
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 8, September - October 2007

Cite this column as follows: Won Kim and Sang-Won Lee: “On Flash-Based DBMSs: Issues for
Architectural Re-Examination”, in Journal of Object Technology, vol. 6, no. 8, September-October
2007, pp. 39-49 http://www.jot.fm/issues/issue_2007_09/column4

On Flash-Based DBMSs: Issues for
Architectural Re-Examination

By Sang-Won Lee and Won Kim

Abstract
Flash memory is being rapidly deployed as data storage for mobile devices. Flash
memory offers many advantages over hard disk, and considering its rapid technical
improvement both in capacity and speed, it will have competitive advantage over mini-
drive under 100 Gbytes within a few years. As the applications in hand held devices
become large, complex, and more data-intensive, they require database technology.
However, flash memory has three distinct characteristics that make today’s disk-based
database technology unsuitable. In this article, we first review the characteristics of the
flash memory. Then we identify several key issues in the architecture of a flash-based
database system that require careful re-examinations.

1 INTRODUCTION

Flash memory offers many advantages over its competitor, hard disk, including low
power consumption, non-volatile storage, high performance, physical stability, small size,
light weight, and portability. As a result, it is being rapidly deployed as data storage for
mobile devices such as PDAs, MP3 players, mobile phones and digital cameras. In
particular, for its popular MP3 player iPod and its cell phone iPhone, Apple is known to
have made long-term supply agreements with major flash memory vendors including
Samsung.

Flash memory is a type of EEPROM (electronically erasable programmable read
only memory), originally intended to replace the hard disk when developed by Toshiba
[Toshiba 2004]. It has no moving parts, unlike the hard disk. The term “flash” is said to
have originated from the observation that it can write a sector of data (512bytes, also
called as page) or erase blocks of multiple pages (usually 16 or 32 sectors)
simultaneously in one action, in contrast to the byte-by-byte EEPROM.

Depending on the logic gate type used, the flash memory can be divided into two
types: NOR and NAND. NOR flash, developed by Intel, is a random-access device, like
RAM, that is directly addressable by the processor, and so it is good for executing
program code. NAND flash is not directly addressable and is controlled using an indirect
disk I/O-like interface through an 8-bit bus to an internal command and address register.

ON FLASH-BASED DBMSs: ISSUES FOR ARCHITECTURAL RE-EXAMINATION

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

NAND flash requires fewer gates than NOR to store the same number of bits, and so it is
smaller and denser and thus is appropriate for large data storage.

For the past decade, the NOR flash has dominated the flash memory market. Due to
the rapidly escalating demand for large data storage media in hand-held device, however,
the revenue from the NAND flash memory has recently surpassed that of the NOR flash
Intel, the leader in NOR flash memory, recently launched a joint NAND flash venture
company, IM Flash Technologies, with Micron Technology. In particular, vendors of
mobile phones, where various complex applications with relatively small data run, will
switch from NOR to NAND flash. In fact, Samsung Electronics recently launched a
mobile phone with its 4Gbyte NAND flash, and also announced 128Gbyte solid-state
disk (SSD), a NAND flash-based replacement for hard-disk drives, targeting the next
generation laptop’s storage market. The company expects that the market share of flash-
based laptops will reach 20 ~ 30% in 2010 [Cebit 2006]. Recently, hybrid types of flash
memory which have all the advantages of both NOR and NAND flash memory have been
announced, including Samsung’s OneNand and M-Systems’ mDOC [Santarini 2005]. In
this article, we will focus on NAND flash memory technology, because it is more
adequate for large volume data management than NOR.

The strongest rival of the NAND flash memory are small hard disks. However,
according to [Paulson 2005], the flash memory will win over the mini-drive because of its
higher storage density. In terms of price per Mbyte, the NAND flash memory is currently
more expensive than the mini-drive. However, the price per Mbyte of flash memory
continues to drop nearly 50% every year. In other words, the density doubles every year,
and this trends is expected to continue for the coming five years [Lawton 2006]. In
contrast, the recent annual average increase in area density of the mini-drive is between
10 to 30 percent because the polarity of data written in hard-disks may change
unexpectedly and thus corrupt the data if the area is too small. In addition, the mini disk
has a limit in size shrinkage because of the motors and other moving parts. IDC reports
that 0.85 inches in diameter is on the absolute edge – a tiny disk drive won’t be able to
compete with flash storage [Paulson 2005]. Currently, the winning point of the NAND
flash memory over the mini-drive in terms of both capacity and price is around a few
Gbytes. It appears reasonable to anticipate that flash memory will beat the mini-drive
even in several tens of Giga bytes storage markets within five years.

