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Models and metamodels play a cornerstone role in Model-Driven Software Develop-
ment. Although several notations have been proposed to specify them, the kind of
formal and tool support they provide is quite limited. In this paper we explore the
use of Maude as a formal notation for describing models and metamodels. Maude
is an executable rewriting logic language specially well suited for the specification of
object-oriented open and distributed systems. We show how Maude offers a simple,
natural, and accurate way of specifying models and metamodels, and offers good tool
support for reasoning about them. In particular, we show how some basic opera-
tions on models, such as model subtyping, type inference, and metric evaluation, can
be easily specified and implemented in Maude, and made available in development
environments such as Eclipse.

1 INTRODUCTION

Model-Driven Software Development (MDSD) is becoming a widely accepted ap-
proach for developing complex distributed applications. MDSD advocates the use
of models as the key artifacts in all phases of development, from system specifica-
tion and analysis, to design and implementation. Each model usually addresses one
concern, independently from the rest of the issues involved in the construction of
the system. Thus, the basic functionality of the system can be separated from its
final implementation; the business logic can be separated from the underlying plat-
form technology, etc. The transformations between models enable the automated
implementation of a system from the different models defined for it.

We are currently witnessing how the Software Engineering community is em-
bracing the MDSD initiative with increasing interest. So far, most of the efforts
have been focused on the definition of models, metamodels and transformations be-
tween them. For instance, the Eclipse/GMT/AM3 project [19] is an example of
an initiative that has built a repository containing hundreds of metamodels and
transformations organized into sets of models of similar nature called zoos. There is
for example a zoo of metamodels expressed in the Kernel MetaMetaModel (KM3,
[4]), and some other auto-generated mirrors of it. The contents of these repositories
are rapidly expanding, providing a publicly available source of experimental data to
evaluate real life sets of model engineering artifacts [4].
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However, having such repositories of metamodels and transformations is not
enough. We also need other kinds of additional model engineering artifacts, such as
model editors, verification tools, model matchmakers and traders, quality measure-
ment tools, code generators, etc. Without these we will not be able to achieve real
software engineering.

It is our claim that these model driven engineering (MDE) components and
tools need to be integrated into software development environments, and count with
formal support. This does not mean that the average software engineer has to write
complex formal specifications, but that the tools that he or she uses have formal
underpinnings. Same as the hardware engineer working on a CAD workstation,
who is able to achieve simulation and validation on the hardware designs he or she
produces (which are just models!) without having to know all the formal groundwork
supporting these processes.

In this paper we explore the use of Maude [10] as a formal notation and system for
supporting many of the “model engineering” processes and operations, such as model
typing and subtyping, matchmaking, and verification. Maude offers a comprehensive
toolkit for automating such kinds of formal analysis of specifications, efficient enough
to be of practical use, and easy to integrate with software development environments
such as Eclipse.

The structure of this document is as follows. First, Sections 2 and 3 serve as a
brief introduction to the Domain Specific Modeling and Maude, respectively. Then,
Section 4 describes how models and metamodels can be represented in Maude, so
they become amenable to formal analysis. Section 5 is dedicated to show some
example of model operations that can be implemented with our proposal. Finally,
Section 6 compares our work with other related proposals and Section 7 draws some
conclusions and outlines some future research activities.

2 DOMAIN SPECIFIC MODELING

Domain-Specific Modeling (DSM) is a way of designing and developing systems that
involves the systematic use of Domain Specific Languages (DSLs) to represent the
various facets of a system, in terms of models. Such languages tend to support
higher-level abstractions than general-purpose modeling languages, and are closer
to the problem domain than to the implementation domain. Thus, a DSL follows
the domain abstractions and semantics, allowing modelers to perceive themselves as
working directly with domain concepts. Furthermore, the rules of the domain can
be included into the language as constraints, disallowing the specification of illegal
or incorrect models.

DSLs play a cornerstone role in DSM. In general, defining a modeling language
involves at least two aspects: the domain concepts and rules (abstract syntax), and
the notation used to represent these concepts (concrete syntax—let it be textual
or graphical). Each model is written in the language of its metamodel. Thus,

188 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



3 REWRITING LOGIC AND MAUDE

a metamodel will describe the concepts of the language, the relationships between
them, and the structuring rules that constraint the model elements and combinations
in order to respect the domain rules. We normally say that a model conforms to its
metamodel [3].

Metamodels are also models, and therefore they need to be written in another
language, which is described by its meta-metamodel. This recursive definition nor-
mally ends at such meta-metalevel, since meta-metamodels conform to themselves.

DSM often also includes the idea of code generation: automating the creation of
executable source code directly from the DSM models. Being free from the manual
creation and maintenance of code implies significant improvements in developer pro-
ductivity, reduction of defects and errors in programs, and a better resulting quality.
Moreover, working with models of the problem domain instead of models of the code
raises the level of abstraction, hiding unnecessary complexity and implementation-
specific details, while putting the emphasis on already familiar terminology.

A DSM environment may be thought of as a metamodeling tool, i.e., a mod-
eling tool used to define a modeling tool or CASE tool. The domain expert only
needs to specify the domain specific constructs and rules, and the DSM environ-
ment provides a modeling tool tailored for the target domain. The resulting tool
may either work within the DSM environment, or less commonly be produced as
a separate stand-alone program. Using a DSM environment can significantly lower
the cost of obtaining tool support for a DSM language, since a well-designed DSM
environment will automate the creation of program parts that are costly to build
from scratch, such as domain-specific editors, browsers and components. Examples
of DSM environments include commercial ones such as MetaEdit+; open source en-
vironments, such as the Generic Eclipse Modeling System; or academic ones such
as the Generic Modeling Environment (GME). The increasing popularity of DSM
has led to DSM frameworks being added to existing integrated development envi-
ronments, such as the Eclipse Modeling Project (EMP) and Microsoft’s DSL Tools
for Software Factories.

