A. Hejlsberg, P. Golde, and S. Wiltamuth. C] Language Specification. Addison-
Wesley, 2003.

[11] S. Kochan. Programming in Objective-C. Sams, 2004.

[12] J. Kuśmierek and V. Bono. A modular object initialization protocol. Manuscript,
available at http://www.di.unito.it/∼bono/papers/JavaMIP02.pdf, 2007.

[13] G. Leavens and Y. Cheon. Design by contract with JML, 2003.

[14] X. Leroy. The Objective Caml system release 3.09. Institut National de Recherche
en Informatique et en Automatique, 2005.

[15] B. Meyer. An Eiffel Tutorial. Technical report, ISE Technical Report TR-EI-66/TU,
2001.

[16] G. Monteferrante. javamip2java: A preprocessor for the JavaMIP language. Avail-
able at http://www.di.unito.it/∼bono/papers/javamip/, 2006.

[17] D. A. Moon. Object-oriented programming with Flavors. In Proc. OOPSLA ’86,
pages 1–8. ACM Press, 1986.

[18] B. Stroustrup. The C++ programming language. AT&T, 1997. Third edition.

316 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9

6 FUTURE WORK

ABOUT THE AUTHORS

Viviana Bono is an Associate Professor in Computer Science at the
University of Torino, Italy. Her main research interests are theoret-
ical foundations, semantics, and design of object-oriented and func-
tional languages. She can be reached at bono@di.unito.it and at http:
//www.di.unito.it/˜bono.

Jarosław Dominik Mateusz Kuśmierek is a PhD student in Computer
Science at the University of Warsaw, Poland. His main research interests
are the base concepts and the design of object oriented languages, and
the component oriented approach to software development. He can be
reached at jdk@duch.mimuw.edu.pl.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 317

mailto:bono@di.unito.it
http://www.di.unito.it/~bono
http://www.di.unito.it/~bono
mailto:jdk@duch.mimuw.edu.pl