Besides this pure capacity/price economics, certain types of military applications
embedded in military equipment such as tanks and air planes will definitely prefer flash
memory as its storage media because of environmental requirements, e.g. resistance to
shock and heat. Another advantage of the flash memory comes from the fact that it is an
electronic device, unlike the hard disk which requires disk head and arm movement. This
advantage frees the flash memory from the time-consuming seek and rotational delay.
Even in high-end applications, flash memory can be arrayed together to offer capacity
comparable to that of hard drives at higher speeds.

As the applications for mobile devices that use the flash memory as storage become
more complex and data-intensive, there will need an embedded SQL-based database
management system (DBMS) rather than a file system to both support application
development and provide a runtime engine [Kim et al 2006]. Today every major

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 41

commercial RDBMS vendor offers a mobile/embedded/light-weight DBMS for most
handheld or embedded OS platforms including Symbian OS, Palm OS, Window/CE, and
embedded Linux. These products include Oracle Lite [Oracle 2006], Sybase SQL
Anywhere [Sybase 2006], MS SQL Server for Window/CE [Microsoft 2006], and IBM
DB2 Everyplace [IBM 2006]. They have been developed for reduced code footprint by
stripping down database features. This is true also for open source DBMSs such as
MySQL, BerkelyDB, and PostgresDB. However, as far as we know, no product supports
flash memory as secondary storage.

There are promising applications for flash-based DBMSs, besides the handheld
devices. As the MyLifeBits project in Microsoft [Gemmel et al 2006] has shown,
personal information management systems need to manage complex types of data and
queries [CACM 2006], and the flash memory can be used for personal information
management systems. The flash memory is a candidate for supporting the data
management needs of the next generation smart-card systems. Further, wireless sensor
devices almost use on-chip/off-chip NAND flash as its storage media and they will also
require database functionality because of the data size and need for complex searches
[Yazti et al 2005]. It is also conceivable for the flash memory to be used to support
enterprise applications [Gray 2007, Lee 2007] after re-engineering system software to be
flash-aware.

The flash memory has three characteristics that profoundly affect its performance in
managing data, that is, read and update of a database. First, the flash memory, unlike hard
disk, has asymmetric read and write speed. The read time for a sector from flash memory
is typically 30 us, while the write time is 300 ms. Second, with the flash memory, unlike
the hard disk, in order to overwrite existing data, the entire block that contains the data
must be erased first and then the new data can be written to the block. The erase
operation is much slower than the write operation; the erase time for a block (= 32
sectors) is around 2 ms. Third, because of its electronic property, the flash memory,
unlike the hard disk, has no moving parts, and thus it has no seek and rotational latency.
These characteristics make it infeasible for a DBMS developed for hard disks as
secondary storage to readily be used for the flash memory, and therefore force a re-
examination of many key parts of the DBMS architecture.

In Section 2, we review NAND flash technology and a technique for making the
flash appear to applications as a disk drive. In Section 3, we examine several issues in
implementing various aspects of a DBMS engine that needs to use the NAND flash as
secondary storage. Section 4 concludes the article.

2 OVERVIEW OF THE NAND FLASH MEMORY TECHNOLOGY

Flash memory stores data in an array of floating gate transistors called cells. Originally,
NAND flash memory was intended to replace the hard disk, and thus its smallest unit of
data storage is a sector of 512 bytes (also called a page) as is the case with the hard disk.
Each sector has additional spare area of 16 bytes for metadata such as error correction
code. Thus, the physical size of a sector is 528 bytes. One block consists of 32 sectors,

ON FLASH-BASED DBMSs: ISSUES FOR ARCHITECTURAL RE-EXAMINATION

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

and thus its size is usually 16 Kbytes. We call such flash memory small block NAND
flash. Flash memory vendors have started producing large block NAND flash with blocks
of 64 sectors and sectors of 2,212bytes (thus, the size of a block is 128Kbytes) in order to
allow faster write and erase operations for high-end applications.

