"L'JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering. ©JOT, 2004

Vol. 6, No. 7, Special Issue: Aspect-Oriented Modeling, August 2007

On the Footprints of Join Points:
The Blueprint Approach

Walter Cazzola

DICo - Department of Informatics and Communication,
Universita degli Studi di Milano

cazzola@dico.unimi.it

Sonia Pini

DISI - Department of Informatics and Computer Science,
Universita degli Studi di Genova

pini@disi.unige.it

Aspect-oriented techniques are widely used to better modularize object-oriented pro-
grams by introducing crosscutting concerns in a safe and non-invasive way, i.e., aspect-
oriented mechanisms better address the modularization of functionality that orthogo-
nally crosscuts the implementation of the application.

Unfortunately, as noted by several researchers, most of the current aspect-oriented
approaches are too coupled with the application code, and this fact hinders the concerns
separability and consequently their re-usability since each aspect is strictly tailored on
the base application. Moreover, the join points (i.e., locations affected by a crosscutting
concerns) actually are defined at the operation level. It implies that the possible set
of join points includes every operation (e.g., method invocations) that the system
performs. Whereas, in many contexts we wish to define aspects that are expected to
work at the statement level, i.e., by considering as a join point every point between
two generic statements (i.e., lines of code).

In this paper, we present our approach, called Blueprint, to overcome the above-
mentioned limitations of the current aspect-oriented approaches. The Blueprint
consists of a new aspect-oriented programming language based on modeling the
join point selection mechanism at a high-level of abstraction to decouple aspects
from the application code. To this regard, we adopt a high-level pattern-based join
point model, where join points are described by join point blueprints, i.e., behavioral
patterns describing where the join points should be found.

Keywords: Aspect-Oriented Programming, Join Point Selection Mechanisms, Join
Point Models.

1 INTRODUCTION

Aspect-oriented programming (AOP) is a powerful technique to better modularize
object-oriented programs by introducing crosscutting concerns in a safe and non-
invasive way. Each AOP approach is characterized by a join point model (JPM)

Cite this article as follows: Walter Cazzola and Sonia Pini: On the Footprints of Join Points:
The Blueprint Approach, in Journal of Object Technology, vol. 6, no. 7, Special Issue: Aspect-
Oriented Modeling, August 2007, pages 167-192, http://www.jot.fm/issues/issues 2007 -
8/article7

mailto:cazzola@dico.unimi.it
mailto:pini@disi.unige.it
http://www.jot.fm/issues/issue_2007_8/article7
http://www.jot.fm/issues/issue_2007_8/article7

C"#_/ ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

consisting of the join points, a mechanism for selecting the join points (pointcuts)
and a mechanism for raising effects at the join points (advice) [26]. Crosscutting
concerns might be poorly modularized as aspects without an appropriate join point
model that covers all the interested elements. A pointcut definition language allows
the programmer to select all the desired join points.

In most of the AOP approaches, the pointcut definition language allows the
programmer to select the join points on the basis of the program’s lexical struc-
ture, such as explicit program element names. The dependency on the program
syntax renders the pointcut definitions fragile [15] and strictly couples an aspect
to a specific program and language, hindering its reusability and evolvability [11].
The required enhancement should consist of developing a pointcut definition lan-
guage that supports join point selection on a more semantic way [1]. To provide
a more expressive and semantic-oriented selection mechanism requires a language
that captures the base-level program behavior and properties abstracting from the
syntactic details. Several attempts (e.g., [24,18,17,11,23,14]) in this direction have
been investigated but none of these completely solve the problem. They focus on
specific behavioral aspects such as execution trace [4] and dataflow [10] neglecting
some others. Moreover, they still rely on name conventions and on the knowledge
of the implementation code. We think that the problem could be faced and solved
by selecting the join points on an abstract representation of the program, such as
its design information.

In this paper, we present a novel aspect-oriented framework, called the Blueprint,
and in particular its join point selection mechanism that allows the selection of the
join points abstracting from implementation details, name conventions and to some
extent from the base-program structure. In particular the aspect programmer can
select the join points of interest by describing their supposed location in the ap-
plication through UML-like! descriptions (basically, activity diagrams) representing
computational patterns on the application behavior; these descriptions are called
blueprints. The blueprints are just patterns on the application behavior, i.e., they
are not derived from the system design information but express properties on them.
In other words, we adopt a sort of enriched UML diagram to describe the application
control flows or computational properties and to identify the join points inside these
contexts. Pointcuts consist of an enumeration of join points from a set of blueprints.
Thus, they are not tailored on the application syntax and structure but only on its
behavior.

The rest of the paper is organized as follows: in section 2 we investigate the
limitations of some of the other join point models, in section 3 we present the
Blueprint framework and how it works whereas in section 4 we show the inner
process of selecting the join points and the aspect weaving at the join points. In
section 5 we show the framework at work; section 6 considers a few of related works.

Please note, the Blueprint approach adopts a UML-like description since we use a subset of the
UML activity diagrams with some differences in their meaning and in general they have a different
role, all these differences should be clear going on in the reading.

168 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

2 LIMITATIONS OF THE JOIN POINT MODELS

Finally, in section 7 we draw out our conclusions and discuss possible future work.

2 LIMITATIONS OF THE JOIN POINT MODELS

The join point model, in particular its pointcut definition language, has a critical
role in the applicability of the aspect-oriented methodology. The pointcut definition
language allows to determine where a concern crosscuts the code.

Pointcut definition languages have evolved to improve their expressivity, their
independence of the base code and the general flexibility of the approach. The first
generation of pointcut definition languages (please see [13|) were strictly coupled
to the application source code because they allow the selection of join points only
on the signature of the program elements (by enumeration). To reduce the cou-
pling problem, the use of wildcards has been introduced (as in, Aspect] [12], and
HyperJ [19]). This technique has slightly reduced the coupling problem but has in-
troduced the necessity of naming conventions. Unfortunately, naming conventions
raise a new problem since they are not checkable by the compilers and their adop-
tion cannot be guaranteed. Recently, some aspect-oriented languages (e.g., AspectJ
5, AspectWerkz |27]) adopted meta-data to identify the join points. This approach
decouples the aspects from the base program syntax and structure; the meta-data
is used as a placeholder to mark a join point to be easily selected among the others.
This technique does not solve the problem; it just shifts the coupling from the pro-
gram syntax to the meta-data syntax. Moreover, this approach breaks in an explicit
way the obliviousness [6] property?. To get obliviousness the aspect programmer
should be unaware of the base program structure and syntax to apply the aspects,
and vice versa.

The coupling problem brings forth another problem, called the fragile pointcut
problem [15]. When the pointcut definition strictly depends on the base program,
any change to the program will affect the pointcut capacity of grabbing the expected
set of join points. The fragile pointcut problem is a serious inhibitor to evolution
of aspect-oriented programs. Pointcuts are deemed fragile when seemingly innocent
changes to the base program, such as renaming or relocating a method, break a
pointcut such that it no longer captures the join points it is intended to capture |3,
11]. Pointcuts are similarly considered fragile when a just introduced join point
should be captured by an existing pointcut but it fails to do so. This implies that
all pointcuts of each aspect need to be checked and possibly revised whenever the
base program evolves, since they could break because they capture a set of join
points based on some structural and syntactical properties that any change to the
base program can alter. This problem occurs independent of whether wild-card
expressions are used.