However, MDSD tools should provide more than just model editors and browsers.
We also need to count on model analyzers, simulators, matchmakers, quality evalua-
tors, etc., to perform real engineering tasks. In the following we will see how the use
of some formal description techniques, with efficient tool support, can help achieve
such MDSD components.

3 REWRITING LOGIC AND MAUDE

Maude [10, 11] is a high-level language and a high-performance interpreter and com-
piler in the OBJ algebraic specification family that supports membership equational
logic and rewriting logic specification and programming of systems. Thus, Maude
integrates an equational style of functional programming with rewriting logic com-
putation. Because of its efficient rewriting engine, able to execute more than 3
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million rewriting steps per second on standard PCs, and because of its metalan-
guage capabilities, Maude turns out to be an excellent tool to create executable
environments for various logics, models of computation, theorem provers, or even
programming languages. In addition, Maude has been successfully used in software
engineering tools in applications [15]. We informally describe in this section those
Maude’s features necessary for understanding the paper; the interested reader is
referred to its manual [11] for more details.

Rewriting logic is a logic of change that can naturally deal with state and with
highly nondeterministic concurrent computations. A distributed system is axioma-
tized in rewriting logic by a rewrite theory R = (Σ, E, R), where (Σ, E) is an equa-
tional theory describing its set of states as the algebraic data type TΣ/E associated
to the initial algebra (Σ, E), and R is a collection of rewrite rules. Maude’s under-
lying equational logic is membership equational logic, a Horn logic whose atomic
sentences are equalities t = t′ and membership assertions of the form t : S, stating
that a term t has sort S.

For example, the following Maude functional module NATURAL defines the natural
numbers (with sorts Nat of natural numbers and NzNat of nonzero natural numbers),
using the Peano notation, with the zero (0) and successor (s_) operators as con-
structors (note the ctor attribute). The addition operation (_+_) is also defined,
being its behavior specified by two equational axioms. The operators s_ and _+_

are defined using mixfix syntax (underscores indicate placeholders for arguments).

fmod NATURAL is
sorts NzNat Nat .
subsort NzNat < Nat .
op 0 : -> Nat [ctor] .
op s_ : Nat -> NzNat [ctor] .
op _+_ : Nat Nat -> Nat [assoc comm id: 0] .
vars M N : Nat .
eq s M + s N = s s (M + N) .

endfm

If a functional specification is terminating, confluent, and sort-decreasing, then it
can be executed. Computation in a functional module is accomplished by using the
equations as simplification rules from left to right until a canonical form is found.
Some equations, like those expressing the commutativity of binary operators, are
not terminating but nonetheless they are supported by means of operator attributes,
so that Maude performs simplification modulo the equational theories provided by
such attributes, which can be associative (assoc), commutativity (comm), identity
(id), and idempotence (idem). The above properties must therefore be understood
in the more general context of simplification modulo such equational theories.

While functional modules specify membership equational theories, rewrite theo-
ries are specified by system modules. A system module may have the same declara-
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tions of a functional module plus rules of the form t → t′, where t and t′ are Σ-terms,
which specify the dynamics of a system in rewriting logic. These rules describe the
local, concurrent transitions possible in the system, i.e., when a part of the system
state fits the pattern t then it can change to a new local state fitting pattern t′.
The guards of conditional rules act as blocking pre-conditions, in the sense that a
conditional rule can only be fired if the condition is satisfied.

Object-Oriented Specifications: Full Maude

In Maude, concurrent object-oriented systems are specified by object-oriented mod-
ules in which classes and subclasses are declared. A class is declared with the syntax
class C | a1:S1, ..., an:Sn, where C is the name of the class, ai are attribute iden-
tifiers, and Si are the sorts of the corresponding attributes. Objects of a class C
are then record-like structures of the form < O : C | a1:v1, ..., an:vn >, where O
is the name of the object, and vi are the current values of its attributes. Objects
can interact in a number of different ways, including message passing. Messages
are declared in Maude in msg clauses, in which the syntax and arguments of the
messages are defined.

In a concurrent object-oriented system, the concurrent state, which is called a
configuration, has the structure of a multiset made up of objects and messages that
evolves by concurrent rewriting using rules that describe the effects of the com-
munication events of objects and messages. The predefined sort Configuration

represents configurations of Maude objects and messages, with none as empty con-
figuration and the empty syntax operator __ as union of configurations.

sort Configuration .
subsorts Object Message < Configuration .
op none : -> Configuration [ctor] .
op __ : Configuration Configuration -> Configuration

[ctor assoc comm id: none] .

