
Vol. 6, No. 6, July–August 2007

Better Construction with Factories
Tal Cohen and Joseph (Yossi) Gil
Department of Computer Science,
Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel

“The Factory-Owning Class Controls the Means of Production.”
K. Marx [14]

The polymorphic nature of object oriented programs means that client code ex-
pecting an instance of class C may use instead an instance of a class C ′ inheriting
from C. But, in order to use such a different instance, one must create it, and in
order to do so in current languages, must be familiar with the name of creating
class. To break this coupling, we propose the novel notion of factories, which are
class services (alongside methods and constructors) that manage the instance-
creation step of object construction. In making the case for factories we propose
a five-dimensional framework for understanding and analyzing the class notion in
various programming languages.
We show that factories can naturally replace the “creational” design patterns, and
describe the design and implementation of a JAVA language extension supporting
both supplier-side and client-side factories. Possible implementations in other
languages are discussed as well.

1 INTRODUCTION

Good programming languages support, at the language level, the general principle of hid-
ing implementation details from the client [19]. Indeed, most contemporary object ori-
ented programming languages let, sometime even force, the programmer to hide the im-
plementation details of methods that a class offers. An inspiring case in point is Meyer’s
principle of uniform access [15, p.57], stating that

“All services offered by a module [i.e., a class] should be available through
a uniform notation, which does not betray whether they are implemented
through storage or through computation.”

This paper starts from the observation that despite the progress in language design, there
is still a family of services which reveal more than they should of their implementation
secrets. These services are what is known as creation procedures in some languages and
constructors in others. Constructors are distinguished from the other services that a class

Cite this article as follows: Tal Cohen, Joseph (Yossi) Gil: Better Construction with Facto-
ries, in Journal of Object Technology, vol. 6, no. 6, July–August 2007, pp. 109–129,
http://www.jot.fm/issues/issues 2007 07/article3

http://www.jot.fm/issues/issues_2007_07/article3

BETTER CONSTRUCTION WITH FACTORIES

may offer in that the client cannot apply them to a polymorphic object; instead the client
is responsible for creating such an object, and therefore must know the precise name of
the class that creates it.

The polymorphic nature of classes is advertised as means for separating interface from
implementation. Object oriented polymorphism means that a client may use instances of
different subclasses to implement the same protocol. But, the trouble is that in order
to be able to use such instances, one needs to create them somewhere, and the creation
process is coupled with the name of the creating class. Breaking this coupling seems to
be an intriguing chicken and egg riddle: Interface (or protocol) can be separated from
implementation, but in order to select a particular implementation of a given protocol one
must be familiar with at least one of these implementations.

Our solution to this cyclic dilemma is by making the selection of an implementation
part of the interface. In the object-oriented terminology, this means that we allow a class
to offer a set of services, what we call factories, for generating instances of its various
subclasses. Factories are first-class class members (alongside methods and constructors),
but, unlike constructors, factories encapsulate instance management decisions without
affecting the class’s clients. Our contribution includes also a re-implementation of the
JAVA compiler that supports factories; this implementation requires no changes to the
JVM.

Factories directly attack the change advertising problem: Suppose that the implemen-
tation of a class (indeed, the internals of any software unit) is changed or specialized, but,
as is the case with inheritance or dynamic aspects, that the original version still remains.
Then, the fact that there was a change must be advertised to the clients that wish to enjoy
its benefits. Specifically, an instance of a class C ′ inheriting from C can be used anywhere
an instance of C is used; but clients must be aware that C ′ exists, and be familiar with its
name and its particular repertoire of constructors, in order to create such instances.

Existing solutions to the change advertising dilemma can be found in several popular
frameworks, which act outside of the programming language. This includes, for example,
the J2EE [20] mechanism for obtaining instances of Enterprise JavaBeans (EJBs, [6]).
Clients must not directly invoke constructors for EJBs; rather, special methods of “home
objects” must be used, effectively encapsulating the creation process and providing the
platform with the ability to decide an instance of which (sub)class will be generated.

Likewise, users of the Spring Application Framework1 should only obtain instances
(of any class) by using special “bean factory” objects. The need for factories is further
evident from the popularity and usefulness of design patterns that strive to emulate their
functionality, including ABSTRACT FACTORY, FACTORY METHOD, SINGLETON [10],
and OBJECT POOL [12]. However, both the frameworks and the design patterns introduce
certain restrictions that the developers must adhere to (such as never invoking constructors
directly). Just like these design patterns, factories are not compelled to return a new class
instance. In not betraying the secret whether a new instance was generated or an existing
one was fetched, they can be thought as applying the principle of uniform notation to

1http://www.springframework.org

110 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 6

2 TERMINOLOGY

instantiation. Much as with uniform access for “features” (attributes or functions) in
EIFFEL, factories prevent upheaval in client classes whenever an internal implementation
decision of the class is changed.

