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Abstract 
Workflow and business process modeling approaches have become essential for 
designing service collaborations when developing SOA-based systems. To derive 
actual executable business process descriptions from the high-level workflow models, 
model transformation techniques can be used. Various service composition and 
business process languages are available for describing the executable processes. 
They have been developed having slightly different aims and requirements in mind. 
They do, however, share common key constructs, called workflow patterns that recur in 
descriptions given in these languages. 
We propose a model-driven approach for transforming workflow models given as UML 
activity diagrams into service composition descriptions. This paper will show how to 
realize a transformation from UML to BPEL and XPDL with a technology based on 
Triple Graph Grammars (TGGs). TGGs allow structural relationships between the 
different model elements to be elegantly expressed in graphical, declarative rules. We 
will show, in particular, how the commonly known workflow patterns recurring in the 
different business process languages can act as a guideline for designing the 
transformation rules. Based on the experiences in this application domain, we 
furthermore outline ways to enhance the usability and applicability of TGG for this 
purpose. 

1 INTRODUCTION 

The development of SOA-based systems has become an actively researched application 
area for model-driven software development approaches. While Web service 
technologies, such as SOAP and WSDL, provide a way to realize SOA, they do not as 
such provide means to compose service interactions into more complicated business 
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transactions. For realistic business applications, designing, specifying, and finally running 
such business transactions is essential. Acknowledgment of this has recently shifted the 
focus in Web services system development to support modeling and specifying service 
compositions, i.e. “programming-in-the-large”. The Web service composition models and 
descriptions are often simply referred to as workflows.  

Workflows are often designed using visual modeling languages like UML[UML05] 
or BPMN[BPMN06], which are easy to understand and provide an abstract view to the 
business process to be implemented. By adding appropriate details, this kind of high-level 
model can be transformed into different executable business processes given in different 
business process languages. In this paper we propose such a model transformation 
approach, which currently supports transforming workflow models given as UML 
activity diagrams to BPEL[BPEL03] and XPDL[XPDL05] descriptions. The approach 
can be conveniently extended to support other business process languages as well. 

Different aims and requirements have driven the development of various workflow 
and business process languages, resulting in different structural representations. For 
instance, BPEL is a language focusing on service orchestration, optimized for a notation 
in nested XML elements, while UML activity diagrams and XPDL are graph-based 
process description or workflow languages. Because of the structural differences, 
specifying a transformation may be quite complicated. However, even though the 
workflow and business process languages vary a lot, they all also share certain essential 
key constructs that recur in concrete workflow languages. Such generally accepted 
workflow patterns have been cataloged in [Aalst03b]. These workflow patterns can be 
used not only to identify the essential, corresponding parts in the source and target 
models, but also as a shared understanding of the semantics of these key structures.  

For model transformations in general, relying on commonly known patterns with 
well-understood semantics provides significant aid during the whole life-cycle of the 
transformations, including their construction, maintenance, and comprehension. In this 
paper, we propose an easily extensible strategy and its practical implementation for 
workflow model transformations, relying on workflow patterns to correctly translate 
these key behaviors. We furthermore show how such transformations can be 
implemented using a transformation technology based on Triple Graph Grammars 
(TGGs)[Schürr94]. There are significant benefits using TGGs for this application. First, 
the TGG rules allow the designer to declaratively specify bidirectional transformations. 
Second, since the rules are presented graphically, they are easy to comprehend and edit. 
We also show how the correspondences between the workflow languages on the level of 
workflow patterns can be conveniently expressed in TGGs, which allows an elegant 
transformation rule design. 

In this paper, we will  
• discuss the structural differences among UML activity diagrams, BPEL, and 

XPDL,  with respect to workflow modeling; 
• propose a strategy, relying on TGGs, for implementing a model transformation 

based on workflow patterns; 
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• discuss the benefits and challenges of the proposed approach and outline some 
ideas for its further development; and 

• give an application example. 
The paper is structured as follows. Section 2 introduces the background techniques and 
tools of our approach with an introductory example. In Section 3, the proposed 
transformation is discussed in detail, with an extended example shown in Section 4. We 
relate our transformation with other existing model-driven approaches and tools in 
Section 5. Finally, we conclude in Section 6 and present some future research directions. 

2 BACKGROUND  

In the following, a rough structural comparison of the workflow models involved in our 
application is given. We also give an example of the corresponding workflow patterns 
occurring in these models. Furthermore, we introduce the application of Triple Graph 
Grammars for model transformations. 