Thus, rewrite rules define transitions between configurations, and their general
form is:

crl [r ] :
< O1 : C1 | atts1 > ... < On : Cn | attsn >
M1 ... Mm

=> < Oi1 : C ′
i1

| atts′
i1

> ... < Oik : C ′
ik

| atts′
ik

>
< Q1 : C ′′

1 | atts′′
1 > ... < Qp : C ′′

p | atts′′
p >

M ′
1 ... M ′

q

if Cond .

where r is the rule label, M1...Mm and M ′
1...M

′
q are messages, O1...On and Q1...Qp are

object identifiers, C1...Cn, C ′
i1
...C ′

ik
and C ′′

1 ...C ′′
p are classes, i1...ik is a subset of 1...n,
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and Cond is a Boolean condition (the rule’s guard). The result of applying such a
rule is that: (a) messages M1...Mm disappear, i.e., they are consumed; (b) the state,
and possibly the classes of objects Oi1 ...Oik may change; (c) all the other objects
Oj vanish; (d) new objects Q1...Qp are created; and (e) new messages M ′

1...M
′
q are

created, i.e., they are sent. Rule labels and guards are optional.

For instance, the following Maude module, ACCOUNT, specifies a class Account

with an attribute balance of sort integer (Int), a message withdraw with an object
identifier (of sort Oid) and an integer as arguments, and two rules describing the
behavior of the objects belonging to this class. The rule debit specifies a local
transition of the system when there is an object A of class Account that receives
a withdraw message with an amount smaller or equal than the balance of A; as a
result of the application of such a rule, the message is consumed, and the balance of
the account is modified. The rule transfer models the effect of receiving a money
transfer message.

(omod ACCOUNT is
class Account | balance : Int .
msg withdraw : Oid Int -> Msg .
msg transfer : Oid Oid Int -> Msg .
vars A B : Oid .
vars M Bal Bal’ : Int .
crl [debit] :
withdraw(A, M)
< A : Account | balance : Bal >
=> < A : Account | balance : Bal - M >
if M <= Bal .

crl [transfer] :
transfer(A, B, M)
< A : Account | balance : Bal >
< B : Account | balance : Bal’ >
=> < A : Account | balance : Bal - M >

< B : Account | balance : Bal’ + M >
if M <= Bal .

endom)

When several objects or messages appear in the left-hand side of a rule, they need
to synchronize in order for such a rule to be fired. These rules are called synchronous,
while rules involving just one object and one message in their left-hand sides are
called asynchronous rules.

Class inheritance is directly supported by Maude’s order-sorted type structure.
A subclass declaration C < C’, indicating that C is a subclass of C’, is a particular
case of a subsort declaration C < C’, by which all attributes, messages, and rules of
the superclasses, as well as the newly defined attributes, messages and rules of the
subclass characterize its structure and behavior. This corresponds to the traditional
notion of subtyping: A is a subtype of B if every <X> that satisfies A also satisfies B
(in some contexts, this also means that objects of class A can safely replace objects
of class B). Multiple inheritance is also supported in Maude [10].
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Figure 1: Simple State Machine Metamodel (from [18]).

4 FORMALIZING MODELS AND METAMODELS WITH MAUDE

Although the notion of model is not yet fully agreed, in this paper we will adopt the
definition given by Jean Bézivin and Frederic Jouault in [4], where a model M is a
triplet M = (G, ω, µ) where G is a directed multigraph, ω is the reference model of
M (i.e., its metamodel), and µ is a function associating elements (nodes and edges)
of G to nodes of the multigraph that defines ω (µ defines the relation conformsTo
between the model and its metamodel).

There are several notations to represent models and metamodels, from textual
to graphical. One of particular interest to us is KM3, a specialized textual language
for specifying metamodels, whose abstract syntax is based on Ecore and MOF 2.0.
Thus, KM3 resembles the Ecore terminology and has the notions of package, class,
attribute, reference and datatype. The following is the KM3 specification of a meta-
model for simple state machines, borrowed from [18], and depicted in Figure 1.

package SimpleStateMachine {
class State {

attribute name : String;
reference stateMachine : StateMachine oppositeOf containedState;
reference incoming [*] : Transition oppositeOf target;
reference outgoing [*] : Transition oppositeOf src;

}
class StateMachine {

reference initialState [0-1] : State;
reference containedState [*] container : State oppositeOf stateMachine;

}
class Transition {

attribute name : String;
reference target [1] : State oppositeOf incoming;
reference src [1] : State oppositeOf outgoing;

}
}

There are many interesting benefits of using KM3, such as: it is simple and easy
to learn and to understand; it allows precise and easy definition and modification
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of the metamodels; it is possible to convert MOF, Ecore, and other metamodel
languages to/from KM3 descriptions; and KM3 offers good tool support and is
integrated with a proven and widely accepted MDSD environment, the ATLAS
Model Management Architecture (AMMA). In addition, KM3 metamodels can be
included into model repositories (zoos) and be ready to allow mega-modeling [5].

In Maude, models will be represented by configurations of objects. Nodes will
be represented by Maude objects. Nodes may have attributes, that will be repre-
sented by Maude objects’ attributes. Edges will be represented by Maude objects’
attributes, too, each one representing the reference to the target node of the edge.

Due to the way of representing models, we have two ways of representing meta-
models. Firstly, we can represent a metamodel as a Maude object-oriented module,
which contains the specification of the Maude classes to which the Maude objects
that represent the corresponding model nodes belong. In this way, models conform
to metamodels by construction.

Secondly, since metamodels are models too, they can be represented by config-
urations of objects. The classes of such objects will be the ones that specify the
meta-metamodels, for example, the classes that define the KM3 metamodel.

To illustrate the first option of representing metamodels, the following piece of
Maude specifications describe Simple State Machine metamodel as a Maude module.