More concretely, we describe the design and implementation of an extension to the
JAVA programming language to support factories. In this extension, factories act as meth-
ods that overload the new operator. But, unlike new overloading in C++, factories are not
concerned with memory allocation but rather with instance creation and specific subclass
selection decisions. We offer two varieties of factories:

• Client-side factories help localize instantiation statements, whereby a re-
implementation can be selectively injected to certain clients.

• Supplier-side factories provide classes with fine control over their instantiation, and
help in a global advertising of a change in the implementation.

Factories enable the encapsulated implementation of the “creational” design patterns
listed above, either for all clients (using supplier-side factories) or for specific ones (using
client-side factories). They provide a language-level solution to the change advertising
dilemma, without presenting developers with any restrictions or complications.

Outline Sec. 2 starts by setting forth a common terminology for the discussion, and tries
to unify some of the different perspectives offered in the literature to the class concept.
Using this terminology, Sections 3 and 4 expand on the motivation, by highlighting certain
limitations of constructors. Factories are the subject of Sec. 5, which describes their
JAVA syntax and some of the applications. This section also shows how factories support
many classical design patterns. Sec. 6 describes how coupling between classes can be
decreased using factories, and Sec. 7 describes the notion of client-side factories. Finally,
Sec. 8 discusses the extension of the factories idea to other programming languages and
concludes.

2 TERMINOLOGY

There are many ways in which people perceive the notion of class: as a “repository for
behavior associated with an object” [2, p.13], a “unit of software decomposition” and
a “type” [15, pp.170–171], a “tool for creating new types” [21, p.223], a “group [of
objects]” [13, p.50]2, a “set of objects that share a common structure and a common
behavior” [1, p.93], etc. This section tries to unify these perspectives and propose a
terminology (a conceptual framework if you will) for comparing and understanding the
notion of a class in different programming languages.

We distinguish five, not entirely orthogonal, dimensions of class analysis: commonal-
ity, encapsulation, morphability, binding, and purpose. The most interesting dimension

2but also a “template for several objects . . . [a description of] how these objects are structured internally”

VOL 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 111

BETTER CONSTRUCTION WITH FACTORIES

is purpose, by which we identify, for each syntactical element of a class, a programming-
language purpose. In Sec. 3 we shall argue that, judged by these dimension of evaluation,
constructors make a bit of weird bird. Let us now describe in greater detail each of the
five dimensions in turn.

1. Commonality. This dimension makes the distinction between common elements of
the class notion (e.g., class variables and methods in SMALLTALK) and particular such
elements (e.g., instance variables and methods). More precisely, an element is common
if its incarnation in different instances of the class is identical; otherwise, it is particular.
Thus, particular elements may be used only in association with a specific class instance.
Also, common elements cannot access particular elements.

2. Encapsulation. (Also known as Visibility.) A class may encapsulate (i.e., set the
visibility of) its elements. C++’s three visibility levels, just as JAVA’s four, are orthogonal
to commonality.

3. Morphability. Morphability indicates the class element’s ability to obtain a shape, or
be re-shaped, in a subclass. In other words, morphability pertains to the kind of changes
that a subclass may apply to components of the base class in the course of inheritance.

There is a great variety in the morphability capabilities in different programming
languages. For example, C++ allows a subclass to decrease the visibility of inherited
members, OBERON [22] forbids overriding, JAVA sports final members and allows data
members to be hidden [11, Sect. 8.3.3], while EIFFEL allows re-implementation of a data
member as a method, and method renaming. The analysis of this variety in full is beyond
the scope of this paper.

4. Binding. As the name suggest, in this dimension we make the distinction between
statically-bound and dynamically-bound elements. Of course, this distinction can be made
only for class elements which can be replaced or altered in a subclass. Non-virtual
methods in C++ are famous for being statically bound.

Observe that in most languages, commonality and binding are not orthogonal. Specifi-
cally, we find that common elements are often statically bound. The linkage between static
binding and commonality is so entrenched that common methods and fields in languages
such as JAVA, C# and C++ are marked with the static keyword.

The phenomena can be explained by the reliance of dynamic binding on dispatching
information associated with individual objects. Common elements are statically bound
since they may exist even when there are no instances to the class.

5. Purpose. Classes, being a unit of software decomposition, can be subjected to Par-
nas’s [19] classical distinction between the interface and materialization (which Parnas
calls “implementation”) perspectives of a software component. We say that the interface
and materialization are purposes that the class serves as a whole, and characterize its
elements by this purpose.

But, unlike the software components of the seventies, classes are instantiable. Accord-
ingly, we break the interface of a class into two facets: the forge and the type. Similarly,
we distinguish between three facets in the materialization: the implementation of the type,

112 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 6

2 TERMINOLOGY

the mill behind the forge, and the mold into which instances are cast.