There are only three basic operations in a NAND flash: read a page, write a page,
and erase a block. A read or write command specifies (chip#, block#, sector#), where
chip# is the flash chip number, block# the block number in the device, and sector# the
sector number in the block.

Table 1 compares the characteristics of the NAND flash and the mini hard disk.

Category Mini Hard-Disk NAND Flash
Read/Write Unit Sector (512bytes) Sector (512bytes)

Mechanical Moving Parts Spinning disk head
(seek + latency)

No
(all electronics)

Energy Consumption High Low
Shock Resistance Bad Good
Density Has reached limit Room for improvement
Endurance 1,000,000 overwrites 10-100,000 erases/cell

Random Read/Write High
(in mili-seconds)

Low
(in tens of micro-seconds)

Sequential Read/Write High bandwidth High bandwidth

Size Reduction Has reached limit
(0.85 inch) Room for improvement

Noise & Vibration High No
Table 1. Comparison of the mini hard-disk and the NAND flash

In order to make the flash memory appear to applications as a disk drive, the flash
translation layer (FTL) has been developed [Kim et al 2002]. Figure 1 shows the general
organization of a NAND flash memory system and the position of the FTL within it. A
NAND flash memory system consists of one or more flash memory chips, a controller
that executes the FTL code in ROM, an SRAM (static RAM) that maintains the address
mapping information, and a PCMCIA (Personal Computer Memory Card International
Association) host interface. The host system views the flash memory as a hard disk-like
device, and thus issues read or write commands along with “logical” sector addresses and
data. The FTL translates the commands into low-level operations, namely read, write and
erase, using “physical” sector addresses. To do the address mapping, the FTL looks up
the address mapping information in the SRAM.

Because the erase operation is the performance bottleneck for the flash memory, it is
very important to reduce the number of erase operations resulting from write operations.
The FTL, in general, reserves a small number of log blocks in the flash memory as
temporary storage for overwrites [Kim et al 2002], and redirects each overwrite request
from the host to a reserved log block, softening the performance impact of the “erase-
before-write” paradigm of the flash memory. In fact, various FTL algorithms have been
proposed so far [Kim et al 2002], and the performance of each FTL varies considerably,
depending on the characteristics of the applications. After finishing an overwrite
operation, the FTL changes the address mapping information in the SRAM. The outdated
block can be erased later.

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 43

File System

Flash Translation Layer

Controller

ROM

SRAM

M apping Table

Com pact Flash System

Logical address

Physical
address

PCM CIA Interface

NAND Flash M em ory

Figure 1. The Architecture of a NAND Flash Memory System

Besides the address mapping, the FTL carries out several important functions, such as
guaranteeing data consistency and flash wear-leveling (or block-recycling). The FTL
maintains a consistent state for data and metadata, even when the flash memory
encounters an unexpected power outage. Wear-leveling is important because there is a
physical upper limit on the maximum number of erases allowed for each block (usually,
100,000 times). If a block is erased above the upper limit, the block may not function
correctly. For wear-leveling, the FTL tries to make the physical blocks erased as evenly
as possible without incurring performance degradation in the process. Even though a
block that exceeds the upper limit may still work, the FTL marks it as invalid for the
safety of the flash memory.

3 ARCHITECTURAL CONSIDERATIONS FOR A FLASH-BASED
DBMS

In this section, we examine the major DBMS implementation techniques which are
heavily impacted by the three characteristics of the flash memory. Table 2 summarizes
the impact of each of the three characteristics on seven different aspects of the
architecture of a DBMS.