?Please note that the value and acceptance of “obliviousness” as a key AOP property is still
debated (e.g., [21]) but we consider it a desirable feature to some extent and therefore to be
considered.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 169

C"#_/ ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

In this situation, the aspect programmer must have a deep knowledge of the base
program to be sure that his/her pointcuts work as expected. Moreover, most of the
join point selection mechanisms (e.g., in Aspect]) are suitable to select join points
that are at the object interface level but they badly fit the need of capturing join
points expressed by computational patterns, such as inside loops or after a given
sequence of statements.

Pointcut definitions heavily rely on how the software is structured at a given
moment in time. In fact, the aspect developers assume the structure of the base
program when they define the pointcuts; the name conventions are an example of
this assumption. They implicitly impose some design rules that the base program
developers have to respect when they evolve their programs to be compliant with the
existing aspects and to avoid the selection of more or less join points than expected.

We believe that aspect programmers need to be, as much as possible, unaware
of base code details and evolution — we call this extension to the obliviousness def-
inition application syntactic obliviousness. To achieve application syntactic oblivi-
ousness the aspect programmer should be unaware of the base program structure
and syntax to apply the aspects and vice versa. From our point of view, the base
program is seen as a gray-box, where it is possible to see the high-level information
about it, such as its behavior, its design information, and so on, but it should be
impossible to see the base code details. In this way, if an aspect needs to be applied
to a program, the lack of knowledge of its internals would prevent the use of syn-
tactic pointcuts. Of course, total obliviousness will drive to more reusable code but
will also increase the number of join points selected but not desired [21]. To address
this objective, we need a total separation of pointcut definition from aspects tied to
lexical properties of the source code.

From the reported considerations, it is fairly evident that the main problems of
current join point models are due to the pointcut expression languages, that often
do not offer the right degree of abstraction with respect to the base program. Hence,
we think that the next step of aspect-oriented methodology consists of extending the
pointcut definition language to support join point selection on the basis of a semantic
query. To solve all the previously cited problems (that is, coupling problem, fragile
pointcut problem and obliviousness reducing), we propose a novel approach to the
join point selection, called Blueprint, based on describing a portion of the base
program behavior, through a model, where to identify the join points of interest.

As stated in [1], working at the model level offers promising possibilities to start
abstracting away from the concrete syntax. This means that the model information
(such as, UML diagrams) describing a program is independent of its implementa-
tion, both of the programming languages characteristics and of the names used at
the code level. The model-based pointcut definitions are both less fragile and less
coupled, because they are not defined in terms of syntactic description of base pro-
gram characteristics. Moreover, model-based approaches promote the application
of the syntactic obliviousness property because they do not need to know the code
details.

170 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

3 THE BLUEPRINT FRAMEWORK

3 THE BLUEPRINT FRAMEWORK

In the Blueprint approach, we select the join points by providing a template (a
blueprint) of the base program behavior/computational models which describes
where the join points could be found. This approach does not only allow precise
location of where we are looking for but also of describing some context information,
such as, what happens before or after the join point: a certain point in the compu-
tation is a join point if and only if all the specified context conditions are verified.
The Blueprint framework is based on our previous work [2] and it is completely
detailed in [20]. This section gives an overview of the Blueprint aspect-oriented
language and describes how to use it.

The Blueprint Aspect-Oriented Approach.

The Blueprint aspect-oriented language permits the selection of the join points of
interest by describing their supposed location in the application through a UML
activity diagram representing patterns on the application behavior, called join point
blueprint. These join point blueprints are not subsets of the application design
information. They do not describe the application behavior, rather they describe
the desired properties and behaviors we are looking in the application.

The Blueprint framework foresees a matching and unification phase that permits
to perform queries such as “print the value of a variable used in a loop test condition
and modified in the loop body”. This kind of query is expressed describing the
context we would like to get and the position where we would like to raise effects.
To carry out this kind of query we have to compare our description with the source
code of the base-program during the weaving process. The Blueprint language can
be used on the bytecode as well since it can be univocally decompiled (modulo
semantic equivalence) by appropriate tools, e.g., by Jode?.

In our approach, we do not need to use position qualifiers such as before and
after advice to indicate where to insert the concern inside the base code. Because
we describe the context, we can either locate the join points exactly where we want
to insert the new code or, to highlight the portion of behavior we want to replace.

Blueprint Join Point Model

The Blueprint framework recalls the Aspect terminology but some terms are used
with a slightly different meaning. Introductions and advice keep their usual mean-
ing whereas join points and pointcuts have slight deviations. The Blueprint join
points are hooks where the code may be added rather than well-defined points in the
execution of a program where effects can be raised. In Aspect], the considered join

3Jode is available at http://jode.sourceforge.net.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 171

http://jode.sourceforge.net

C"#_/ ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

Blueprint Description Language: Terminology and Elements Description
join points

hooks where the crosscutting concerns will tangle the application.

join point blueprints (in short blueprints)

patterns describing a set of join points in terms of their application context.
They provide an incomplete and parametric representation of an application
behavior portion.

blueprint space

it is the set of all join point blueprints defined on a given application.

pointcuts

queries on the blueprint space selecting a set of join points.

advice

crosscutting concerns to apply at the join points when the associated pointcut
is true.

introductions

ancillary code used by the advice that will enrich the base-program.

Table 1: Blueprint Terminology.

points are things like method and constructor calls, method and constructor exe-
cutions and field references. That is, they are at the operation interface but a join
point could occur everywhere in the code not only at the operation interface — the
Blueprint exploits this concept. This view grants a statement-level granularity to
the Blueprint join point model. In particular, we consider two different kinds of join
points: the local join points that represent points in the application behavior where
to insert the code of the concern, and region join points that represent portions of
the application behavior that must be replaced by the code of the concern.

To complete the picture of the situation, we have introduced some new concepts:
join point blueprint and blueprint space. The former is a template (a blueprint) on
the application behavior identifying the join points in their context; these blueprints
describe where the local and region join points should be located in the application
behavior. The blueprint does not completely describe the computational flow but
only the portions relevant to select the join points. The latter is the set of all join
point blueprints defined on the same application. The pointcuts are a query on
the blueprint space, i.e., they select some join points imported from one or more
blueprints. Table 1 summarizes the concepts characterizing the Blueprint model.

The Blueprint is based on the idea that the description of the application behav-
ior cannot be strictly coupled to the application syntactic details. It permits a loose
approach to the description of the application behavior. This means that the aspect
programmer can use different levels of detail during the description of a single join
point blueprint by using any possible combinations of loose and tight elements. This
approach permits the description of a well identified behavior tightly coupled to the
application code by specifying the names of the involved elements, and a less known
behavior by using meta-information to abstract from the real application code.