More specifically, the forge of the class is the collection of operations that can be used
to create objects; the type is the set of messages that these instances may receive, along
with their visibility specification; and, the implementation is the body of the methods
executed in response to these messages. There is a subtle distinction between the mill and
the mold, which together realize the class’s forge: The mold is the memory layout which
instances of this class follow. It consists solely of field definitions. The mill is the set of
constructor bodies.

To understand these terms better, consider class Vector from the standard JAVA li-
brary. The forge of Vector, depicted in Fig. 2.1(a), includes the signature of the four

Vector:
public Vector();
public Vector(Collection);
public Vector(int);
public Vector(int, int);

(a) The forge.

int capacityIncrement
int elementCount
Object[] elementData

32 bits

32 bits

32 bits

Fields inherited from superclasses

Hidden fields added by the JVM

(b) The mold.

Vector<E>:
protected int capacityIncrement;
protected int elementCount;
protected Object[] elementData;
public void addElement(E);
public int capacity();
// ... etc.

// From AbstractList:
public ListIterator listIterator()
public List subList(int, int)
// ... etc.

// From AbstractCollection:
public int size();
public void clear();
// ... etc.

// From Object:
public Object clone();
public void wait();
public void notify();
public boolean equals(Object);
// ... etc.

// Upcast operations:
public (AbstractList)();
public (AbstractCollection)();
public (Object)();
public (Serializable)();
public (Iterable<E>)();
public (Collection<E>)();
public (List<E>)();

(c) The type.

Figure 2.1: The forge, type and mold of java.lang.Vector.

constructors provided by the class: the default constructor Vector(), the copy construc-
tor Vector(Collection), a variant that specifies the initial capacity (Vector(int)),
and a variant that specifies both the initial capacity and the capacity growth increment
(Vector(int, int)).

Fig. 2.1(c) shows the type of Vector, methods such as addElement, capacity, and
others, as well as fields such as capacityIncrement and elementData. Superclasses
also add to the type; in this case, the type of Vector includes methods and fields inherited
from three superclasses. Each superclass and superinterface also adds an upcast operator.

We see that the type includes the signature of all non-private fields and methods of
the class. Thus what we call type here is in fact the class’s structural type, to which JAVA

applies a name, making it a nominal type.

VOL 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 113

BETTER CONSTRUCTION WITH FACTORIES

The type does not include details such as a specification of the order by which methods
may be invoked, pre- and post-conditions, or other classes with which the class may
interact while implementing each method. These may be thought of as the class protocol.

The mold for creating new objects is defined by the collection of all fields in this class
and all of its supertypes. Specific languages or language implementations can include
hidden fields in the mold, such as run-time type information, the Virtual Method Table [8]
used in C++, etc. Fig. 2.1(b) presents the mold defined by class Vector. It includes fields
defined in Vector as well as any fields inherited from superclasses, along with any hidden
field added by the JVM.

Finally, the implementation is the body of the methods defined by the class or any of
its superclasses, while the mill is the body of the constructors defined in this class.

3 CONSTRUCTOR ANOMALIES

Factories, the language extension proposed in this paper, are methods which return new
class instances. Syntactically, a factory is a method which overloads the new operator
with respect to a certain class.

In the terminology of the previous section, the signature of a factory belongs in the
forge, while its body belongs in the mill. In this respect, factories are similar to construc-
tors in mainstream object-oriented languages, the means by which a class’ clients may
obtain instances.

In analyzing constructors (in, e.g., JAVA or C++) with this terminology, we find that
exhibit three fundamental anomalies, which underline the need for the alternative ap-
proach that factories offer:

1. Commonality. In JAVA, the syntax for creating an instance of class MyClass is
new MyClass(), i.e., it refers to the class name. In contrast, in EIFFEL the syntax is
!!myInstance, i.e., referring to a variable. The difference between the languages is not
a coincidence. Constructors are anomalous in that they are simultaneously common and
particular: common—since they are invocable without an instance; particular—since
they work on an object.

This anomaly raises the dilemma of method binding inside constructor bodies.
Method invocation from the mill follows a static binding scheme in C++3; in JAVA and
C#, however, dynamic binding is used. Neither approach is without fault. Static binding
can lead to illegal invocation of pure virtual methods. Dynamic binding prevents meth-
ods, invoked from within the mill, from assuming that all fields were properly initial-
ized. Dynamic method binding in constructors leads, among other things, to difficulties
in implementing non-nullable types, as described by Fähndrich and Leino [9]: during
construction, fields of non-null types may contain null values.

2. Morphability. In examining the morphability of the five facets of a class purpose, we

3Even for virtual methods.