ON FLASH-BASED DBMSs: ISSUES FOR ARCHITECTURAL RE-EXAMINATION

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

DBMS
modules

No
overwrite

No
mechanics

Asymmetric
Read/Write

Speed
Buffering O O
Unit of IO O O

Data
Clustering

O O

Indexing O O
Page Layout O

Query
Processing &
Optimization

O O

Transaction
Management

O

Table 2. Impact of the flash memory on DBMS architecture

One technical issue with the flash file system is how to deal efficiently with small random
writes, that is writing a small amount of data to blocks of the flash memory. The trouble
with the small random writes is that they require the very expensive erase operations. One
source of the small random writes is updates to metadata [Kim et al 2002]. Most (disk-
based) DBMSs today support record-oriented page layout, where the attributes of a
record are placed contiguously. This layout works well for the OLTP (online transaction
processing) applications. To compound the problem for a flash-based DBMS, a data
block (also an index block) usually consists of a header structure and the record area.
Thus, any record update, including insert, delete, and updates, entails changes in the
header structure, which means erase operations for the head structure in a flash-based
DBMS. One possible approach to solve this problem is to adopt an approach that had
been used in the very early days of RDBMSs but which has since been discredited. In the
storage manager of PostgresDB [Stonebraker 1987], records are not overwritten, and
instead and every update is turned into difference-record insertion. Multiple versions of a
logical record exist and they are linked together.

The issue of an optimal block size for the unit of I/O needs a re-examination. In an
OS or a DBMS, the unit of IO is a block, and, with increases in main memory size, CPU
power, and IO bandwidth, the size of the IO unit has continuously increased. For
example, the default block size is 16Kbytes and in some read-intensive applications such
as data warehouses, they recommend a block size of up to 64Kbytes. In flash-based
systems, a large block size as the unit of I/O is not justified. First, considering the fast
read time, prefetching of data, which is one of the justifications for a larger block size, is
not as important. Instead, a large block size causes the buffer space to be wasted. To
make matters worse, a small update to a large block will result in overwrites, which in
turn will lead to the erase operations.

Buffer replacement algorithms used in an OS or a DBMS in general assume that the
speed of the read and write operations are about the same, which is true in the case of
hard disks. In flash-based systems, however, the traditional metrics such as ‘buffer hit
ratio’ are not appropriate as performance indicator because of the speed asymmetry

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 45

between the read and update operation. Buffer replacement algorithms need to be re-
examined for flash-based systems. One naïve guide for this scheme may be stated as
follows: “Try to reduce the number of writes/erases at the expense of the read
operations.” A new performance metric is also needed, similar to the ‘buffer hit ratio’.

Current DBMS use data clustering techniques to store related data close together on
secondary storage. This is to minimize disk head movement, and also to prefetch related
data together. In this respect, the traditional clustering techniques are read-oriented
[Guinepain and Gruenwald 2005]. However, the justification for prefetching data is
significantly reduced in flash-based systems because of the fast read time. Instead,
considering the relatively slow write/erase operations in flash-based systems, it is more
important to write-oriented clustering techniques, that is, to locate the data objects to be
written to the same physical block.

In disk-based DBMSs, indexes are used to support selective access to records based
on the values of the columns indexed. The indexes have to be updated when the values of
the indexed columns are updated, new records are inserted, existing records are deleted,
and index pages are split or merged. Again, small random writes to the indexes will lead
to the erase operations in flash-based systems. Some recent work, such as the write-
optimized B+ tree [Graefe 2006], for disk-based DBMSs, log structured merge(LSM)
tree [O’Neil et al 1996], and NAND flash-based hash indexing [Yazti et al 2005], may be
a reasonable starting point for work on indexing techniques for flash-based DBMSs.

Query processing and optimization modules of the DBMS architecture are affected
by all three characteristics of the flash memory. In disk-based DBMSs, the hash join and
sort merge join methods outperform the nested loop join method. This is attributable to
the fact that the read and write speeds are the same, and that there is sufficient RAM to
run the hash or sort merge join algorithm. However, for flash-based systems, sort merge
and hash join require write operations to secondary storage when the data could not fit in
the RAM, leading to a performance problem. In contrast, nested loop join becomes more
attractive, since it works in read-only mode; it is even more attractive if an index exists
on the inner table. In addition, nested loop join does not require extra memory for the
joins. For this reason, we need to revisit the cost model of the join algorithms for flash-
based systems.