(omod SimpleStateMachines is
protecting STRING .
class StateMachine | initialState : Maybe{Oid}, containedState : Set{Oid} .
class Transition | name : String, target : Oid, src : Oid .
class State | name : String, stateMachine : Oid,

incoming : Set{Oid}, outgoing : Set{Oid} .
endom)

Then, KM3 classes correspond to Maude classes. Attributes are represented as
Maude attributes. References are represented as attributes too, by means of sets of
Maude object identifiers. Depending on the multiplicity, we can use: a single iden-
tifier (if the multiplicity is 1; a Maybe{Oid} which is either an identifier or a null

value, for representing a [0-1] multiplicity; a Set{Oid} for multiplicity [*]; or a
List{Oid} in case the references are ordered. Notice that this representation ab-
stracts away some KM3 notions, such as oppositeOf. This and other KM3 aspects
will be considered in the alternative way of representing metamodels below.

The instances of such classes will represent models that conform to the example
metamodel. For instance, the configuration of Maude objects shown below repre-
sents a possible state machine model that conforms to that metamodel. It represents
a simple state machine with two states, named St1 and St2, and one transition (Tr)
between them. St1 is the initial state of the state machine.
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< ’S : StateMachine | containedState : (’A, ’B), initialState : ’A>
< ’A : State | name : "St1", stateMachine : ’S, outgoing : ’T, incoming : empty >
< ’B : State | name : "St2", stateMachine : ’S, incoming : ’T, outgoing : empty >
< ’T : Transition | name : "Tr", src : ’A, target : ’B >

The validity of the objects in a configuration is checked by the Maude type
system. In addition, the valid types of the objects being referenced is expressed in
Maude in terms of membership axioms that define the well-formedness rules that
any valid model should conform to: a configuration is valid if it is made of valid
objects, with valid references.

Given variables MODEL, CONF, CONF1 and CONF2 of sort Configuration, variables
O and SM of sort Oid, variables CS, IN and OUT of sort Set{Oid}, and a variable I of
sort Maybe{Oid}, this may be expressed in Maude as follows.

subsort ValidStateMachine < Configuration .
cmb CONF : ValidStateMachine if validRefs(CONF) .

op validRefs : Configuration -> Bool .
op validRefs : Configuration Configuration -> Bool .

eq validRefs(CONF) = validRefs(none, CONF) .
ceq validRefs(CONF1,

< O : State | stateMachine : SM, incoming : IN, outgoing : OUT > CONF2)
= isKindOf(SM, StateMachine, MODEL)
and-then isSetOf(IN, Transition, MODEL)
and-then isSetOf(OUT, Transition, MODEL)
and-then validRefs(CONF1 < O : State | >, CONF2)

if MODEL := CONF1 < O : State | > CONF2 .
ceq validRefs(CONF1,

< O : StateMachine | initialState : I, containedState : CS > CONF2)
= isNullOrKindOf(I, State, MODEL))
and-then isSetOf(CS, State, MODEL)
and-then validRefs(CONF1 < O : StateMachine | >, CONF2)

if MODEL := CONF1 < O : StateMachine | > CONF2 .
ceq validRefs(CONF1, < O : Transition | target : T, src : S > CONF2)
= isKindOf(T, State, MODEL)
and-then isKindOf(S, State, MODEL)
and-then validRefs(CONF1 < O : Transition | >, CONF2)

if MODEL := CONF1 < O : Transition | > CONF2 .
eq validRefs(CONF1, none) = true .

Our second way of modeling metamodels is considering them as models, too.
Therefore, they can also be represented as configurations of objects. The classes of
such objects will be the ones that specify the meta-metamodels—for example, the
classes defined in the KM3 metamodel.

To illustrate this approach, the following configuration of Maude objects repre-
sents the Simple State Machine metamodel. The Maude specification of the classes of
these objects corresponds, of course, to the KM3 metamodel represented in Maude.
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< ’SMP : KM3Package | name : "SimpleStateMachine", metamodel : ’MM,
contents : (’STATE, ’STATEMACHINE, ’TRANSITION), package : null >

< ’STATE : KM3Class | name : "State", isAbstract : false, package : ’SMP,
superTypes : empty, structuralFeatures : (’STATENAME, ’STATESTATEMACHINE,
’STATEINCOMING, ’STATEOUTGOING) >

< ’STATENAME : KM3Attribute | name : "name", package : ’SMP, type : ’STRING,
owner : ’STATE, lower : 1, upper : 1, isOrdered : false, isUnique : false >

< ’STATESTATEMACHINE : KM3Reference | name : "stateMachine", type : ’STATEMACHINE,
package : ’SMP, owner : ’STATE, lower : 1, upper : 1, isOrdered : false,
isUnique : false, opposite : ’STATEMACHINECONTAINEDSTATE, isContainer : false >

< ’STATEINCOMING : KM3Reference | name : "incoming", type : ’TRANSITION,
package : ’SMP, owner : ’STATE, lower : 0, upper : many, isOrdered : false,
isUnique : false, opposite : ’TRANSITIONTARGET, isContainer : false >

< ’STATEOUTGOING : KM3Reference | name : "outgoing", type : ’TRANSITION,
package : ’SMP, owner : ’STATE, lower : 0, upper : many, isOrdered : false,
isUnique : false, opposite : ’TRANSITIONSRC, isContainer : false >

< ’STATEMACHINE : KM3Class | name : "StateMachine", ... >
< ’TRANSITION : KM3Class | name : "Transition", ... >

It is important to note that these two different representations of a metamodel are
not completely equivalent. In fact, the second one contains all the information about
the metamodel, while the former one describes just information about the models
themselves—i.e., as a configuration of objects of certain classes with references to
other objects. Thus, some information not relevant at this level is omitted, or
checked with Maude equations, such as whether a class is abstract or not, or whether
a reference is a container or the opposite of other. This is similar to the information
captured by UML object diagrams, in which the relevant information are the object
identifiers, their classifiers, and the links between them—but no information is shown
about how the classifiers of such objects are organized into packages or structured
in an inheritance hierarchy, or the kinds of associations of their links.