114 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 6

4 STAGES OF OBJECT CREATION

find that changes to four out of these are not arbitrary: The type definition of a subclass is
an extension of the type definition of the superclass. Similarly, the mold of a subclass is
an extension of the mold of the superclass. Also, the implementation can either replace or
extend the implementation in the superclass, and the mill (constructor body of a subclass)
must extend (i.e., invoke) the mill of the superclass.

In contrast, the forge of the subclass is independent of the forge of the superclass—
the forge cannot be extended: it is not even inherited, and each class must define its own
set of constructor signatures anew. The second constructor anomaly lies in the fact that
the the construction protocol is not inherited, yet, each constructor body must invoke a
constructor of the base class.

3. Binding. Third, it is mundane to see that a call to a constructor obeys a static binding
scheme, and it takes just a bit of pondering to understand the difficulties that this scheme
brings about. If a class C ′ inherits from C, then C ′ should be always substitutable for C.
An annoying exception is made by constructor invocation sites in client code; these have
to be manually fixed in switching from C to C ′.

The Gang of Four [10, p.24] place this predicament first in their list of causes for
redesign, saying: “Specifying a class name when you create an object commits you to a
particular implementation instead of a particular interface”.

Interestingly, in EIFFEL, although it has a strict dynamic binding policy, and although creation
methods can be overridden, and although creation syntax is similar to method invocation, it is still
the case that creation instructions such as !!x.make are statically bound.

4 STAGES OF OBJECT CREATION

Fig. 4.1 demonstrates another issue with constructors. The figure depicts abstract class
Baby whose constructor announces the baby’s birth, and concrete class NamedBaby inher-
iting from it. Method announce is refined in NamedBaby, extending the announcement
with details about the newborn’s gender and name.

A client who has new baby boy named “John”, may then write
NamedBaby myBoy = new NamedBaby("John", true);

and be surprised by the printout “New baby: Her name is null”, which is explained
by the announcement being made before the subclass’s fields are initialized. This lack of
crisp separation between field initialization and the rest of the construction code, can even
result in runtime exceptions, e.g., if NamedBaby.announce invokes name.length().

C++ is not much better: The C++ equivalent of Fig. 4.1 would print partial (al-
beit more sensible) output, “New baby:”. Also, C++ would produce a runtime error if
announce() is made abstract in class Baby.

This example motivates our distinction between three conceptual steps in an instance’s
birth process (later we shall argue that the separation between these is better served by
factories): (a) Creation, in which the object’s actual type is selected, memory is allocated
and structured by the mold; (b) Initialization, in which fields are set to their initial values;

VOL 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 115

BETTER CONSTRUCTION WITH FACTORIES

1 abstract class Baby {
2 public Baby() { announce(); }
3 public void announce() { System.out.print("New baby: "); }
4 }

6 class NamedBaby extends Baby {
7 String name; boolean isBoy;

9 public NamedBaby(String name, boolean isBoy) {
10 this.name = name; this.isBoy = isBoy;
11 }

13 public void announce() {
14 super.announce();
15 System.out.println((isBoy ? "His" : "Her") + " name is " + name);
16 }
17 }

Figure 4.1: Interwoven initialization and setup in JAVA constructors.

and (c) Setup, in which the mill is executed.

These three steps correspond exactly to steps C1, C2 and C4 in the effects of a creation in-
struction !!x in EIFFEL [15, p.237]. The missing step, C3, is the attachment of the newly created
object to the reference variable x; however, in languages such as JAVA and C++ the invocation
of a constructor is an expression rather than a statement, and can be performed without assign-
ing the result to a variable. (EIFFEL also supports the invocation of a creation procedure as an
expression [7, Sec. 8.20.18], in which case step C3 is absent.)

The initialization step is realized in C++ by what is called the initialization list (written
just after the constructor’s signature). In JAVA and C# it is expressed using initializer
values (or defaults) for fields, whereas the instance initializer block and the constructor
bodies perform the setup. In EIFFEL, it is the assignment of standard default values to
fields. As the example shows, however, initialization with default values is insufficient.
Developers should be able to initialize all fields, across all levels of inheritance (i.e.,
complete step (b)) before setup code is being executed (step (c), the announcement in our
example); initialization and setup should be unwoven. We further note that none of these
languages provides the developer with control over the creation step.

Note that overloading the new operator in C++ grants us control over memory allocation, but
not over the kind of object to be created, nor the decision if a new object has to be created at all.

We argue that good design of elaborate software systems often requires intervention in
the creation step. Indeed, there are a number of successful design patterns, including AB-
STRACT FACTORY, FACTORY METHOD, SINGLETON,and OBJECT POOL,which address
precisely this need. The control that these “creational patterns” grant the programmer
over the creation step is achieved by replacing constructor signatures from the forge facet
with a different, statically-bound, common method (e.g., getInstance)4.