For a given query, the query optimizer in a DBMS enumerates various execution
plans, estimates the cost of each execution plan, and chooses the least costly plan for the
execution of the query [Selinger 1978]. The cost estimation part of the query optimization
techniques needs a careful re-examination, in light of the fact that the cost of a write in
the flash memory is not the same as the cost of a read, and may also involve the cost of an
erase. At this point, we should mention the power issues in the flash memory. We may
simply assume a linear relationship between the time that an operation takes and the
amount of power it consumes. The power consumption for each operation in the flash
memory is currently approximated as follows: 24uJ (read), 763uJ (write), 425uJ (erase)
[Zheng et al 2003]. Another cost modeling issue is the cost of index scan. In the flash
memory, an index scan is preferred to a full table scan because of uniform random access
and fast read time. That is, the cost of an index scan in the flash memory is much less

ON FLASH-BASED DBMSs: ISSUES FOR ARCHITECTURAL RE-EXAMINATION

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

than that for the hard disk, and we can estimate its cost more correctly because of uniform
random access speed.

Transaction processing has two key technical components: concurrency control and
recovery. For concurrency control in flash-based systems, the snapshot isolation approach
may be appropriate, rather than locking [Berenson et al 1995]. In this approach, several
versions of the same data are maintained in order to answer queries which require
different snapshot values at different time points. This concurrency control model can be
efficiently supported in flash memory if we exploit the not-in-place update characteristics
of the flash memory. Each version may be written to a different physical sector in order
to avoid the erase operation. The fact that there might exist several versions of the same
data can also be exploited to replace the traditional log-based recovery mechanism [Lee
2007]. That is, each version may be regarded as a form of a log. However, we can not
keep all historical copies in the flash memory, and we need to guarantee the consistency
of data in combination with the check point technique.

4 CONCLUDING REMARKS

In this article, we gave a brief review of the flash memory technology, which is a strong
competitor against the hard disk, at least in the storage market for handheld devices. In
the review, we emphasized three characteristics of the NAND flash memory that impact
the architecture of today’s DBMS that have been designed with the view to using hard
disks as storage. Then we examined several DBMS architecture issues that require careful
re-examinations.

In concluding, we would like to remark that in this article we assumed that the flash
memory is just storage. However, considering the rapid growth of CPU power and
memory embedded in the flash memory controller, we can imagine that the flash memory
controller will eventually have a CPU and memory which are powerful enough to run a
full-blown simple DBMS. That is, the flash memory controller itself will become a
computing platform. This is similar to the database machine vision of Jim Gray [Gray
2005], which says it is quite feasible to have intelligent disks that offer either database
access (SQL or some other non-procedural language) because each disk controller now
has tens of megabytes of storage and a very capable processor which can run a complete
DBMS engine. In fact, a few SQL-on-Chip approaches such as [Calpont 2006, Anciaux
et al 2003] have recently been proposed.

ACKNOWLEDGMENTS

This research was supported in part by MIC, Korea under ITRC IITA-2006-(C1090-
0603-0046), and in part by MIC & IITA through IT Leading R&D Support Project.

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 47

REFERENCES

[Anciaux et al 2003] Nicolas Anciaux, Luc Bouganim, Philippe Pucheral, Database
Components on Chip, ERCIM News No. 54 July 2003.

[Berenson et al 1995] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth
O’Neil, Patrick O'Neil, A Critique of ANSO SQL Isolation Level,
Proceedings of the ACM SIGMOD, 1995.

[CACM 2006] Jaime Teevan, William Jones, Benjamin B. Bederson(Guest Editors),
Personal Information Management, Communications of the ACM, Vol. 49,
No. 1, January 2006.

[Calpont 2006] Calpont Corp., Introduction to the Calpont Database Appliance, Calpont
White Paper, http://www.calpont.com, 2006.

[Cebit 2006] http://www.webwereld.nl/articles/40332/samsung-offering-flash-based-
disk-to-customers.html, Web Wereld, 2006

[Gemmel et al 2006] Jim Gemmell, Gordon Bell, Roger Lueder, MyLifeBits: A Personal
Database for Everything, Communications of the ACM, Vol. 49, No. 1,
January 2006.

[Graefe 2006] Goetz Graefe, B-tree indexes for high update rates, ACM SIGMOD
Record, Vol. 35, No. 1, March 2006.