Then, in our proposal we use both approaches, because they are useful for dif-
ferent reasons. In all cases we represent metamodels as configurations of Maude
objects (i.e., the second option above) to be able to capture all their relevant in-
formation, and to be able to reason about them using Maude (see Section 5). But
we also represent them as Maude specifications (i.e., using the first option that we
have described) in order to be able to instantiate models from them in a natural
way. There is a clear relationship between these two representations: we can easily
obtain the first representation from the second one.

5 UTILITIES

Once we have described how models and metamodels are represented in Maude, this
section shows how some of the basic operations on models can be then specified—
namely, model subtyping, model-type inference, and metric evaluation.
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Model Subtyping

Model typing is a critical issue for MDSD, specially for describing the input and
output parameters of model operations and services. For instance, model transfor-
mations are defined in terms of the metamodels of their input and output models,
and therefore we shall need to know whether a given model (conforming to a meta-
model) can be a valid input for that transformation. This situation is even more
justified in the case of initiatives such as the Model Bus [6], which allows modeling
services to be connected. For connecting them, it is essential to check the type
substitutability between the output of a service and the input of another, in such a
way that type safety is guaranteed.

Another situation which requires type checking happens when looking for meta-
models in a given repository (what is called metamodel matchmaking, a key mech-
anism for enabling reuse). For instance, suppose that you want to work with state
machines, and want to know if there are already metamodels in a repository that
deal with them. The easiest way to proceed would be to provide a very simple initial
metamodel (such as the one depicted in Figure 1) and then look for subtypes of such
a metamodel.

Despite being a core concept, a definition of the term model type is not widely
agreed by the MDSD community yet. We will follow here the work by Steel and
Jézéquel [18], for whom the type of a model is essentially its metamodel.

Then, these authors extended the notion of object subtyping to the realm of
models, providing an algorithm for model subtyping (i.e., safe replaceability). This
algorithm tries to be generic, and provides an elegant approach to address the prob-
lem of model type conformance, i.e., to check whether a required model type may be
satisfied by a provided model type. This proposal considers a model type as the set
of objects types for all the objects contained in a model and, thus, the subtyping al-
gorithm operates on the set of features supported by the model elements (structural
conformance) [17].

In the case of the KM3 environment, which is the one being considered here,
a provided model type (i.e., a metamodel) satisfies (i.e., is subtype of) a required
model type (Mp ≤ Mr), if the following conditions hold:

• Metamodel M ′ is subtype of Metamodel M (M ′ ≤ M) iff:

∀K ∈ {M.Package} • ∃K ′ ∈ {M ′.Package} • (K ′ ≤ K)

• Package K ′ is subtype of Package K (K ′ ≤ K) iff:

(K ′.name = K.name)∧∀C ∈ {K.Class} • ∃C ′ ∈ {K ′.Class} • (C ′ ≤ C)

• Class C ′ is a subtype of Class C (C ′ ≤ C) iff:

(C ′.name = C.name) ∧ (C.isAbstract ≤ C ′.isAbstract)∧
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∀P ∈ {C.Attribute} • ∃P ′ ∈ {C ′.Attribute} • (P ′ ≤ P )∧
∀R ∈ {C.Reference} • ∃R′ ∈ {C ′.Reference} • (R′ ≤ R)

• Attribute P ′ is subtype of Attribute P (P ′ ≤ P ) iff:

(P ′.name = P.name) ∧ (P ′.type ≤ P.type) ∧
(P ′.multiplicity ≤ P.multiplicity) ∧
(P ′.isUnique ≤ P.isUnique) ∧ (P ′.isOrdered ≤ P.isOrdered)

• Reference R′ is a subtype of Reference R (R′ ≤ R) iff:

(R′.name = R.name) ∧ (R′.type ≤ R.type) ∧
(R′.multiplicity ≤ R.multiplicity) ∧ (R′.isUnique ≤ R.isUnique) ∧
(R′.isOrdered ≤ R.isOrdered) ∧ (R′.isContainer ≤ R.isContainer) ∧
(R.opposite 6= null) ⇒ (R′.opposite 6= null)∧ (R′.opposite ≤ R.opposite)

In these equations we assume that the subtyping relation ≤ is defined for boolean
values as: (a ≤ b) ⇔ (b ⇒ a). Likewise, the ≤ operator can be defined for
multiplicities ranges as follows: [a′..b′] ≤ [a..b] ⇔ (a′ ≤ a) ∧ (b′ ≥ b). Thus,
[0..∗] ≤ [0..1] ≤ [1..1], and [0..∗] ≤ [1..∗] ≤ [1..1], for example. Since the only
primitive data types supported by KM3 are String, Boolean, Integer and Double,
the subtyping relation ≤ for data types values will hold when both of them are the
same, or in the Double ≤ Integer case.