The join point blueprints are the key elements of the whole approach. They

172 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

3 THE BLUEPRINT FRAMEWORK

, 1 ObserverPattern | — — — — — — — — — — — — — — — — —
. «exactmatch»
method meta-variable
*.foo(..)
any foo(..)

variable meta-variable

|
|
|
|
|
|
|
| A
| Field
. . . «or» .. .
| «joinpoint produce» «joinpoint consume»
|
|
|
|
|
\

* Field in right
wse*Ficldmleft | | ™S 5ricidinrisht) or

«method» «method»
context

Figure 1: Sample Join Point Blueprint.

graphically depict where a join point, both local and region, should be located in
the application behavior. They look like an activity diagram and to some extent
they behave similarly. Conceptually, both represent part of the computational flow
of the application. What differs is their use: the activity diagrams are used to model
the application behavior whereas the join point blueprint matches the supposed
application behavior. For this reason, some elements composing the diagram have
additional meanings and the diagram itself is accompanied by context information.

A join point blueprint depicts where a join point should be located in the ap-
plication behavior. Each blueprint is a diagram framed by a dashed rectangle. The
diagram contextualizes the join point location by describing some crucial events that
should occur close to the join point. These events will be used to recognize the join
point. The frame gives some ancillary information, such as the blueprint name (at
the top left corner), the join point names exposed by the blueprint (at the bottom
right corner) and some meta-info (see later in the section) used by the weaver to
parametrize the context and to get values from the join point. The listed join points
are only exposed to the pointcut specification. The join point location is denoted
by the «joinpoint name» stereotype (or by the pair «startjoinpoint name» and
«endjoinpoint name» for the region join points).

Figure 1 shows a very simple join point blueprint that does not fully illustrate
the whole expressivity allowed by the formalism. For a detailed and exhaustive
description, please refer to [20] chapter 4. The following provides a brief overview
of all elements that can appear in a join point blueprint.

Computational Flow Description Elements. In the join point blueprint
it is possible to use a set of programming abstractions for modeling the control flow
of the described behavior: conditional construct (if), cycles and loops (for, while,
and so on) and object flow (swimlane). These flow abstractions are represented
by the standard UML decision elements and are used to describe the application

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 173

C"#_/ ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

computational flow we desire. The aspect programmer can fill these flow abstractions
with details such as the checked condition; the more details are used the easier the
searched behavior can be uniquely identified. Particularly relevant is the use of the
swimlanes, which permit the organization of the searched behavior in terms of the
actions that should be performed by any single actor. This better contextualizes
where to look for a specific part of the blueprint. Figure 1 has a swimlane that
separates the call of a method from the description of what happens inside the
method itself.

Loose and Tight Elements. To abstract from the application syntactic de-
tails, the Blueprint language allows to define the blueprints in an incomplete /abstract
way, i.e., it is possible to describe the computational flow by using a loose approach.
Analogously, to get more in touch with the searched behavior it is possible to specify
all the necessary details to skim among similar portions of code, i.e., it is possible
to use tight elements in the blueprint description.

The Blueprint allows the aspect programmer to use meta-information to depict
a blueprint of the searched behavior without referring to the application element
names and types. This independence has been achieved through template actions
and loose transitions. A loose transition is a line with a stick arrowhead connecting
two action states in the blueprint; it indicates that the target action state follows
the source action state but not immediately, i.e., zero or more not relevant (to
the join point localization) instructions could occur before the target action state,
the number of instructions that could occur is limited by the (optional) transition
scope. A template action is a yellow action state containing a template-statement
and optionally a scope indication. The template-statement is a statement defined
by the following regular expression:

use ((A in B) [or|and (A in B)]*)

where A can be either a name taken from the application code or a meta-variable
(see later in the meta-information section); B represents where the name A should be
found in the application code and can be (with the obvious meanings): boolean-
condition, left, right, index, return, or statement.

All the blueprint loose elements have a scope denoted by a stereotype, which
limits the searching area of the blueprint portion inside the application code. There
are two kinds of scope: «method» and «block». The former limits the searching
area to the extent of the current method body (default behavior) whereas the latter
to the extent of the current code block.

An aspect programmer can use a template action or a loose transition when he
is not interested in a well-defined computational pattern but only on few charac-
teristics, like the check for a condition or the use of a specific variable in a return
statement. Otherwise, he can specify all necessary details to skim among similar
portions of code through the use of actions and tight transitions.

An action is a red action state containing one or more Java statements which

174 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

3 THE BLUEPRINT FRAMEWORK

must exactly match a sequence of instructions in the application code. To better
distinguish actions from template actions, the action is always decorated (at the top)
by the «exactmatch» stereotype. The statements inside the action can use both
meta-variables and real names. A tight transition is a line with a solid arrowhead
connecting two action states of the blueprint; it indicates that the target action state
follows immediately the source action state inside the application control flow.

Note that loose and tight elements can be mixed inside a blueprint. To avoid
ambiguities the tight elements have higher priority than the loose elements, the
«block» has higher priority than the «method» scope qualifier.

Figure 1 shows three action states: an action and two template-actions; the
action describes a call to a method whose name is unknown (i.e., foo is a meta-
variable). All the transitions are loose (they all have a stick arrowhead) so we are
just looking for a loose pattern with a given and incomplete sequence of statements.

Flow Operators. Complementary and alternative behaviors can be described
by using the flow operators provided by the language: and and or. These opera-
tors resemble the UML fork element decorated, respectively, by the «and» and «or»
stereotype. The and operator allows the programmer to describe multiple behav-
iors that will be searched into the application computational flow; whereas the or
operator can be used to describe alternative behaviors. In the first case we have to
match all branches to consider the operator matched. In the second case, at least
one match is needed. The flow operators are useful to separately describe concerns
that can be tangled inside the application code. Figure 1 shows an or operator with
two branches.

Join Points. The Blueprint language allows the definition of a join point every
point between two instructions. Two kinds of join points are considered: local and
region join point. A local join point is represented by an empty circle on transition
labeled by the «joinpoint jp_name» stereotype; it specifies the exact point where
the advice code will be inserted when the blueprint matches the application com-
putational flow. A region join point represents a portion (region) of the application
behavior that will be replaced by the advice code when the blueprint matches the
application computational flow. Two stereotypes «startjoinpoint jp_name» and
«endjoinpoint jp_name» denote the borders of the region.

The location of the join point is not ambiguous when the join point stereotype
is attached to a tight transition since it strictly coupled the source and target action
states: the latter follows immediately the former. Therefore the join point is exactly
between the last matched statement of the source action state and the first matched
statement of the target action state. The situation is more complex when the join
point stereotype is attached to a loose transition since we do not assume anything
about where the next statement will be with respect to the join point location.
To better describe the join point location the stereotypes can be combined with
the location modifiers: «source» and «target» to express the join point vicinity
relation.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 175

C"#_/ ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

Figure 1 shows a couple of local join points: produce and consume. They
are both on a loose transition but exploit the default qualifiers: «method» and
«target».

Meta-Information. Inside the frame of the join point blueprint there is a set
of meta-information associated to each swimlane useful to decouple the blueprint
from the application code and to contextualize where to look in the application code
for the blueprint.

The meta-information allows the programmer to describe the blueprint decoupled
from the application code. The weaving mechanism will provide an unification
between the meta-variable names and the variable names used in the application
code, if it will be possible.