Graph and Block Oriented Workflow Languages 

To specify transformations between workflow models, their structural and semantic 
relationships have to be analyzed. Finding such relationships can be easy if the models 
are structurally similar. Workflow languages generally describe in which order tasks or 
activities are performed in a process. In particular, activities can be repeated, be 
performed optionally, occur in parallel, and be synchronized again at a certain point. To 
describe this, all workflow languages most fundamentally make use of activity elements 
(sometimes called actions). An expression of their relative order and the above-
mentioned structural composition is called the control flow of the process. Now, when 
transforming UML activity diagrams to BPEL descriptions, we find significant 
differences, especially in the representation of the control flow. In languages like UML 
activity diagrams (or XPDL), the control flow is explicitly represented by connecting 
successive actions with ControlFlow elements resulting in a graph structure. 
Furthermore, there are nodes specifying choices, parallel splits and joins of the control 
flow. Such languages are therefore called graph-oriented[Mendling05]. In the case of 
BPEL, the control flow is rather defined by nesting certain block elements called 
structured activities, which determine the execution order of the contained process 
elements. BPEL is thus called block-oriented[Mendling05]. A comparison of a simple 
UML activity diagram and an illustration of the corresponding BPEL structure are shown 
in Figure 1. 
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Figure 1. UML Activity Diagram and an illustration of the corresponding BPEL structure 

As shown in Figure 1, there is a direct one-to-one mapping between the 
AcceptCallAction A in UML and the Receive-Activity A in BPEL. The same applies to 
all other actions accordingly. However, the UML ControlFlow elements have no directly 
corresponding elements in the BPEL model1. To identify relating model elements, we 
have to consider larger model patterns. For example, the parallel structure of Actions B 
and C in UML corresponds to the Flow-block in the BPEL model. Accordingly, the 
overall sequence containing Action A, the aforementioned parallel structure and Action D 
corresponds to the Sequence-block in the BPEL model. 

Workflow Patterns 

Looking at these structures more closely, a number of workflow patterns can be 
identified. Such patterns have been identified by Aalst et al. [Aalst03a]. They capture 
common behavioral elements of business processes and concentrate on analyzing control 
flow aspects. The above example contains the following set of patterns (defined 
according to [Aalst03a]): 

• Sequence: “One activity in the workflow process being enabled after the 
completion of another activity in the same process”. 

• Parallel Split: “A point in the process where a single thread of control splits into 
multiple threads of control which can be executed in parallel”. 

• Synchronization: “A point in the process, where multiple parallel branches 
converge into one single thread of control”. 

Model Transformation based on TGGs 

Now, to introduce the transformation mechanism, we initially consider the simple 
case of transforming an Action from the UML Activity to an Activity in a BPEL process. 
In this particular case, according to Figure 1, we choose an AcceptCallAction in UML, 

                                                           
1 Here, we are not considering BPEL Link elements 
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which specifically corresponds to a Receive-Action in BPEL. We want to express this 
relation in a transformation rule as abstractly shown in Figure 2. 

Figure 2. A simple transformation rule and its application in different transformation directions 

In this rule, we state that an AcceptCallAction relates to a Receive-Activity when there 
exists a relation between their parent elements, Activity and Process. Relations of this 
archetype can be expressed using Triple Graph Grammar (TGG) rules. The TGG rule 
corresponding to the abstract relation above is shown in Figure 3a. The model patterns 
are represented using a notation similar to object diagrams. 

Figure 3. TGG rule example 

In this TGG rule, there are three columns. The outer columns contain the related domain 
model elements, as shown in Figure 2. They are called the domain sides of the rule. 
Additionally, in the middle column, there is the correspondence side where the relation 
that exists between these domain model elements is expressed by correspondence nodes. 
These correspondence nodes may connect arbitrary nodes in the domain sides. Then, in 
all sides of the TGG rule, there are two different types of nodes. First, there are the green 
nodes (shown in gray in black and white printouts), additionally labeled with “++”, which 
represent the actual relation of model elements that shall be expressed by this rule. 
Furthermore, there are the white nodes, which express the context in which the relation 
between the green(/gray) nodes is valid. The white nodes are therefore also referred to as 
context nodes. 