One of the benefits of using Maude configurations for representing metamod-
els is that this subtyping algorithm can be easily implemented. In fact, previous
clauses can be naturally specified in Maude using its equational logic capabilities.
For instance, assuming M and M ′ are represented as configurations of objects, the
following operation _<=_ specifies the relation M ′ ≤ M .

op _<=_ : Configuration Configuration -> Bool .
eq CONF’ <= (< M : KM3Metamodel | contents : (P, PS) > CONF)
= existsPackageSubtypeOf(P, CONF, CONF’)
and-then CONF’ <= (< M : KM3Metamodel | contents : PS > CONF) .

eq CONF’ <= (< M : KM3Metamodel | contents : empty > CONF) = true .
eq CONF’ <= CONF = false [owise] .

As shown above, _<=_ traverses all the packages in the provided metamodel. The
auxiliary operation existsPackageSubtypeOf(P, M, M ′) on a package P of a
metamodel M checks whether there is a package P ′ in M ′ such that P ′ ≤ P :

op existsPackageSubtypeOf : Oid Configuration Configuration -> Bool .
ceq existsPackageSubtypeOf(P, < P : KM3Package | > CONF,

< P’ : KM3Package | > CONF’)
= isPackageSubtypeOf(P’, P, < P : KM3Package | > CONF,

< P’ : KM3Package | > CONF’) .
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In this way, successive Maude equations are used to specify the subtyping algorithm
until reaching the most primitive metamodel elements, i.e., the structural features
(attributes and references).

For space reasons we do not show here all the Maude equations of the subtyping
algorithm. However, to illustrate how we deal with primitive structural features,
the following operation existsRefSubtypeOf(SF, C, C ′, M, M ′) checks for a
given reference SF defined in class C of metamodel M whether there exists a ref-
erence SF ′ in class C ′ of metamodel M ′ such that SF ′ ≤ SF . The subtyping
relationship between references is checked using the clauses defined above:

op existsRefSubtypeOf : Oid Oid Oid Configuration Configuration -> Bool .
eq existsRefSubtypeOf(SF’, C’, C,

(< SF’ : KM3Reference | name : N, owner : C’, lower : L’,
upper : U’, isOrdered : IO’, isUnique : IU’,
isContainer : IC’, opposite : RO’ > CONF’),

(< SF : KM3Reference | name : N, owner : C, lower : L,
upper : U, isOrdered : IO, isUnique : IU,
isContainer : IC, opposite : RO’ > CONF))

= conformsMultiplicity(L’, L, U’, U)
/\ conformsOrder(IO’, IO)
/\ conformsUnique(IO’, IO)
/\ conformsContainer(IC’, IC)
/\ conformsOpposite(RO’, RO, CONF, CONF’) .

The operations conformsMultiplicity, conformsOrder, conformsUnique, and
conformsContainer check for multiplicity, order, uniqueness and aggregation con-
formance, respectively, and the conformsOpposite predicate checks whether the
opposite of SF is defined and if so, checks wether the opposite of SF’ conforms to it.
Note that the equality between the names of SF’ and SF are implicitly constrained
by using the same Maude variables N.

With these operations, checking that a metamodel Mr can be replaced by an-
other metamodel Mp (Mp ≤ Mr) is just a matter of reducing the term Mp <= Mr,
where both Mp and Mr are expressed as configurations of Maude objects. Given a
module with declarations

ops Mr Mp : -> Configuration .
eq Mr = < ’Mr : KM3Metamodel | contents : (’Pr1, ’Pr2, ’Prn ) >

< ’Pr1 : KM3Package | name : "Package1", metamodel : ’Mr,
contents : (’Cr1, ’Cr2, ’Cr3, ’Crn) > ... .

eq Mp = < ’Mp : KM3Metamodel | contents : (’Pp3) > ... .

we can execute the following reduction:

Maude> red Mp <= Mr .
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From these equations we could extend very easily the capabilities of our structural
type checking system. For instance, to determine whether two model types are
equivalent we just need to define a new operation _=_, which makes use of the
previous ones: M1 = M2 ⇔ M1 ≤ M2 ∧M2 ≤ M1, which is specified as follows:

op _=_ : Configuration Configuration -> Bool .
eq (M1 = M2) = (M1 <= M2) and (M2 <= M1) .

Type inference

There are some situations in which inferring the type of a model can be interesting.
Imagine, for instance, that we have the model shown in Section 4 (with one state
machine, two states (St1, St2), and one transition Tr), but we do not know its type.

In general, there is no single type for a model. One thing we can do is to create
an initial metamodel for it. By initial metamodel we consider the metamodel with
the minimum set of elements that is a valid metamodel for the model. Once we
have the initial metamodel for a model, we can traverse the metamodels in a given
repository, looking for metamodels which can safely replace that metamodel, using
the subtyping algorithm above. In that way, we can find some valid metamodels for
the model, and choose the one that best fits our needs.

To create such a simple metamodel we use Maude the operation inferModelType,
which transforms the configuration of objects representing the model into a config-
uration of objects that represents its initial metamodel (following the second way of
modeling metamodels presented in Section 4).

op inferModelType : Configuration -> Configuration .
eq inferModelType(CONF)
= combinePackages(combineMElts(inferMMElts(none, CONF, 0, 0))) .