In each swimlane, there are up to five sections containing meta-information:
context, variable meta-variable, method meta-variable, type meta-variable and type
binding. The context section contains the name(s) of the class(es) where to look
for the computational flow described in the swimlane. The meta-variable sections
contain a pool of variable names that can be used in the blueprint instead of the
names coming from the code; these are called meta-variables since they contain
names and not values. The meta-variables can refer to variable and method names
or to types. In the type binding section, it is possible to express bindings among the
variable and method meta-variables and the type meta-variables. This mechanism
permits to realize polymorphisms on the variable and method meta-variables, e.g.,
given a type meta-variable named foo associated to int and String we could declare
a variable meta-variable bar of type foo that will match both strings and integers
variables in the code. The language assumes that all names present in the blueprint
but not present in the meta-information sections are real application element names.

The blueprint in Figure 1 has two swimlanes. At the top, there is a method
meta-variable (foo) — please, note that the any return type denotes any possible
return type. At the bottom, there is the Field variable meta-variable and a context
specification Buffer that confines the match for this swimlane to this class.

Blueprint Aspects

An aspect is the modular unit that crosscuts other modular units. Similar to AspectJ,
the aspect declaration looks like a class declaration.

Listing 1 covers the basics of what an aspect can contain. An aspect consists
of method and field declarations (rows 2-3), a join point blueprint import section
(rows 4-7), pointcut definitions (rows 9-11), the advice (rows 13-15), and finally the
code for the introductions (rows 16-18).

The method and field declaration section contains methods and fields local to
the aspect. These can be used in the advice section but these methods cannot access
the base-program private elements since they are in the aspect scope.

176 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

3 THE BLUEPRINT FRAMEWORK

public aspect name {

// method and field declarations
3] I
public joinpointblueprint

bp-name; (jp-name;;, ..., jp-namey;),
6 f ey
bp-name; (jp-name; 1, ..., jp-name;y);
// pointcut definitions
o pointcut pci-name(): bp-name;.jp-name;(), ---, bp-name;.jp-name;();
pointcut pc,-name(): bp-name;.jp-namei(), ---, bp-name;.jp-name,();
12 // advice definition
advice() : pci-name(), ..., pcig-name() {...}
15 advice() : pci-name(), ..., pcp-name() {...}

// introduction definitions
introduction(): bp-name;.jp-name() { /* fields and methods declaration %/ }

Listing 1: An Example of Aspect Definition by using the Blueprint Language.

In the blueprint import section, introduced by the keyword joinpointblueprint,
we list the join points out of the blueprints that will be used inside the aspect. To
list a blueprint name without parameters is to import all of its join points, otherwise
only the listed ones are imported.

In the pointcut section, we associate a pointcut, i.e., a query on the blueprint
space, to the join points imported in the specific section. The association is basically
achieved by listing the desired join point names.

The advice section defines crosscutting behaviors that should be introduced at
the selected join points. An advice is associated to a pointcut or to a list of join
point names imported from a blueprint. The code of the advice runs at every join
point picked out by its pointcut.

Finally, the introductions, introduced by the introduction keyword, allow the
definition of new methods and attributes that will be added to the application code
during the weaving process. This ancillary code can assess the private information
of the application code where they are woven.

The Blueprint provides a simple reflective API (reported in Table 2) to access
context information like the join point signature* and the meta-information speci-
fied in the blueprint, such as variable and method meta-variables, through a special
reference: thisJoinPoint(jp-name). thisJoinPoint(...) can be used both in-

4Please note that in our case we are not concerned about the method captured by the pointcut,
but rather about the method that contains the captured join point.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 177

C"#_/ ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

Blueprint reflective API: Description
public Signature getSignature()

returns the signature of the method that contains the matched join point.

public Method getMethod()

returns the Method object corresponding to the method that contains the join
point.

public SourceLocation getSourceLocation()

returns the source location corresponding to the join point.

public String getKind()

returns a String representing the kind of join point (e.g., local or region).

public SourceCode getSourceCode()

returns the source code corresponding to the region join point, null otherwise.

public Signature getUnifiedSignature(String mtd)
returns the signature of the method meta-variable mtd.

public Method getUnifiedMethod(String mtd)

Returns a Method object representing the mtd method meta-variable.

public Type getUnifiedType(String varname)

Returns a Type object that represents the declared type for the application
variable unified to the varname variable meta-variable.

Table 2: Blueprint Reflective API: thisJoinPoint(jp) Methods

side advice and introductions. In the advice the parameter represents one of the
join points specified in the advice, whereas in the introduction it can refer to every
join point declared inside the aspect. The weaving process will create a connection
between the meta-variables and the matched application elements. Therefore, by
using the meta-variables (through the reflective API) corresponds to using the real
elements. At the moment, the available reflective API is still quite limited but some
extensions are under development.

4 BLUEPRINT MATCHING AND WEAVING

One crucial component in AOP is the weaver. Given a set of target programs and
a set of aspects, the weaver introduces the code of the advice at the captured join
points in the target programs during the weaving process.

Even if the join point blueprints are language independent, the weaving process
strictly depends on the program it has to modify. At the moment, we have chosen
the Java programming language but in the future we are planning to extend the
approach to many other languages. The Blueprint weaving process consists of the
following phases:

e pre-weaving phase: the abstraction level of the join point blueprint and of the
Java bytecode is equalized;

e matching phase: the matching is performed by traversing the model/graph of

178 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

4 BLUEPRINT MATCHING AND WEAVING

the blueprint and the model/graph of the program in parallel;

e aduvice weaving phase: the advice code is inserted at the captured join points.

Pre-Weaving Phase. The base program and the join point blueprints are at
different levels of abstraction. To fill this gap and allow the weaving, it is necessary
to build a common representation for the base program and the join point blueprints.
The abstract syntax tree (AST) perfectly fits the problem; both source code (through
its control flow graph) and join point blueprints can be represented by AST-like
descriptions.

The AST of the base program is simply developed by using a parser and AST
generator. To generate the AST for the blueprints is more complex. Any UML
diagram can be represented as a graph because it is defined by the UML meta-
model which is a graph where the nodes are meta-classes and the edges are meta-
relationships, but it is not possible to generate such kind of a tree from the join point
blueprint because of the loose elements. To overcome this problem, we have created
a graph where each transition becomes a labeled graph edge, each action becomes a
graph node containing the AST nodes generated by the Java instructions contained
in the action. This kind of graph node is called a complex node; each template action
becomes a simple node that does not contain AST nodes but some information about
the scope of and the kind of statement looked for by the corresponding template
action. It is necessary to differentiate the graph nodes because we cannot define an
AST to describe a template action, because it does not contain real Java instructions.
Labels represent the scope information, join point location and so on. We call this
representation: Blueprint_Graph.

Matching Phase. After obtaining the same level of abstraction for source code
and blueprints, the next step is to find all matchings among each Blueprint_Graphs,
generated in the previous phase and the application AST.

Our matching algorithm is not a simple algorithm to match two graphs, because
we do not have the same kind of graphs but a graph and an AST representation.
To solve this, we developed a special matching algorithm, called multiple spread tree
inclusion, that looks for:

e a tree matching between portions of the application AST and the complex
nodes of the Blueprint_graph; and

e a matching between the Blueprint_graph simple nodes and portions of the
application AST.