Now, as shown in Figure 3b, such TGG rules can be interpreted in different ways: for 
forward or backward transformation, or to check two given models for a valid 
correspondence. In the case of a forward transformation (see Figure 3b.i), an existing 
source model is given. In a scenario where the example rule in Figure 3a is applied, the 
source model would be a UML model and the UML side of the given TGG rule would be 
called the source domain side. To start a transformation, an initial start context has to be 
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provided, which typically contains the corresponding root model elements, like the 
Activity and Process elements in this example. Now, a rule can be applied when the 
context nodes of the rule can be matched to an existing context and when the source 
domain side of the rule can be matched inside the existing source model (see the white 
pattern in Figure 3b.i). Then, the remaining, non-context nodes on the target domain side 
and the correspondence side can be created (see the green/gray pattern in Figure 3b.i). 
Therefore, the green(/gray), “++”-nodes are also referred to as creatable nodes. In this 
way, the related model elements are transformed and a new context is created for the 
application of further rules. The application of TGG rules for the backward 
transformation direction works accordingly. In the case where two models are given, they 
can be checked for a valid correspondence. The correspondence nodes are created when 
the given models can be parsed with the domain sides of the rules. 

Formally, Triple Graph Grammars are an extension to Pair Grammars [Pratt71]. By 
structurally mapping two graph grammars, it is possible to specify how graphs of 
different types relate to each other. This formalism may also be extended to Multi Graph 
Grammars (MGGs), allowing to relate more than two graph grammars [Königs06]. The 
mapping of the different graph grammars is achieved by inserting a further graph 
grammar to specify the correspondence of single elements in the other graph grammars. 
Because software models can be considered as graphs, this technique can be applied to 
specify relations between models. In the notation introduced in Figure 3a, the domain 
sides as well as the correspondence part are (single) graph grammar rules. The left hand 
side of such a rule consists of the context nodes. The right hand side contains both the 
context nodes and the creatable nodes. Therefore, the TGG rules shown here are always 
non-deleting rules. 

In this paper, we want to draw special attention to the role of the correspondence side 
in the transformation rules. Actually, the correspondence model built up during the 
transformation can be seen as the integration of all the participating domain models. 
Section 3 explains how a systematic meta-model integration strategy aids in the 
specification of the transformation rules. 

Model transformations play a central role in model driven software development and 
thus, the Object Management Group (OMG) addresses model transformations with their 
upcoming specification for Query/Views/Transformations (QVT) [QVT05]. The 
declarative languages specified by QVT, QVT-Relations and QVT-Core are actually 
quite similar to TGGs and it has been shown that these languages can be mapped to 
TGGs [Greenyer06]. 

TGGs are used in the scope of two projects at the University of Paderborn, Fujaba 
[Fujaba06] and ComponentTools [Gepting04]. In Fujaba, TGG rules are compiled to Java 
code, which performs the transformation. In contrast, ComponentTools use a model 
transformer that rather interprets the TGG rules [Kindler04, Kindler06, Rohe06]. This 
TGG interpreter has lately been re-engineered and improved for the transformation of 
EMF ECore [EMF06] models inside Eclipse [Greenyer06]. This work furthermore shows 
that it is possible to provide a TGG-based implementation for the declarative model 
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transformation languages specified by QVT, QVT-Relation and QVT-Core. We chose to 
use this tool for the overall features of TGGs, for its usability and convenience, and 
because our application is based on EMF. 

3 OUR APPROACH: REALIZATION OF THE WORKFLOW 
TRANSFORMATIONS USING TGG 

After introducing the involved workflow models and a first example of a TGG rule, this 
section will now furthermore elaborate the transformation strategy. Before explaining the 
actual TGG rule design, we will show that it is reasonable to consider the systematic 
integration of the involved workflow models, especially highlighting the role of 
workflow patterns. 

Transformation principles 

One key aspect in comparing workflow or business process languages is their support for 
the aforementioned workflow patterns. Aalst et al. discuss various languages in terms of 
their support for the patterns [Aalst03b]. We have used their analysis and classification as 
a guideline when designing the TGG transformation rules. This means that our 
transformation supports those workflow patterns supported by UML, BPEL, and XPDL. 

Concerning the transformation of graph-oriented and block-oriented languages, there 
are several strategies available [Mendling05]. Before deciding which one to choose, the 
structural properties of the involved models should be analyzed. There can be structured 
or unstructured and acyclic or cyclic process graphs. A structured graph (as defined in 
[Mendling05]) can be reduced to a single element by using a set of reduction rules 
presented in the following.  