This operation uses three auxiliary operations: inferMMElts, combineMElts and
combinePackages. Firstly, the operation inferMMElts creates for each object in the
model, one object representing its KM3 class, and for each attribute another object
representing its KM3 structural feature (operation inferStrFeat).

op inferStrFeat : AttributeSet Qid Configuration Nat Nat -> Configuration .
ceq inferStrFeat((AT, ATS), CLASSID, MODEL, N1, N2)
= < newId(N1, N2) : KM3Reference | name : getName(AT), owner : CLASSID, ... >
inferStrFeat(ATS, CLASSID, MODEL, N1, (N2 + 1))

if representsKM3Reference(AT) .
ceq inferStrFeat((AT, ATS), CLASSID, MODEL, N1, N2)
= < newId(N1, N2) : KM3Attribute | name : getName(AT),
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owner : CLASSID, type : km3Type(getType(AT)), ... >
inferStrFeat(ATS, CLASSID, MODEL, N1, (N2 + 1))

if representsKM3Attribute(AT) .
eq inferStrFeat(none, CLASSID, MODEL, N1, N2) = none .

op inferMMElts : Configuration Configuration Nat Nat -> Configuration .
eq inferMMElts(CONF1, < O : C | ATS > CONF2, N1, N2)
= < newId(N1) : KM3Class | name : string(C), isAbstract : false, ... >
inferStrFeat(ATS, qid(C), CONF1 < O : C | ATS > CONF2, N1, N2)
inferMMElts(CONF1 < O : C | ATS >, CONF2, (N1 + 1), N2) .

eq inferMMElts(CONF1, none) = none .

Auxiliary operations representsKM3Reference and representsKM3Attribute

check, respectively, whether a Maude attribute represents a KM3 attribute (if its
type is a KM3 primitive type Integer, Bool, etc.) or a KM3 reference (otherwise).
Natural numbers N1 and N2 are used to create different identifiers for all the newly
created objects, as is needed in Maude configurations.

The operation combineMElts removes duplicate entries and unifies any informa-
tion related to the same KM3 concept. Since the source model may comprise more
than one object of the same KM3 type, there could exist multiple Maude objects
representing the same KM3 class. This may happen for structured features too.
Thus, the operation combineMElts removes those spare objects, gathering as well
the different information taken from the multiple objects that represent the same
KM3 structural feature. Such an information, which may differ from one instance
to the other, includes the KM3 cardinality, the type and the order indication.

op combineMElts : Configuration -> Configuration .
eq combineMElts(< O1 : KM3Class | name : NAME >

< O2 : KM3Class | name : NAME > CONF )
= combineMElts(< O1 : KM3Class | name : NAME > CONF) .

eq combineMElts(< O1 : KM3StructuralFeature | name : NAME, owner : OW,
lower : LO1, upper : UP1, isOrdered : B1, type : TYPE1 >

< O2 : KM3StructuralFeature | name : NAME, owner : OW,
lower : LO2, upper : UP2, isOrdered : B2, type : TYPE2 >

CONF)
= combineMElts(< O1 : KM3StructuralFeature |

lower : minimun(LO1, LO2), upper : maximun(UP1, UP2),
isOrdered : (B1 or B2), type : max(TYPE1, TYPE2) > CONF) .

eq combineMElts(CONF) = CONF [owise] .

At this stage, what we have obtained a configuration of objects that represents
all the KM3 classes, attributes and references of the metamodel. Then, the last
step consists of bringing together the objects representing the main package, which
contains all the inferred objects, the KM3 package for the primitive data types, and
the metamodel itself.
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op combinePackages : Configuration -> Configuration .
eq combinePackages(CONF)
= < ’INITIALMETAMODEL : KM3Metamodel |

contents : (’MAINPACKAGE, ’PTPACKAGE ), ... > .
< ’MAINPACKAGE : KM3Package |

name : "MainPackage", metamodel : ’INITIALMETAMODEL,
contents : refs(CONF), ... >

CONF
< ’PTPACKAGE : KM3Package |

name : "PrimitiveTypes", metamodel : ’INITIALMETAMODEL,
contents : (’STRING, ’INTEGER, ’BOOLEAN, ’DOUBLE), ... >

< ’STRING : KM3DataType | name : "String", package : ’PTPACKAGE >
< ’INTEGER : ... >
< ’BOOLEAN : ... >
< ’DOUBLE : ... > .

Note that this allows a very flexible and powerful approach to typing models,
similar to “duck-typing” (if it walks like a duck, and quacks like a duck, then it
must be a duck).

Evaluating model metrics

The fact of being able to manipulate models and metamodels as configuration of
Maude objects also makes them amenable to formal reasoning, and to automate the
specification of their properties.

For example, an interesting application of the proposed Maude formalization
is the easy computation of metrics, both on the models and on the metamodels.
Thus, most of the quality metrics for models defined in [8] can be easily formalized
in Maude and therefore automatically computed. These metrics include, e.g., the
number of classes, associations and inheritance relationships, or the maximum DIT
(Depth of Inheritance Tree), the number of generalization hierarchies, or the average
number of attributes, references or children per class.

For instance, the number of classes of a KM3 model coincides with the num-
ber of Maude objects of class KM3Class in its representation as an instance of the
KM3 metamodel, which, given variables O, C, and CONF of sorts Oid, Cid, and
Configuration, respectively, can be specified as follows.

op NoOfClasses : Configuration -> Nat .
eq NoOfClasses(< O : KM3Class | > CONF) = 1 + NoOfClasses(CONF) .
eq NoOfClasses(CONF) = 0 [owise] .

These specifications can then be executed, and form part of the Maude model
tool-kit, which has been integrated in Eclipse as described in the next section.

202 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 9



6 RELATED WORK

Tool Support

One of the main advantages of using Maude is due to its execution environment, able
to provide efficient implementations of the specifications—comparable in resource
consumption to most commercial programming languages’ environments.