These matchings are driven by the edges connecting two Blueprint_Graph elements
in a depth-first visit and the search area defined by the context meta-information.

During the matching algorithm we have to associate the meta-variable names
used inside the blueprints to the real names used inside the application (unification

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 179

C"#—d ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

function UNIFY(tl, t2, o) — (unifiable: Boolean, Q: substitution)
begin
if tl or t2 is a variable meta-variable then
begin
let x be the variable, and let t be the other term
if (x = t) and ({z « t} € o), then (unifiable, o) < (true, o)
else if (x = t) and (3 k # t, {x<— k} € o), then unifiable « false
else if occur(x, t) then unifiable <« false
else if (forall k x <« k ¢ o) and (Type(t) C Type(x)), then
(unifiable, o) « (true, {z « t})

end
else
begin
assume tl = z9 £ (x;, . . , x,) a method meta-variable and
t2 = yo g(y1, - - - ,Ym) a method
if (m # n) or (Type(xp) # Type(yp)), then unifiable « false
else if {f+< ¢} in o, then (unifiable, o) < (true, {f< g})
else if (n =1) and (z; = ’’..”") and (V h # g, {f<— h} ¢ o), then
(unifiable, o) « (true, {f<— g})
else if V h, {f— h} ¢ o, then
begin
k — 0
unifiable < true
while k < m and unifiable do

begin
k «— k+1
(unifiable, 7) « UNIFY(xp, yi, 0)

end

end
end
return (unifiable, o)
end

Listing 2: The Blueprint Unification Algorithm

process). The unification algorithm used in the Blueprint framework (listing 2 shows
its pseudocode) is based on the well-known Robinson’s unification algorithm [22].

Beyond using the unification, our matching algorithm is strongly based on back-
tracking, since, to find all the possible matchings it must try all the tree branches.
Every blueprint matching is called possible matching as long as the last action state
of the blueprint has not been matched, from this point the matching is a sure match-
ing.

Turning back to the single steps of our matching algorithm, in the first point we
search a real matching between the AST nodes of a complex node and, a portion
of application AST nodes, obviously, but the unification operations. This first step

180 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

5 BLUEPRINT AT WORK

is a tree pattern matching problem [8]. We use an algorithm based on tree pattern
matching presented in [16].

Advice Weaving Phase. This is the last step of the weaving phase. During
this step the advice code is inserted into the application. This final step starts
only when the previous step obtains a sure matching for the considered blueprint.
To develop this step, the framework uses all information about join points and
unifications stored during the matching phase and the advice source code.

e The meta-information are used to identify the method affected by the advice;

e the unifications are used to unify the meta-variable names used inside the
advice code, to the names used inside the application source code; in this way
the code of the advice will refer to the code elements; and

e the advice source code, after the unification, is inserted into the local copy of
the right file, in the right position, corresponding to the considered join point.

To maintain the application source code unchanged, the Blueprint framework
uses a local copy of every application source file to insert the advice code into the join
points. After the introduction, the modified files are compiled on-the-fly by using
the javac compiler. The .class files are superseded to the original application .class
files. This last step exploits a Java library, called RECODER® to modify and parse the
original application files. This library is already used by other aspect-oriented tools,
such as EAOP [5].

A complete description of the Blueprint weaving can be read in [20] chapter 5.

5 BLUEPRINT AT WORK

To stress the Blueprint potential in this section we present three examples. The first
one is a classical tracing aspect that demonstrates how the Blueprint can carry out
all of the modularization capabilities offered by other aspect-oriented approaches.
The second example, debugging and monitoring the execution of a program, should
show the capability of the blueprints for capturing join points that the other ap-
proaches cannot deal with. The last example shows the Blueprint reflective API at
work.

The Blueprint Tracing Aspect.

Usually during the development, programmers insert debugging messages in their
code (e.g., to notify the beginning and the end of the method or constructor execu-
tion) to better follow and test the execution of the application.

5Available at http://recoder.sourceforge.net.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 181

http://recoder.sourceforge.net

C"#—d ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

| TFOCIDQB uepnm‘ public aspect aspectTracing {
void log (String message) {

// for simplicity ;
. method meta- vur|qb| /lcould as well log to file / socket efc .
. any fOO() System.out.println (message) ;

<<J°1nP°1nt jpl>> \@pointblueprint
: [TeacTmoBLaepeTg L, 362)

.

ic pointcut before Call(): jpl(),
pointcut after Call(): jp2();

'
advice () :

<<jo:.npo:.nt Jp2>> log("entry: "

}

' advice () : after Call()

' . . . v log("exit: "+

""""" . jpl,ij : = thisJoinPoint (after Call) .

""" getUnifiedSignature (’)7

Figure 2: A Simple Tracing Blueprint and Aspect.

Even though this is a simple debugging mechanism, it has a number of drawbacks:

e the implementation of this feature is scattered over many classes of the system,
e many classes are cluttered with the message generation code, and

e after development it is difficult to safely remove the debugging code.

In short, the implementation of this conceptually simple feature leads to severely
tangled code. To this regard, we developed a simple tracing aspect consisting of a
join point blueprint definition and an advice.

The TracingBlueprint, showed in Figure 2, describes all method calls irrespec-
tive of their name, signature, target object and where they are called and defined.
The method meta-variable foo during the weaving process is unified to the called
method signature, and inside the advice code it is possible refer to it and, by ap-
plying the getSignature() method, visualizing the full name of the application
method. The blueprint defines two join points: jpl and jp2; at these join points
the computational flow will be traced (woven advice).

Debugging and Monitoring the Knapsack Algorithm Execution.

The typical debugger’s functionality, such as variable and state watching, and tracing
can be easily realized through a Blueprint aspect.

The right half of Figure 3 shows part of Rolfe’s solution® to the well known Knap-
sack problem. The Knapsack problem, as well as any other problem in combinatorial
optimization, offers several temporary values to be monitored during the execution,

6 Available at http://penguin.ewu.edu/~trolfe/Knapsack0l/index.html.

182 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

http://penguin.ewu.edu/~trolfe/Knapsack01/index.html

5 BLUEPRINT AT WORK

, m ReportBlueprinft = = = = = = = = = = = = = = === === ---s .- .

"""" !

: method meta-variable
., void mtd(int[.int)
' variable meta-variable
p.i
: type-binding
int[] p,inti

1 static void packSack(int[] pack, int k) {
int j;
3 int value0 = 0;
int weight0 = 0;
for (j = 0; j < k; j++){
value0 += pack[j] * value[j];
weight0 += pack[j] * weight[j];
}
9 if (k == n){
if (value0 > optValue){

<<4joinpoint end>>

| <<and>>

v

' variable meta-variable
' p. i, koptval,val

+ type-binding

'
P . <<or>> 243 i for (j = 0; j < n; j++)

<<jdinpoint count>> J J J
[m[_] p. int[] p1. 12 «@ oPtPack[j] = pack[jl;
inti, int k false _’()‘. optvalue = value0;

val > optval

15 else{
value0 += pack[k] * value[k];
weight0 += pack([k] * weight[k];
18 if (weightO + weight[k] <= maxWeight) {
++pack[k];

true

¥

for (j = k; j < n; j++
21 if (weightO+weight[j]<=maxWeight)
packSack (pack, j);

<<and>>
<<joinpoint oldopt>>
packSack (pack, n);

Coont_—_
24 —--pack[k];

'
$<<jcinpoint > .)
for (j = k+1; j < n; j++
27 if (weightO+weight [j]<=maxWeight)
packSack (pack, 3);
packSack (pack, n);

30 }

<Kjoinpoint newopt>: }

33 public static void main(String[] args) {

| 35 packSack (knapsack0, 0) ;

.4)
® ..