4Such methods are sometimes called factory methods. While serving a similar purpose, they are different

116 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 6

5 FACTORIES

Unfortunately, in contrast with most other patterns, the creational patterns cannot be
implemented in OO languages without revealing implementation details to the client: If
class T is implemented as a SINGLETON, then clients of this class cannot write new T()

and expect the correct instance to be returned; rather, they must be aware of the nonstan-
dard creation mechanism, in violation of the uniform access principle. As a result, if a
class evolves during development so that the new version employs (e.g.) an instance pool,
all clients must be updated to use the getInstance method rather than the constructors;
the use of creational patterns cannot be encapsulated as part of the class implementation.

Creational patterns often collide with inheritance. To enforce the use of a get-
Instance method and prevent accidental direct access to the constructors, all constructors
can be made private, with the undesired implication that the class cannot be subclassed.
The alternative of defining the constructor as protected, is problematic in JAVA, since
such constructors are visible to all classes in the same package.

Worse still, since method getInstance must be shared, it cannot be overridden in
subclasses: If C ′ is a subclass of C, then the expression C ′.getInstance() is valid—but
returns an instance of C! This happens because getInstance is technically part of the
type, while conceptually being part of the forge.

We shall see that factories enable a clear-cut separation between creation and initial-
ization and setup, and allow for proper encapsulation of the creation step.

5 FACTORIES

Class STemplate in Fig. 5.1 shows how the SINGLETON design pattern can be realized by
overriding new with the factory defined in lines 4–7. This factory is invoked whenever the

1 class STemplate {
2 private static STemplate instance = null;

4 public static new() {
5 if (instance == null) instance = this();
6 return instance;
7 }

9 STemplate() { /∗ ... setup code ... ∗/ }
10 }

Figure 5.1: A Singleton defined using a factory.

expression new STemplate() is evaluated, in class STemplate or any of its clients. Note
that the factory is declared static, which stresses that it binds statically, and that (unlike
constructors) it has no implicit this parameter. Examining the factory body we see that
it always returns the same instance of the class. Thus, clients need not be explicitly aware
of STemplate being a singleton, and will not be affected if this implementation decision

than our notion of factories.

VOL 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 117

BETTER CONSTRUCTION WITH FACTORIES

is changed. (In the specific case of the SINGLETON design pattern, clients can compare
instances to realize that only one exists. Other patterns, such as INSTANCE POOL, can be
completely invisible to clients.)

A factory must either return a valid object of the class, or throw an exception. (Should
the factory’s return value be null, a NullPointerException results.)

Suppose that C ′ is a subclass of C. Then, a factory of C can return an instance of C ′.
This can be done by invoking any method which returns an instance of C ′, including a
factory of C ′—e.g., by a statement such as return new C ′(· · ·). If the factory however
chooses to create an instance of class C, then it should invoke the constructor; yet writing
new C(· · ·) (e.g., new STemplate() in the example) would recurse infinitely. Instead,
the factory invokes the class constructor directly with the expression this(· · ·) (line 5 in
the example).

We chose to overload the keyword this, particularly, its use for invoking a constructor. No
ambiguity arises: In constructors, the function call this(· · ·) occurring in the first line can sub-
stitute the mandated call to super with a call to a different constructor in the same class (as in
standard JAVA). Such a call does not create an instance, nor does it return a value, and it must
appear only as the very first step in the constructor body.

In a factory, this(· · ·) stands for a call to a constructor of the class. The call creates a new
instance and returns a value; it may occur multiple times (or not at all), and in any location inside
the factory body. The factory can choose to return the value generated by such a call. (In the case
of the STemplate class, the value is cached to a static field, which is then returned.)

The constructor can only be called from a factory in the same class; any use of
new C(· · ·), either from outside class C or from inside it, will invoke a factory rather
than a constructor.

While there are many different solutions to the specific issue of singletons, (e.g.,
declaring an object—rather than a class—in SCALA [18], or using prototype-based lan-
guages, such as CECIL [5]), the factory solution is not specific to singletons, and can be
used for any creational design pattern. More examples will be presented in the sequel.

As usual with overloading, a factory may have parameters, which are matched against
the actual parameters in the creation expression. A parameterized factory could be used
for, e.g., implementing the FLYWEIGHT pattern: To do so, the factory returns, if possible,
an existing object from its pool, and only creates an instance if no such object exists.

Like constructors, factories are not inherited. Had class C ′ inherited a factory new()

from its superclassC, then the expression new C ′() might yield an instance ofC, contrary
to common sense. Thus, the problem of C ′.getInstance() yielding an instance of C,
described in Sec. 3, does not occur with factories.