[Gray 2005] Jim Gray, What's Next For Database Systems?,
http://research.microsoft.com/~gray

[Gray 2007] Jim Gray et al., Flash Disk Opportunity for Server-Applications,
http://research.microsoft.com/~gray

[Guinepain and Gruenwald 2005] Sylvain Guinepain, Le Gruenwald, Research Issues in
Automatic Database Clustering, ACM SIGMOD Record, Vol. 34, No. 1,
March 2005.

[IBM 2006] IBM Corp., DB2 Everyplace, http://www-306.ibm.com/software/data/db2/
everyplace/, 2006.

[Kim et al 2002] Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min, Yookun Cho,
A Space-Efficient Flash Translation Layer for CompactFlash Systems, IEEE
Transactions on Consumer Electronics, Vol. 48, No. 2, May 2002.

[Kim et al 2006] Gye-Jeong Kim et al., LGeDBMS: a Small DBMS for Embedded
System with Flash Memory, Proceedings of VLDB 2006.

[Lawton, 2006] George Lawton, Improved Flash Memory Grows in Popularity, IEEE
Computer, January 2006.

[Lee 2007] Sang-Won Lee, Bongki Moon, Design of Flash based DBMS: An In-page
Logging Approach, Procedings of the ACM SIGMOD, Beijing, China, 2007

[Microsoft 2006] Microsoft Corp., MS SQL Server 2005 Mobile Edition,
http://www.microsoft.com/sql/editions/sqlmobile/default.mspx, 2006.

ON FLASH-BASED DBMSs: ISSUES FOR ARCHITECTURAL RE-EXAMINATION

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 8

[O’Neil et al 1996] Patrck O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth (Betty)
O'Neil, The Log-Structured Merge-Tree, Acta Informatica Vol. 33, No. 4,
June 1996.

[Oracle 2006] Oracle Corp., Oracle(r) Database Lite to Support Symbian OS,
http://www.oracle.com/database/Lite_Edition.html

[Paulson, 2005] Linda Dailey Paulson, Will Hard Drives Finally Stop Shrinking?, IEEE
Computer, May 2005.

[Santarini 2005] Michael Santarini, NAND versus NOR, EDN, October 2005.

[Selinger 1978] Patricia Selinger et al., Access Path Selection in a Relational Database
Management System, Proceedings of SIGMOD, 1978.

[Stonebraker 1987] Michael Stonebraker, The Design of the POSTGRES Storage
System, Proceedings of VLDB, 1987.

[Sybase 2006] Sybase Inc., Sybase SQL Anywhere, http://www.sybase.com/products/
mobilesolutions/sqlanywhere, 2006.

[Toshiba 2004] Toshiba America Electronic Components, Inc., NAND Flash
Applications Design Guide, 2004.

[Yazti et al 2005] Demetrios Zeinalipour-Yazti, Song Lin, Vana Kalogeraki, Dimitrios
Gunopulos, Walis A. Najjar, MicroHash: An Efficient Index Structure for
Flash-Based Sensor Devices, 4th USENIX Conference on File and Storage
Technologies (FAST 2005), December 2005.

[Zheng et al 2003] Fengzhou Zheng, Nitin Garg, Sumeet Sobti, Chi Zhang, Russell E.
Joseph, Arvind Krishnamurthy, Randolph Y. Wang, Considering the Energy
Consumption of Mobile Storage Alternatives, Proceedings of the 11th
International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, Orlando, Florida. Oct 2003.

VOL. 6, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 49

About the authors
Won Kim, Professor and Univeristy Fellow with the School of
Information and Communication Engineering at Sungkyunkwan
University, Suwon, S. Korea. He is Editor-in-Chief of ACM
Transactions on Internet Technology (www.acm.org/toit). He is Global
General Chair of the Human.Society@Internet International Conference.
He is the recipient of the ACM 2001 Distinguished Services Award, and

is an ACM Fellow. He can be reached at wonkim@skku.edu

Sang-Won Lee is an Assistant Professor with the School of Information
and Communication Engineering at Sungkyunkwan University, Suwon,
S. Korea. Before that, he was a research professor at Ewha Womans
University and a technical staff at Oracle, Korea. He received a Ph.D
degree from the Computer Science Department of Seoul National
University in 1999. His research interest is in flash-based database

technology. He can be reached at swlee@skku.edu