Figure 3: The Report Blueprint and the Matched Code.

e.g., the evolution of the optimal solution, the changes to the optimal value and the
number of iterations to get the optimum. It is fairly evident that these issues can be
treated as a problem of breakpoint settings and variable watching. In particular, a
change in the current optimal solution depends on finding a better approximation to
the optimum as checked at row 10. This represents a relevant context information
exploited by the blueprint in the left part of Figure 3 to contextualize the event
independently of the names used in the code; note that val and optval are variable
meta-variables that, during the unification phase, will match valueO and optValue
in the code, respectively. The Blueprint aspect, shown in Listing 3, will exploit,
through reflection, the value matched by optval at the oldopt() and newopt()
join point to print the optimum before and after the change. The changes to the
current optimal solution are detected and reported in a similar way. To calculate
the number of iterations to get the optimum we have to look for the recursive invo-
cations of the main method (packSack()), to count them and to report the total at
the end. The count() and end() join points are, respectively, where to increment
the total number of iterations and where to print it. The aspect will introduce a
new variable (counter) to the application and the advice will work on this variable,
incrementing it at the count() join point and printing it at the end() join point.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 183

C"#—d ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

public aspect DebugAspect{
public joinpointblueprint reportBlueprint();
advice(): count() { this.counter++; }
advice(): end(){
System.out.println("total recursive calls: "+
thisJoinPoint(count).getClass().counter);
advice(): oldopt() or newopt() {
System.out.println("The current optimal value
thisJoinPoint (oldopt).optval);

+

¥
advice(): change(){ /* reporting of the changes ... %/ }
introduction(): count() { int counter; }

¥

Listing 3: The DebugAspect Used to Monitor the Knapsack Algorithm.

Parallelizing the Mandelbrot Algorithm.

Another interesting example application of the Blueprint approach is the paral-
lelization of a method. Let’s suppose one is interested in parallel execution of a
method. By using the Blueprint region join point we can indicate which portion of
the method behavior can be executed concurrently and in another thread/process.

In [9], Isberg adopts AspectJ 5 to develop a similar idea; in particular, he uses the
annotations to mark the method (and not part of its body) to render parallel. The
Blueprint approach is more flexible that Aspect) because any portion of a method
can be parallelized, not only the whole method invocation.

We consider the classic example of paralleling the rendering of the Mandelbrot
fractals. Our scope is to draw the fractal by using four threads, one for each fourth

: variable meta-variable
i
' - . ; .
, type-binding 3<<Jolnpo:|.nt jp2>>
inti

Loop(i < 4)

$<<startjoinpoi t jpl>> :

Loop()

v

Loop() J

i<<endj oinpoint [jpl>>

@ <«

Figure 4: The Blueprint to Paralleling a Method

184 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

5 BLUEPRINT AT WORK /

public void Mandelbrot(Complex zl, Complex z2, int xsteps, int ysteps) {
Complex[] rects = new Complex[] { z1,
new Complex((z2.Re + zl.Re)/2, zl.Im),
new Complex(zl.Re, (z2.Im + zl.Im)/2),
new Complex((z2.Re + zl.Re)/2, (z2.Im + z1.Im)/2)

s
double dx = (z2.Re - zl.Re) / xsteps;
double dy = (z2.Im + zl1.Im) / ysteps;

for (int count = 0; count < 4; count++){
for (int i = 0; i < (xsteps / 2); i++)
for (int j = 0; j < (ysteps / 2); j++) {
Complex ¢ = new Complex(
rects[count].Re + dx * i,
rects[count].Im + dy * j), z = c;
int it = 100;
while (it-- >0 && z.SqrModule < 4) z = (z.multiply(z)).sum(c);
DrawPixel(i, j, xsteps, ysteps, count, it);

Listing 4: The Method to Calculate a Mandelbrot Fractal.

of the drawing area. The Mandelbrot () method, reported in listing 4, computes the
fractal given a region in the complex plane (bound by the two complex numbers z1
and z2). The implemented algorithm subdivides the complex plane in four regions
(whose upper left corners are contained in the rects array), and performs the classic
Mandelbrot algorithm on each of them.

The parallelization is based on the presence of two new classes: ParallelTask
and ParallelInfrastructure that we add to the system. These classes create
the necessary parallel infrastructure; the former represents a skeleton for the thread
execution with an empty run() method, that will be filled with the code extruded
by the aspect (listing 5, rows 21-23), the latter deals with a ThreadPool of four
threads, as required. These two classes are not relevant to the discussion and for
sake of brevity they are not reported, the details can be found in [20]| chapter 6.

We use the blueprint and the aspect showed in Figure 4 to identify the portion
of the method and to execute it as an asynchronous method. To do this, we must
locate two join points:

e a local join point (called jp2) before the first statement will be added the
creation of a new instance of the parallelInfrastructure class, and

e a region join point (called jpl) that enclose the code portion that will be
replaced by the code to start a thread with the extruded code as the body of

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 185

C"#—d ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

public aspect ParallelingAspect {
public joinpointblueprint ParallelingBlueprint(jpl,jp2);
3 pointcut parallel: jpl();
advice(): jp2(){
parallelInfrastructure pi = new parallelInfrastructure();
6 }
advice(): parallel() {
parallelTask pt = new parallelTask(count,xsteps,ysteps,rects,dx,dy);
9 pi.pool.execute(pt);
}

12 introduction(): ParallelTask {
int count, xsteps, ysteps;
Complex[] rects;

15 double dx, dy;

parallelTask(int i,int x,int y,Complex[] r, double ddx,double ddy) {
18 count = i; xsteps = x; ysteps = y;
rects = r; dx = ddx; dy = ddy;
}
21 public void run() {
thisJoinPoint (jpl) .getSourceCode();
}

Listing 5: The Paralleling Aspect.

the run() method (see Listing 5).

The introduction of the ParallelingAspect aspect (see Listing 5 rows 12-23)
acts on the ParallelTask class by:

e adding six new fields (rows 13-15),
e adding a new constructor method (rows 17-20), and

e substituting the empty run() method with the run() method with the re-
flectively extruded code (rows 21-23); note that introducing a method already
present in the class produce a local overriding of sorting.

6 RELATED WORK

The Blueprint framework is not the first attempt of dealing with the limitations of
the current join point selection mechanisms. In this section we report some of the
most significant attempts, without pretending to be exhaustive.

186 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

6 RELATED WORK

In [18], Nagy et al. propose a new approach to AOP by referring to program units
through their design intentions to answer the need of expressing semantic pointcuts.
Design intention is represented by annotated design information, which describes
for example the behavior of a program element or its intended meaning. Instead of
referring directly to the program, their approach provides a new language abstraction
to specify pointcuts based on some design information. Design information are
inserted inside the base program using annotations and they are associated manually,
derived on the presence of other design information and, through superimposition.
The key benefit of this approach is that it reduces direct dependencies between
the crosscutting concerns and the program source. Unfortunately, this approach
breaks the obliviousness 6] property. This property is broken because certain design
information has to be specified by the software engineer, and moreover the software
engineer must use a consistent and coherent set of design information for each sub-
domain of an application.