In contrast, when factories are employed, the expression new C() can yield an in-
stance of C ′, since a subclass is always substitutable for its superclass.

Factories also allow developers to separate the initialization and setup stages of ob-
ject construction. The mixup of Fig. 4.1 is resolved by the factory based implementa-
tion in Fig. 5.2, in which the call new NamedBaby("John",true) yields the expected

118 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 6

5 FACTORIES

“New baby: His name is John” output.

1 abstract class Baby {
2 public Baby() { } // No fields that require initialization
3 public void announce() { System.out.print("New baby: "); }
4 }

6 class NamedBaby extends Baby {
7 String name; boolean isBoy;

9 public NamedBaby(String name, boolean isBoy) {
10 this.name = name; this.isBoy = isBoy; // Initialization
11 }

13 public void announce() {
14 super.announce();
15 System.out.println((isBoy ? "His" : "Her") + " name is " + name);
16 }

18 public new(String name, boolean isBoy) {
19 NamedBaby result = this(name, isBoy); // Construction
20 result.announce(); // Setup
21 return result;
22 }
23 }

Figure 5.2: Re-implementation of Fig. 4.1 with factories

The implementation in the figure adheres to the simple rule that field are initialized in
constructors, and other setup is carried out by the factory. In particular the announcement
of the birth is made in the factory of NamedBaby (line 20).

Automatically Generated Factories

A definition of a factory with a certain signature hides the constructor with the same
signature. Such hidden constructors can only be invoked from the factory of a class,
regardless of their access level. Let us now deal with the dual situation, i.e., a constructor
without a factory. Backward compatibility of our extension is achieved by the following
perspective: An expression of the form new S(· · ·) is always implemented by a factory
whose signature matches the actual parameters. This can be either a user-defined factory,
or an automatically generated factory (AGFa). The automatic generation of factories is
governed by:

The AGFa Rule: Let c be a constructor with a signature σ in a non-abstract class S.
Then, either (a) S has an explicit factory with signature σ, or (b) it has static AGFa
with signature σ, which invokes c.

VOL 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 119

BETTER CONSTRUCTION WITH FACTORIES

Fig. 5.3 shows an example of the AGFa rule. The class defined in Fig. 5.3(a) has a
factory with no parameters. It also has a two-parameters constructor, with no matching
factory. Fig. 5.3(b) shows the AGFa that the compiler (internally) injects into the class.

class Complex {
public static final Complex origin = new Complex(0,0);
public Complex(double x, double y) { /∗ instance setup ... ∗/ }
public static new() { return origin; }

}
(a) A class in which the no-args factory returns a fixed instance.

public static new(double x, double y) { return this(x,y); }
(b) The factory added to the class by the AGFa rule.

Figure 5.3: A class (a) with a constructor and its AGFa (b).

Recall that in plain JAVA, instances of abstract classes cannot be created, even though
such classes have constructors. The following argument uses the AGFa rule to explain
this: Instances can only be created by a new expression, which must have a matching
factory. However, by the AGFa rule, abstract classes in plain JAVA do not have factories.

Conversely, if an abstract class Sa does define factories, then you can write
new Sa(· · ·) in your code. Fig. 5.4 shows an abstract class, ScrollBar, with a fac-
tory. This example is modelled after the famous example [10, p.87] of the ABSTRACT

FACTORY design pattern. The code in the figure improves on the original implementa-
tion of the design pattern, in that the client is not aware that an abstract factory stands
behind the scenes of the simple call new ScrollBar(). (As we shall see later, the internal
implementation of the widget factory class itself can also be improved with factories.)

public abstract class ScrollBar {
public static new() {

WidgetFactory f = WidgetFactory.currentFactory();
return f.CreateScrollBar(); // Select concrete subclass

}
// ... rest of the class omitted

}

Figure 5.4: An abstract class with a factory.

As shown in Fig. 5.5, interfaces may also have factories. The figure shows an inter-
face, DirectoryEntry, whose factory makes it possible to obtain an instance of either of
two implementing classes, Folder and File, depending on the parameter value.

6 BETTER DECOUPLING WITH FACTORIES

The use of factories in interfaces can eliminate coupling between client code and library
code. Consider, for example, the JAVA collection libraries. The standard library designers

120 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 6

6 BETTER DECOUPLING WITH FACTORIES

public interface DirectoryEntry {
public static new(String name) {

if (FileSystem.isDirectory(name)) return new Folder(name);
return new File(name);

}
// ... rest of the interface omitted

}

Figure 5.5: An interface with a factory.

require, in very strong words, that interface types (like List and Set) will be used for
method arguments:

“. . . it is of paramount importance that you declare the relevant parameter type to be
one of the collection interface types. Never use an implementation type.”

– [3, p.526]; emphasis in the original.