• Sequence reduction reduces a sequence of nodes to one node. 
• Connector pair reduction reduces a block enclosed by a split and a subsequent 

join connector. Connector pairs can be of type AND, OR, or XOR. For example, a 
connector pair of type AND would be represented by a ForkNode and a 
subsequent JoinNode in a UML Activity Diagram.  

• Loop reduction reduces a loop structure. 
• Start-block and end-block reduction reduces a block of elements that appears at 

the beginning or end of the graph and that is connected (i.e. followed or preceded, 
respectively) by an XOR connector. 

In our approach, we impose the restriction of working only with structured graphs. While 
structured workflow models are less expressive than arbitrary workflows, they are less 
prone to errors in their structure and are supported by most workflow tools. In 
[Eshuis06], Eshuis et al. present a strategy to compose a structured workflow starting 
from a set of services with data flow dependencies. It is more challenging, however, to 
derive a structured model from an unstructured workflow model. Existing research in this 
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area [Kiepuszewski00] could be used to extend the presented TGG rules to support a 
limited set of unstructured models, but this is not further studied in this paper.  

In the case of BPEL, working with structured models means that we omit the usage of 
the graph-based links element, which allows the creation of unstructured graphs. Instead, 
we translate the graph-based control flows in UML or XPDL to the respective BPEL 
structured activity elements (sequence, flow, etc.). Thereby, we identify the control 
structures instead of just mapping the control flow to BPEL links. The corresponding 
transformation strategy, as defined by Mendling et al. [Mendling05], is called Structure-
Identification and has the advantage of creating BPEL documents that are easier to 
understand because the structured components are directly revealed.  

For the opposite direction, transforming from a block-oriented to a graph-oriented 
language, the nested BPEL control flow is translated to a flat process graph without a 
hierarchy. The advantage of this is that the behavior of the whole BPEL process is 
translated to one process graph, making it easy to be communicated visually. 

Metamodels of involved languages 

Our approach is implemented in the Eclipse framework, using particularly EMF ECore 
models. Figure 4 shows the relationships between the UML and BPEL models. XDPL is 
in a corresponding role to BPEL, but is omitted from the figure for clarity. 

Figure 4. Involved metamodels 

With the metamodels of UML, BPEL and XPDL provided, the necessary steps towards 
specifying the transformation consist of (a) defining the correspondence metamodel and 
(b) setting up the actual TGG transformation rules. 

Defining the correspondence model 

The correspondence nodes of the TGG rules provide the mapping between the involved 
domain elements. We put special emphasis on the definition of the metamodel of these 
correspondence elements, since it serves as a basis for creating the actual transformation 
rules. The correspondence metamodel should: 

• contain elements representing the main semantic features of the participating 
languages (these elements are then associated with their related elements in the 
models of UML/BPEL/XPDL); 

• provide a representation, where the workflow patterns are easily recognized; and 
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• contain elements in order to combine the concepts of block-oriented and graph-
oriented languages. 

In order to create the correspondence metamodel, the following steps are taken in respect 
to the above requirements: 

1. Integration of the participating metamodels. We use an approach that describes 
the integration of workflow-related metamodels by applying schema matching 
[Hornung06]. This involves the evaluation of the semantic relationships between 
the model elements. For example, this means to find semantically equivalent 
constructs in the involved models or such constructs where one is semantically 
subsumed by another in the opposite model. 

2. Adding elements representing the workflow patterns. Thereby, the patterns can 
easily be recognized after a transformation and more importantly, these elements 
play a major role when defining the transformation rules. 

3. Adding elements to accommodate to the transformation strategy concerning graph 
and block oriented models. These elements, Sequence, ConnectorPair, Loop, 
StartBlock and EndBlock, mark structures reduced by the reduction rules. 

Figure 5 shows an illustration of the correspondences inserted between the example 
models from Figure 1 and the associations among these elements. 

Figure 5. Initial example with correspondence elements 

According to the integration steps mentioned above, we see the Activity correspondence 
nodes connecting the equivalent UML Actions and BPEL Activities. Furthermore, there 
are the ParallelSplit and Synchronization correspondence nodes, which represent 
workflow patterns in both models. These nodes also mark split and join connectors in the 
process graph and together comprise a block that can be structurally reduced. This block 
is represented by a ConnectorPair correspondence node that has the ParallelSplit and 
Synchronization nodes as children. According to the sequence reduction rule, the whole 
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process graph can be understood as one sequence. Therefore, a Sequence correspondence 
element is acting as the container of all correspondence elements representing the 
members of the process graph. 