In [5], Douence and Stidholt propose an AO approach, called EAOP, based on the
observation of dynamic events. In EAOP, aspects are expressed by events emitted
during execution of the base program and are defined by two languages: a crosscut
language, that allows the definition of execution points where an aspect may mod-
ify the base program, and the action language, which enables the execution of the
base program to be modified. The implemented tool supports four kinds of events:
method and constructor calls and their return events. This approach needs a pre-
phase to instrument the source code of the base program to generate events. We
think that new kinds of event would be necessary, since these kinds are not much
expressive. Moreover, the pointcut definition is strictly coupled with the base code,
since it contains method and constructor names. Finally, the base program must
be modified to insert the necessary events. In [4], the authors extended their work
to take into consideration the whole history of the program executions. These kind
of aspects are more expressive than those based on atomic points because relations
between execution events can be expressed. Join points may denote not only syn-
tactic information (e.g., instructions) but also semantic information (e.g., dynamic
values). Nevertheless, the crosscut definition is also strictly coupled to the base
code, since it contains, like in their previous work, program element names, such as
method names.

Tourwé et al. [25] have proposed an advanced pointcut managing environment,
based on machine learning techniques. They try to deal with the well-know problems
of the AOP languages by including the notion of inductively generated pointcuts
in the language itself. In this way developers can specify pointcuts by using a
graphical interface, that offers a view on the source code, and an inductive logic
programming algorithm that is responsible for computing the pointcut definition.
This approach is more expressive and permits to overcome the previous problems,
but it still does not permit to identify a pointcut inside the method bodies. On the
contrary, since the inductive logic programming algorithm computes the pointcut
definition automatically, the developer no longer has precise control over this.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 187

C"#_/ ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

Gybels et al. [7] have dealt with the so called arranged pattern problem. Cross-
cutting languages use pattern matching to capture join points. This is a good
technique to describe the intended semantics of a crosscut but it is still dependent
of the naming convention. Gybles et al. have proposed a more flexible linguistic
mechanism to implement crosscutting as patterns and consequently avoiding the
exposed pattern matching problem. Essentially, their crosscut language is a logic
programming language, based on Prolog. Their join point model is based on the
Aspect] one, since the join points are related to key events in the execution of an
object-oriented program. They use SmallTalk as a base language, and use the follow-
ing join points: message receptions by an object, message sends by an object, the
accessing and updating of an object’s state and the execution of code blocks.

In [24], Stein et al. presented a new graphical approach to model pointcuts.
Their approach deals with modeling and graphical visualization of places and con-
ditions of crosscutting. At the implementation level, join points represent “hooks
where enhancements may be added”, on modeling level, join points are rendered by
model elements. In particular, their approach uses UML classifiers to represent join
points in structural models, and UML messages to represent join points in behavioral
models. For the designation of join points they introduce a new graphical mech-
anism called Join Point Designation Diagram (JPDD). A JPDD contains, when
fully specified, a description of structural and behavioral constraints. The struc-
tural part is described with a notation that combines the syntax of class diagrams
and object diagrams, and the behavioral part is described by a notation based on
sequence diagrams. The approach is loosely coupled with the base program, and
follows a graphical approach like us, but by using JPDD it is not possible to identify
join points inside method body, between two instructions, since they use sequence
diagrams it is only possible to identifies join points on method calls.

In [14], Klein et al. presented a new semantics-based aspect weaving algorithm for
hierarchical message sequence charts (HMSCs). They chose HMCS as the scenario
model. Scenario languages are mainly used to describe behaviors of distributed
systems at an abstract level or to capture requirements in early development stages.
In this work, they used message sequence charts (MSC), that are very similar to UML
2.0 sequence diagrams, so the approach used in this paper could also be applied to
sequence diagrams as well. Behaviors and aspects are defined by using MSC. An
aspect defines a part of behavior that should be replaced by another one every time
it appears in the semantics of the base specification. This approach suffers from
several limitations: the matching process can only be performed if each join point
appears inside a bounded fragment of a behavior, another limitation is that the MSC
should not exhibit two non-disjoint cycles where the pointcut matches. Finally, since
it is based on sequence diagram it only possible to describe message between objects.

In [17], Mohd Ali and Rashid present a general state-based join point model.
The aim of their work is to expose high-level join points in the code, based on the
states and state transitions of the system, by providing a state-based AOP language
platform that allows such join points to be exposed. This approach turns to safety-

188 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

7 CONCLUSIONS

critical systems, where to capture system states is an important part of the system.
Since a state-based pointcut construct permits to specify criteria for join points
that refer to the program’s current state (i.e., run-time values). In their notion,
a crosscutting system state is defined as an abstract state machine, and they use
the transitions of this abstract state machine that are controlled by state guards,
to identify the join points during the execution. This approach utilizes a join point
model conceptually different from AspectJ. It is very useful for safety-critical or real-
time systems, but for other kinds of applications, it is not so intuitive to use. In
addition, this approach is quite coupled to the base application, since it is necessary
to know the state models of system behavior.

7 CONCLUSIONS

Current aspect-oriented approaches suffer from well-known problems that rely on the
syntactic coupling established between the application and the aspects. A common
attempt to give a solution consists of freeing the pointcut definition language from
these limitations by describing the join points in a more semantic way.

This paper presents the Blueprint framework, a novel approach to join point
identification less coupled to the base-code and providing a finer granularity of
selection based on context description. Pointcuts are specified by using patterns
(blueprints) of the application expected behavior. More precisely, a join point
blueprint is a template on the application expected behavior identifying the join
points in their context. In particular join points are captured when the pattern
matches portion of the application behavior.

Compared to the current approaches, we can observe some advantages. First
of all, we have a more behavioral pointcut definition. In the join point blueprint
definition we identify the context of the computational flow we want to match, and
the precise point we want to capture. Notwithstanding that, we can still select the
join points by using syntactic and structural specification, which is only necessary
with a more detailed blueprint. Last but not least, our approach is quite general. It
can be applied to every programming language (at the cost of adapting the weaving
algorithm to the characteristics of the new language) and used to mimic all the other
approaches to AOP. There is also a drawback; the matching phase is quite complex
and demands time and space. Fortunately, most of the weaving phase is done once
during the compilation and does not affect the performance of the running program.

The Blueprint framework has been completely specified in [20] and a prototype
has been implemented. In the future, our plans include improving the prototype, to
realize a specific tool to draw the blueprints (at the moment we use Poseidon4UMLT),
to organize the statement in class of equivalences for the actions (e.g., i++ and i=i+1
will be recognized by the same class) and to extend the reflective API. Finally, we
want to better check the scalability and robustness of the framework in the software

"http://www.gentleware.com

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 189

http://www.gentleware.com

C"#_/ ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

evolution context.