Our work so far has consisted in developing an Eclipse plug-in that allows to
perform the previously described operations on KM3 models and metamodels. We
use ATL (the ATLAS Transformation Language) to transform KM3 models to their
Maude representations, and then execute the operations in the Maude environment.
This tool has served as a proof of concept for our proposal, and the results are
so far very encouraging. We are currently working on the definition of the reverse
transformations, which will allow the KM3 user to invoke the model operations
and to see the results in a transparent way, i.e., being unaware of all the Maude
specifications and executions supporting the required operations.

6 RELATED WORK

There are several lines of research that are closely related to ours. First, we have
the works that try to provide formal support for KM3. So far it is quite limited,
there is only a very interesting proposal to formalize the semantics of KM3 using the
Abstract State Machines notation [12], but there is no connection yet to any formal
toolkit to reason about the formal specifications produced, nor all the potential
benefits of having a formal representation of the models and metamodels have been
fully exploited.

Secondly, there is quite a large number of papers about the importance of model
management, the operations required to deal with models and metamodels, and
about algorithms to implement such operations. For instance, there is the work by
X. Blanc on the Model Bus [6], or the work by Bernstein on Model Management [2],
and how model operations can help addressing classical meta-data management
problems such as schema integration, schema evolution, and round-trip engineering.
Many people have mentioned the importance of counting on model management
operations such as model subtyping, match, merge, diff, compose, or apply, and some
other people have developed algorithms for implementing some of these operations.
Most of these implementations have been independently developed, and with no
clear connection between them. It is true that some works have tried to deal with
these operations on a unified and general way (e.g., [1, 14]) but mostly at a very
high level, using category theory and institutions. What we have presented here is
an integrated environment to both formally specify these operations, and to provide
efficient implementations for them, which has been integrated into an Eclipse model
engineering environment.

Finally, the work by Boronat et al [7] is very close to ours. They also use
Maude to formalize models, although their representation is very different. They
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have implemented a collection of generic operators to manipulate EMF models,
providing some support for the QVT Relations language. Specifically, they use
the Maude system to define directed declarative transformations. They have also
integrated their toolset into the Eclipse environment.

7 CONCLUSIONS

According to the MDSD principles, models and metamodels become first-class cit-
izens in the software engineering process. Several notations have been proposed to
specify them, although the kind of formal and tool support they provide is quite
limited. In this paper we have shown how Maude provides an accurate way of spec-
ifying models and metamodels, and offers good tool support for reasoning about
them. In addition, Maude’s possibilities of executing the specifications allows the
specification and implementation of some key operations on models, such as model
subtyping, type inference, and metric evaluation.

There are several lines of work in which we are currently engaged, or that we
plan to address in the near future. Firstly, we are working on the specification on
more model operations, such as deep model copy [16], match, diff, merge, compose,
or apply [2]. Our plan is to make them all available as part of the Maude model
management tool-kit, in addition to the ones presented here.

Secondly, we are working on the specification on the reverse transformations from
Maude to KM3, so all Maude computations can be made transparent to the user.

We are also working on improving the integration with other tools, being able
to deal not only with KM3 models, but also with, e.g., MOF or Ecore metamodels.
In this regard, these metamodels incorporate new elements (operations and more
kinds of associations) that need to be taken into account in our algorithms.

Furthermore, some restrictions on models cannot be captured only by their meta-
models, and thus OCL expressions need to be added to them, constraining their
elements and their relationships. In this sense, we are working along the lines of
Edwards et al. [13] on how to incorporate such kinds of constraints into our repre-
sentation of models and metamodels.

Finally, DSLs are now defined in terms of their abstract and concrete syntax
only. This metamodeling approach enables the rapid and inexpensive development
of DSLs and their associated tools (e.g., editors). However, there is a growing
interest in the MDSD community to be able to specify the behavioral semantics
of DSLs too, something especially important for model operations like simulation
and verification. Proposals such as the semantic anchoring method developed at
Vanderbilt University [9] represent a (very important) first step in this direction.
We think that Maude could also be very expressive for representing the dynamic
behavior of models, and is something we plan to explore further.
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José Raúl Romero is currently an Assistant Professor at the De-
partament of Computer Science of the University of Córdoba. He
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José E. Rivera received the MSc degree in Computer Science from
the University of Málaga. He is currently a PhD Student at the
Departament of Computer Science of the University of Málaga.
His research interests include model-driven software development
and its application to the industrial environment. Contact him at
rivera@lcc.uma.es.

Francisco Durán is an Associate Professor at the Department
of Computer Science of the University of Málaga, Spain. His re-
search interests include the application of formal methods to soft-
ware engineering, reflection and metaprogramming, component-
based software development, open distributed programming, and
software composition. Contact him at duran@lcc.uma.es. See also
http://www.lcc.uma.es/˜duran.

Antonio Vallecillo is Associate Professor at the Department of
Computer Science of the University of Mlaga, Spain. His re-
search interests include model-driven software development, com-
ponentware, open distributed processing, and the industrial use
of formal methods. Contact him at av@lcc.uma.es. See also
http://www.lcc.uma.es/˜av.

VOL 6, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 207

mailto:jrromero@uco.es
http://www.jrromero.net
mailto:rivera@lcc.uma.es
mailto:duran@lcc.uma.es
http://www.lcc.uma.es/~{}duran
mailto:av@lcc.uma.es
http://www.lcc.uma.es/~{}av