Defining the transformation rules 

The general idea in defining the transformation rules is to create TGG rules for the 
following purposes: 
• Translate the Action/Activity elements that make up the atomic elements of behavior 

in the workflow processes. These elements should be matched regardless of their 
position in the control flow structure. 

• Transform the control flow structures, which comprise these atomic elements. Here, 
the workflow patterns play a crucial role. 

• Translate elements or structures not belonging to the above two groups. This includes, 
for example, elements which specify the participating services. Such elements, 
however, are not considered further in the scope of this paper. 

TGG rules translating atomic Action/Activity elements 

With the definition of semantic relationships between model elements, defined in the 
correspondence metamodel, we already have the essential parts that have to be composed 
in the TGG rules. Now, the most straightforward rules are those that relate the different 
Action/Activity element types in UML, BPEL and XPDL, i.e. rules to transform UML 
AcceptCallAction, ReplyAction, CallOperationAction, etc. An example of such a rule was 
already shown in Section 2 (Figure 2).  

These rules are actually the first being applied in a transformation. Transforming the 
single UML Actions without considering the control flow results in a loose collection of 
BPEL Activities on the other side. However, these BPEL Activities have to be associated 
with a common context node. In the rule shown in Figure 2, it is assumed that BPEL 
Activities are contained in the Process element. Due to the nested block structure, 
however, this is not always the case. The Activities can be contained in any block 
element, for example a Sequence or Flow block. So, we cannot decide where to put these 
Activities before taking care of the control flow. Our solution to provide a common 
context, keeping track of these Activities and making them easily accessible from the root 
Process element, is an extension of the BPEL model. We insert an extra model element 
called ActivityConnector. It is associated with every BPEL Activity node but, through 
adjustments in the EMF model, remains transient when saving the BPEL models. Figure 
6 shows a slightly modified version of the rule shown in section 2. 

:Activity

:AcceptCallAction

:Process

:Receive

:ActivityToProcess

:AccCallActionToReceive

++ ++++

++

++
++++

++

UML Correspondence BPEL

:ActivityConnector
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Figure 6. TGG rule example 

TGG rules for the Sequence workflow pattern 

The primary focus in the following strategy is to capture the appearing workflow patterns 
and the involved model elements in the TGG rules. The first pattern to be shown is the 
Sequence pattern. For the transformation of a sequence with n elements, we need two 
rules: One rule to match the beginning of a sequence and one rule to match each 
following element. 

To match the beginning of a sequence means to match an initial Action/Activity node 
and the one following it in the process control flow. These two nodes should be marked 
in some way to denote their belonging to the new-found Sequence pattern instance. 
Looking at the correspondence part of the “sequence_start” rule in Figure 7 already 
visualizes this concept. 

++

++

++

++

++

++

++

++ ++

++

++

++
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++

++++
:Activity :Process :Process
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:ControlFlow
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:Sequence

:Activity :Activity

:Sequence

:ActivityNode

:ControlFlow

:Activity:ActivityNode

 
Figure 7.  The sequence_start rule 

Two correspondence model Activity nodes are connected by a ControlFlow and 
associated to a Sequence node. The ControlFlow and Sequence elements are creatable 
(green/grey) here, because the rule should match Activity nodes whose common Sequence 
and ControlFlow connection have not been translated yet. Connecting these four nodes to 
their corresponding nodes on the UML and BPEL sides already results in the most part of 
the shown “sequence_start” rule. 

Now, reviewing the rule in the scenario of a forward transformation from UML to 
BPEL, it works as follows:  

• On the UML side, two of the Activity nodes, already translated by the 
Action/Activity rules, form the precondition in order to match their connecting 
ControlFlow element. One of the two Activities is the first in the overall 
Activity because it has no incoming ControlFlow. 

• On the BPEL side, this results in a Sequence node being created to contain the 
corresponding BPEL Activity nodes. 

The next Action in a sequence can be transformed with the “sequence_next” rule, shown 
in Figure 8. Here, the first of the two Action/Activity nodes has to be already part of a 
matched sequence. Therefore, in the correspondence model, this first Activity node has 
an already existing association to the previously created Sequence element and both this 
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association and the Sequence element are part of the precondition of the rule. Likewise, 
on the BPEL side the BPEL Sequence element and the respective association are also part 
of the precondition. This causes the rule to append the second Activity to the existing 
sequence. 