ACKNOWLEDGMENTS

The authors wish to thank Jeff Gray for his help in revising the English of this
paper and the anonymous reviewers for their help in improving the paper content
with their suggestions.

References

1]

2|

3]

4]

5]

(6]

17l

8]

9]

Walter Cazzola, Jean-Marc Jézéquel, and Awais Rashid. Semantic Join Point
Models: Motivations, Notions and Requirements. In Proceedings of SPLAT 06,
Bonn, Germany, March 2006.

Walter Cazzola and Sonia Pini. Join Point Patterns: a High-Level Join Point
Selection Mechanism. In MoDELS’06 Satellite Events Proceedings, LNCS 4364,
pages 17-26, Genova, Italy, October 2006. Springer.

Walter Cazzola, Sonia Pini, and Massimo Ancona. Design-Based Pointcuts
Robustness Against Software Evolution. In Proceedings of the 3rd ECOOP
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-
SE’06), pages 35-45, Nantes, France, July 2006.

Rémi Douence, Pascal Fradet, and Mario Siidholt. Trace-Based AOP. In
Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit, editors,
Aspect Oriented Software Development, chapter 9, pages 141-150. Addison-
Wesley, October 2004.

Rémi Douence and Mario Stidholt. A Model and a Tool for Event-Based Aspect-
Oriented Programming (EAOP). Technical Report TR 02/11/INFO, Ecole des
Mines de Nantes, November 2002.

Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is
Quantification and Obliviousness. In Proceedings of OOPSLA 2000 Workshop
on Advanced Separation of Concerns, Minneapolis, USA, October 2000.

Kris Gybels and Johan Brichau. Arranging Language Features for More
Robust Pattern-Based Crosscuts. In Proceedings of the 2nd Int’l Conf. on
Aspect-Oriented Software Development (AOSD’03), pages 60—69, Boston, Mas-
sachusetts, April 2003.

Christoph M. Hoffmann and Michael J. O’Donnell. Pattern Matching in Trees.
Journal of ACM, 29(1):68-95, 1982.

Wes Isberg. AOP@QWork: Check out Library Aspects with AspectJ 5. January
2006.

190

JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

7 CONCLUSIONS

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Kazunori Kawauchi and Hidehiko Masuhara. Dataflow Pointcut for Integrity
Concerns. In Proceedings of the AOSD’04 Workshop on AOSD Technology for
Application-level Security, Lancaster, UK, March 2004.

Andy Kellens, Kris Gybels, Johan Brichau, and Kim Mens. A Model-driven
Pointcut Language for More Robust Pointcuts. In Proceedings of SPLAT 06,
Bonn, Germany, March 2006.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeff Palm, and Bill
Griswold. An Overview of AspectJ. In Proceedings of ECOOP’01, pages 327—
353, Budapest, Hungary, June 2001. ACM Press.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Pro-
gramming. In Proceedings of ECOOP’97, LNCS 1241, pages 220-242, Helsinki,
Finland, June 1997. Springer-Verlag.

Jacques Klein, Loic Hélouét, and Jean-Marc Jézéquel. Semantic-based Weaving
of Scenarios. In Proceedings of AOSD’06, pages 27-38, Bonn, Germany, March
2006. ACM Press.

Christian Koppen and Maximilian Storzer. PCDiff: Attacking the Fragile Point-
cut Problem. In Proceedings of the European Interactive Workshop on Aspects
in Software (EIWAS’04), Berlin, Germany, September 2004.

Hsiao-Tsu Lu and Wuu Yang. A Simple Tree Pattern-Matching Algorithm.
In Proceedings of the Workshop on Algorithms and Theory of Computation,
Chiayi, Taiwan, December 2000.

Noorazean Mohd Ali and Awais Rashid. A State-based Join Point Model for
AOP. In Proceedings of the 1st ECOOP Workshop on Views, Aspects and
Role (VAR’05), in 19th European Conference on Object-Oriented Program-
ming (ECOOP’05), Glasgow, Scotland, July 2005.

Istvan Nagy, Lodewijk Bergmans, Wilke Havinga, and Mehmet Aksit. Utiliz-
ing Design Information in Aspect-Oriented Programming. In Proceedings of 4th
Annual International Conference on Object-Oriented and Internet-based Tech-
nologies, Concepts, and Applications for a Networked World (Net.ObjectDays),
LNI 61, pages 39-60, Erfurt, Germany, September 2005.

Harold Ossher and Peri Tarr. Hyper/J: Multi-Dimensional Separation of Con-
cerns for Java. In Proceedings of ICSE’01, pages 729-730, Toronto, Ontario,
Canada, 2001. IEEE Computer Society.

Sonia Pini. Blueprint: A High-Level Pattern Based AOP Language. PhD the-
sis, Department of Informatics and Computer Science, Universita di Genova,
Genoa, Italy, June 2007.

VOL 6, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 191

C"#—d ON THE FOOTPRINTS OF JOIN POINTS: THE BLUEPRINT APPROACH

[21]

22]

23]

[24]

[25]

[26]

27]

Awais Rashid and Ana Maria Moreira. Domain Models Are NOT Aspect Free.
In Proceedings of MoDELS 06, LNCS 4199, pages 155-169, Genoa, Italy, Octo-
ber 2006. Springer.

J. Alan Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(1):23-41, January 1965.

Kouhei Sakurai and Hidehiko Masuhara. Test-based Pointcuts: A Robust Point-
cut Mechanism Based on Unit Test Cases for Software Evolution. In Proceedings
of Linking Aspect Technology and Evolution revisited (LATE’07), Vancouver,
British Columbia, Canada, March 2007.

Dominik Stein, Stefan Hanenberg, and Rainer Unland. Modeling Pointcuts.
In Proceedings of the AOSD Workshop on Aspect-Oriented Requirements Engi-
neering and Architecture Design, Lancaster, UK, March 2004.

Tom Tourwé, Andy Kellens, Wim Vanderperren, and Frederik Vannieuwen-
huyse. Inductively Generated Pointcuts to Support Refactoring to Aspects. In
Proceedings of SPLAT’04, Lancaster, UK, March 2004.

Naoyasu Ubayashi, Genki Moriyama, Hidehiko Masuhara, and Tetsuo Tamai.
A Parameterized Interpreter for Modeling Different AOP Mechanisms. In Pro-
ceedings of ASE’05, pages 194-203, Long Beach, CA, USA, 2005. ACM Press.

Alexandre Vasseur. Dynamic AOP and Runtime Weaving for Java- How Does
AspectWerkz Address It? In Robert E. Filman, Michael Haupt, Katharina
Mehner, and Mira Mezini, editors, Proceedings of the 2004 Dynamic Aspect
Workshop (DAW’04), pages 135-145, Lancaster, England, March 2004.

ABOUT THE AUTHORS

Walter Cazzola (Ph.D.) is currently an assistant professor at the
Department of Informatics and Communication (DICo) of the Uni-
versita degli Studi di Milano, Italy. His research interests include re-
flection, aspect-oriented programming, programming methodologies
and languages. He has written and has served as reviewer of several
technical papers about reflection and aspect-oriented programming.

Sonia Pini is a PhD student and research assistant at the Depart-
ment of Informatics and Computer Science (DISI) of Universita degli
Studi di Genova, Italy.

192

JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 7