Similar recommendations apply to return types, field types, etc., all in spirit of Can-
ning et al.’s original suggestions for separating the type and class notions using inter-
faces [4]. The coupling of client code to concrete implementation is indeed reduced by
following this recommendation. But, such a coupling still remains, particularly at the
point where a client is required to create an object.

Interfaces with factories can eliminate this coupling. In the case of the List in-
terface, clients can generate instances of some default implementation by writing (say)
new List(). The factory can choose the proper concrete implementation, possibly based
on hints provided by the client. Fig. 6.1 provides an example factory that can be used by
the List class in JAVA’s collections framework. Should new and improved implementa-

public interface List {
/∗∗
∗ @param synch indicates if a thread−safe list is needed
∗ @param randomAccess indicates if O(1) element access is needed
∗/
public static new(boolean synch, boolean randomAccess) {
if (synch) {
if (randomAccess) return new Vector();
return Collections.synchronizedList(new LinkedList());

}
// Else, synchronization is not needed.
if (randomAccess) return new ArrayList();
return new LinkedList();

}
// ... rest of the interface omitted.

}

Figure 6.1: One possible factory for the List interface.

tions appear in future versions of the JAVA class libraries, this factory can be upgraded,

VOL 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 121

BETTER CONSTRUCTION WITH FACTORIES

and all clients will immediately benefit from the change. This solves the change advertis-
ing dilemma for new implementations of interfaces.

We would like to draw attention to the fact that following the recommendation of
using interfaces rather than classes as method parameters, may in some situations in-
crease the burden on clients rather than reducing it. Consider the learning effort of a
user in search of a specific service in a software library. Suppose that this service is pro-
vided by a method m in an interface I . Then, before m can be invoked, the user must
search for all the different implementation of I , say classes C1, C2, C3, . . ., study them,
and choose which of these to instantiate in order to generate an instance of I . Further,
suppose that m takes a parameter of type interface I ′. Then, the user must also search
for all implementations of I ′, say classes C ′

1, C
′
2, C

′
3, . . ., study them all and choose the

one appropriate for instantiation prior to invoking method m. If the constructor of the
chosen class expects a third interface parameter I ′′, then, the user must further search for
implementations C ′′

1 , C
′′
2 , C

′′
3 , . . . of I ′′, etc.

A small example is method Security.getProviders in the JAVA standard library
taking a Map as a parameter. In this parameter, the user can provide a set of selection crite-
ria. Before the method may be used, even for testing or experimentation, the programmer
must create an object representing such a test, and to do so, choose an implementation of
the Map interface—but there are no less than seventeen such implementations in version
1.5 of the JDK.

Another example is method JPanel.setBorder() from the Swing GUI libraries,
which expects a parameter of the Border interface. In order to use this method, the
client must be spend time in studying the different implementations of this class, only to
realize that yet a third class, BorderFactory, should be used to generate instances. With
factories, the functionality of BorderFactory can be embedded in Border.

Searches for implementations of a given interface is usually not easy: implementations
may be done by various different vendors, the list may change over time, and the selection
between these may require a hefty learning effort. Interfaces (and abstract classes) with
factories can therefore simplify the adoption of new, unfamiliar classes. Sometimes such
a search is inevitable, but in many cases, it can be saved if the interface itself provides a
reasonable implementation.

Writing a unit test code for a class whose methods take interface parameters is greatly
simplified if these interfaces give ready-made instantiations. It is even conceivable that
interfaces provide a stub implementation just for this purpose. For example, the standard
JAVA interface Runnable can provide a stub implementation (perhaps defined as an inner
class) in which the run() method does nothing.

7 CLIENT-SIDE FACTORIES

All examples so far defined factories in the same class on which the overload takes place.
Factories of this sort are called supplier-side factories. It is also possible to define client-

122 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 6

7 CLIENT-SIDE FACTORIES

side factories, as demonstrated in Fig. 7.1.

1 class Bank {
2 public static new Account(Customer c) {
3 if (c.hasBadHistory()) return new LimitedAccount(c);
4 // LimitedAccount is a subclass of Account
5 return Account.new Account(c);
6 }
7 // ... rest of the class omitted
8 }

Figure 7.1: A client-side factory for Accounts in class Bank.

Line 2 in the figure starts the definition of a factory. Unlike the previous examples,
this definition specifies the returned type. The semantics is that the definition overloads
new when used for creating Account objects from within class Bank. It is invoked in the
evaluation of an expression of the form new Account(c) (where c is of type Customer or
any of its subclasses) in this context. This factory chooses an appropriate kind of Account
depending on the particular business rules used by the enclosing class.

Unlike supplier-side factories, client-side factories are inherited by subclasses. There-
fore, the factory from Fig. 7.1 will also be used for evaluating expressions of the form
new Account(c) in subclasses of Bank.