++ ++

++

++

++

++ ++

++

++

++

++

:Activity :Process :Process

UML Correspondence BPEL

++ :ControlFlow

:Activity

:Sequence

:Activity :Activity

:Sequence

:ActivityNode

:ControlFlow

:Activity:ActivityNode

 
Figure 8. The sequence_next rule 

TGG rules for the Parallel Split pattern 

The next workflow pattern to be shown in its TGG rule representation is the Parallel Split 
pattern. The point in the process where the execution splits is mapped to a ForkNode in 
UML, a Flow element in BPEL, and a “route” Activity with Split type “AND” in XPDL. 
These elements are mapped to a ParallelSplit element in the correspondence metamodel, 
which also has the function to denote the pattern instance.  

Here, there are again two TGG rules needed: one to match the split-point, i.e. the 
ParallelSplit element, and another rule to match each outgoing flow of control. Because 
the Parallel Split pattern is usually preceded by a sequence and also the outgoing arrow of 
control mostly is a sequence, the presented Parallel Split TGG rules include a 
combination with the Sequence pattern. 
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Figure 9. The two Parallel Split rules 
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Looking at the “parallelsplit” rule on the left of Figure 9, the upper half looks similar to a 
“sequence_next” rule with the second Activity element replaced by the ParallelSplit 
element (and the corresponding UML, BPEL and XPDL side changed accordingly). 
Thereby, the incoming sequence, as well as the split point, is matched. In addition to that, 
the rule contains the nodes to match one outgoing sequence of the Parallel Split pattern. 
The left part of Figure 9 shows the rule to handle the other outgoing branches of control. 
It has the ParallelSplit element in its precondition part and matches a not yet created or 
matched outgoing sequence. 

TGG rules for other workflow patterns 

The Synchronization pattern can be seen as the counterpart of the Parallel Split pattern. In 
our context of working with structured processes, the Parallel Split Pattern and the 
Synchronization Pattern both represent one part of a connector pair. This is reflected in 
the two TGG rules for the Synchronization pattern, as they match in the context of a 
preceding Parallel Split pattern instance. Thereby, the sequence preceding the 
ParallelSplit element is resumed after the synchronization point. All the elements in 
between, i.e. the parallel branches, are abstracted to the single ConnectorPair element of 
the correspondence model (a subclass of Activity) and thereby reduced in a way according 
to the reduction rules. Figure 10 shows this concept by means of the correspondence 
elements of the synchronization rules. 

++

synchronization

++ ++

++

++

++

++

++

++

:Synchronization

:ControlFlow

:Activity

:Sequence

:ParallelSplit

:Sequence

:ConnectorPair

sync_next_incoming

++ ++

++

++

:Synchronization

:ControlFlow

:Activity

:Sequence

:ParallelSplit

:Sequence

:ConnectorPair

UML Correspondence BPEL

... ...

UML Correspondence BPEL

... ...

 
Figure 10. The correspondence part of the synchronization rules 

There are two rules because the Synchronization pattern involves multiple branches being 
brought together. The first rule detects the pattern instance and creates a new 
Synchronization element in the correspondence model. The second rule matches the 
additional incoming branches of the synchronization point.  

From the five basic control patterns, the remaining ones are Exclusive Choice and 
Simple Merge. Their implementation is mostly similar to the previous two patterns. The 
rest of the workflow patterns can be represented in TGG rules in a similar way. 
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As shown before, we have already considered the integration of all three involved 
languages (UML activity diagrams, BPEL and XPDL) when defining the correspondence 
metamodel. As TGGs can be implemented for n:m transformations, and the actual 
implementation used also supports this, it is most convenient to add all three languages in 
the TGG rules.  

Our correspondence-model-centric way of defining the TGG rules also makes it easy 
to add the corresponding nodes of yet another language. One disadvantage of integrating 
all languages in the rules is of course that the rules quickly become rather crowded and 
complex. Also, the varying features of the languages might make it advisable to design a 
more specific correspondence model, following the principles introduced above. 

4 EXAMPLE APPLICATION 

To demonstrate the applicability of the proposed approach, we now show how an 
example business process, depicted in Figure 11 as a UML Activity Diagram in Rational 
Software Architect, is transformed to a BPEL description.  

Figure 11. Example business process in UML and the transformed BPEL document 

During the transformation, the different kinds of UML Action elements are matched by 
the respective single mapping rules. This happens in no particular order. The first 
workflow pattern to match is the sequence pattern beginning with the InitialNode 
element. It is matched by a variation of the above mentioned sequence_start rule, where 
the InitialNode element is specifically matched. The other TGG rules applied are the 
following: 

<process name="PurchaseOrderProcess">
<sequence>
  <receive name="ReceiveOrder"/>
  <switch>
   <case condition="[accepted]">
     <sequence>
       <receive name="receiveCustomerData"/>
       <flow>
         <sequence>
           <receive name="receiveShippingInfo"/>
           <invoke name="doShipping"/>
         </sequence>
         <sequence>
           <receive name="receiveInvoice"/>
           <invoke name="sendInvoice"/>
         </sequence>
       </flow>
       <reply name="sendPurchaseOrder"/>
     </sequence>
   </case>
   <case condition="[rejected]">
     <sequence>
       <invoke name="notifyShop"/>
       <reply name="sendAnswer"/>
     </sequence>
   </case>
  </switch>
</sequence>
</process>
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• the rule to match the DecisionNode as part of the Exclusive Choice pattern, as 
well as one rule to match the outgoing branches (these two rules are similar to the 
rules for the Parallel Split pattern); 

• the above mentioned parallel_split and parallel_split_sequence rules to match the 
Parallel Split Pattern instance around the ForkNode; 

• the sequence_next rule to match the two Sequence pattern instances after the 
ForkNode as well as the Sequence consisting of the nodes named notifyShop and 
sendAnswer; 

• the two Synchronization Pattern rules to match the JoinNode as well as its 
incoming edges;  

• sequence_next rule to handle the node named sendPurchaseOrder;  
• two rules similar to the Synchronization pattern rules  to match the Simple Merge 

Pattern instance with its two incoming branches; and finally  
• a variation of the sequence_next rule, where the second ActivityNode is an 

ActivityFinalNode, to match the end of the process. 
The resulting BPEL document is shown on the right in Figure 11. 

5 RELATED WORK 

In recent years, many document and model transformation technologies have been 
developed for different application domains. There are, for example, template-based 
approaches, such as XSLT[XSLT99], graph grammar based approaches like 
GReAT[Agrawal03], VIATRA[Varro02] and TGGs, and relational approaches like 
MTF[MTF05] and QVT[QVT05] that focus on specifying relations between model 
structures.  

The specific requirements in our application domain, however, quickly reduced the 
applicable model transformation approaches to just a few. Although template-based 
approaches are widely used, especially XSLT in web technologies, they would have 
resulted in an incomprehensible transformation, since the involved workflow languages 
are structurally complex and quite diverse. In general, we focused on declarative instead 
of operational transformation languages, which rather specify what should be transformed 
instead of how it should be done. Languages in that area include VIATRA, GReAT and 
MTF, for example. We also preferred transformation languages with graphical rule 
definitions to follow a model-driven approach and to help support the overall 
understanding of the transformation. The further choice among declarative languages was 
driven by the aim to support bidirectional transformations. There are, however, fewer 
languages that support both graphical rules and bidirectional transformations. 

The above mentioned aspects have also been acknowledged to belong to the key 
features and characteristics in model transformation languages, based on which these 
languages have been categorized [CH03, Mens06]. These characteristics include e.g. 
bidirectionality and support for transformation reuse, both of which are supported in our 
model transformation technique, namely, TGGs. It is further exogenous, since it is based 
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on metamodels of the source and target languages. With the graphical and editable 
representation of the transformation rules, we also feel it is easy to use. 

Concentrating on graph grammar based or relational approaches that use such a 
graphical concrete syntax (e.g. GReAT, TGGs), languages with (partial) conformance to 
QVT or with compatible notations (as TGGs) came into focus. QVT 
(Query/Views/Transformations) is an upcoming standard for model transformations in 
MDA, issued by the OMG, which has recently raised a lot of attention. QVT is the result 
of selecting and merging previous model transformation approaches and now actually 
contains different, both operational and declarative, transformation languages. The 
declarative languages form two layers of abstraction and, for the more abstract and user 
friendly QVT-Relations, there is also a graphical syntax specified. However, 
implementations of the QVT standard are still under development and there is only partial 
conformance yet [SmartQVT06, ModelMorf06, Together06]. The primary reason to 
choose TGGs over QVT is the possibility to map the relating model patterns with a 
specific correspondence model. As introduced in this paper, this allows an elegant design 
of the transformation rules. In QVT rules, it is not possible to flexibly specify a mapping 
structure between the involved models patterns and thus, to the best of our knowledge, 
this extensible transformation strategy presented here cannot be realized in QVT. 

Similar to our work, other model-driven approaches have been proposed for 
transforming workflow models to business process description [Kalnins06, Baresi06, 
ETTK06, Kalnins04]. IBM’s ETTK toolkit [ETTK06] also transforms the workflow 
models to code, namely, XML in this context. ETTK generates BPEL and WSDL 
documents from workflow models given in UML. Our approach currently supports both 
BPEL and XPDL and can conveniently be extended to support other business process 
languages as well. In ETTK, the transformation is made automatically and hard-coded 
inside the tool. It is thus neither visible to nor modifiable by the users. In the approach 
proposed by Skogan et al. [Skogan04], Web service compositions are designed using 
UML and then transformed into two variants of Web service composition languages, 
namely, BPEL and WorkSCo[Rito-Silva03]. While this approach focuses solely on Web 
service compositions, our approach can be used to generate other workflow descriptions 
as well. Moreover, the transformation approach UMT [Grønmo05] used in [Skogan04] is 
based on XSLT transformations. Finally, unlike IBM’s ETTK and the approach proposed 
by Skogan et al., our model transformation is bidirectional. 

Similar to our work, Kalnins et al. proposed a transformation approach [Kalnins04] 
from UML Activity Diagram to any vendor specific execution language, but via another 
graph-based transformation language called MOLA. Compared with TGG, MOLA 
additionally combines the traditional structured programming in a graphical form, for 
example, arranging the transformation rules in sequence and invoking subprograms with 
parameters. With this feature, MOLA is able to scale up for complex transformations. 
However, MOLA does not support bidirectional transformations. 
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6 DISCUSSION 

For the development and composition of services, model transformations between 
workflow models and process description languages are necessary. Such transformations 
are not trivial, because the involved languages are quite complex and often structurally 
diverse. However, it is possible to identify semantic relationships on the level of 
workflow patterns which recur in practically all these languages. Based on the 
observations in this domain, this paper presents a strategy to specify bidirectional model 
transformations by exploiting the semantic relationships of such model patterns. The 
transformation strategy is based on Triple Graph Grammars, which allow to reflect the 
detailed semantic relationships between models in graphical and comprehensible rules. 

 As an example, we have introduced a transformation from UML Activity Diagrams 
to process descriptions in BPEL and XPDL. Furthermore, we have shown how this 
transformation can be extended to also support other workflow languages. We aim to 
extend this transformation to also support BPMN[BPMN06] as a workflow modeling 
notation. 

Because TGG transformations are bidirectional, they allow a reverse transformation 
from, for example, BPEL process descriptions back to UML Activity Diagrams. This 
would aid in the analysis of deployed business processes and, if combined with workflow 
mining tools, it could be especially useful to support understanding of executed business 
processes.  

In this application domain, TGGs have shown many advantages. Their graphical 
notation allows the transformation designer to specify even complex transformation 
patterns in a convenient way. Furthermore, the extensibility of the approach also allows 
to build support for new workflow languages by reusing existing transformation rules. 
However, the usability of TGGs could yet be improved. Potential scalability problems 
concerning the graphical rule notation could be addressed by enhancing the rule editor, 
e.g. to hide rule parts or to use concrete language syntax when available. In our 
application, we observed that sometimes multiple rules are needed to express the same 
relation between model elements, because the relation occurs in slightly different 
contexts. Mostly, just the nodes' type classes are different. One solution, supported by the 
TGG interpreter used, is to refer to a common super-class when this is possible. This was 
already done in the workflow-pattern related rules presented in this paper. There, the 
abstract UML ActivityNode superclass is used to match each of the special types of 
activities being part of the patterns. But, there may be cases where the involved domain 
models do not supply a convenient superclass structure. Then, the integration of OCL in 
TGGs, which is also planned for the used tool, would make it possible to cover different 
contexts by using if-then-else expressions. Sometimes, when the domain models become 
more complex, it would be convenient to have some kind of “wildcard” mechanism to 
cover multiple cases. However, such mechanisms would need closer investigation. In any 
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case, the general position of the presented TGG implementation, also in its relation to 
existing standards and technologies like QVT and EMF, provides a good foundation for 
applying model transformations. The introduced strategy for the design of workflow 
model transformations has highlighted the benefits of using TGGs for that purpose. 
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