This client-side factory can be used by other classes as well, by writing Bank.new

Account(· · ·), or, after making a static import of class Bank, by simply writing new

Account(· · ·).

Fig. 7.2 shows an implementation of the ABSTRACT FACTORY pattern with static
binding. Classes MotifWidgetFactory and PMWidgetFactory each overload the new

class MotifWidgetFactory {
public new ScrollBar() { return new MotifScrollBar(); }
public new Window() { return new MotifWindow(); }
// ... factories for other widget classes ...

}

class PMWidgetFactory {
public new ScrollBar() { return new PMScrollBar(); }
public new Window() { return new PMWindow(); }
// ... factories for other widget classes ...

}

Figure 7.2: Widget-factory classes defined using client-side factories.

operator of all the GUI widgets. A client wishing to use Motif, may write import

static MotifWidgetFactory.*. This may be changed later to import static

PMWidgetFactory.*, should the GUI library need replacing.

The full semantics of a new call can now be explained as follows: Whenever a class is
used in a new expression, its supplier-side factories enjoy an implicit import static. A
client-side factory in scope can override this import.

VOL 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 123

BETTER CONSTRUCTION WITH FACTORIES

The abstract widget factory example we have just described suffers from the problem
that switching from Motif to PM requires a change to the client’s import static state-
ments. But there may be many such statements, in many source files. The remedy is to
simply define an empty class,
class WidgetFactory extends PMWidgetFactory {}

and statically import it in all clients. This will direct all widget factory calls to
PMWidgetFactory. The GUI can now be globally replaced with a single change, specifi-
cally replacing WidgetFactory’s superclass.

Dynamically Bound Factories

The above WidgetFactory can be thought of as a statically-bound implementation of
the ABSTRACT FACTORY pattern, in that the decision on the concrete implementa-
tion is made at compile time. To make a dynamically-bound widget factory, we need
dynamically-bound factories. These are defined, as the name suggests, without the
static keyword. Fig. 7.3 shows how such factories can be used in the classical im-
plementation of the ABSTRACT FACTORY design pattern.

public abstract class WidgetFactory {
public abstract new ScrollBar();
public abstract new Window();
// ... and other widgets.

private static WidgetFactory f;
public static new() {

if (f != null) return f;
if (GUI.isMotif()) return f = new MotifFactory();
if (GUI.isPM()) return f = new PMFactory();
//... etc.

}
}

(a) The abstract widget factory class

class MotifWidgetFactory extends WidgetFactory {
public new ScrollBar() { return new MotifScrollBar(); }
public new Window() { return new MotifWindow(); }
// ...

}

class PMWidgetFactory extends WidgetFactory {
public new ScrollBar() { return new PMScrollBar(); }
public new Window() { return new PMWindow(); }
//...

}
(b) Two concrete widget factory subclasses

Figure 7.3: Using non-static factories to implement a dynamically bound abstract fac-
tory class.

124 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 6

7 CLIENT-SIDE FACTORIES

Fig. 7.3(a) shows the abstract factory, while Fig. 7.3(b) shows two concrete imple-
mentations. The factories of the widgets are all non-static and obey a dynamic binding
scheme. Also worthy of note is the factory of this abstract class itself, which (while
realizing the SINGLETON design pattern) determines at runtime the correct GUI library.

Fig. 7.4 shows how dynamically-bound factories can be used to implement the FAC-
TORY METHOD pattern (also known as VIRTUAL CONSTRUCTOR). The code in this
figure implements the classic example (from [10, p.107]) of an abstract Application
class, bound to an abstract Document class. Each concrete subclass of Application can
bind itself to a concrete subclass of Document, by overriding the dynamically-bound fac-
tories. The resulting code is very similar to the original GoF example, except that the

abstract class Application {
List<Document> docs;
protected abstract new Document();

public void newDocument() {
// Handles the File|New menu option
doc = new Document(); docs.add(doc); doc.open();

}
// ... rest of the class omitted

}
(a) The abstract Application class

class MyApplication extends Application {
protected new Document() {

return new MyDocumentType(); // A concrete subtype
}
// ... rest of the class omitted

}
(b) One possible concrete subclass

Figure 7.4: Implementing pattern FACTORY METHOD with dynamically bound factories.

newDocument method uses ordinary construction syntax (implemented using our notion
of a factory) rather than the nonstandard “factory method” dictated by the pattern.

Syntactically, the invocation of a dynamically-bound factory defined in class C for
objects of class S is written as c.new S(· · ·), where c is an instance of class C. The
prefix “c.” can be dropped for code inside class C (so it is replaced with this).

It is not a coincidence that this looks very much like the JAVA syntax for creating an
instance of a dynamic inner class: c.new I(· · ·), where c is an instance of the containing
class (possibly this) and I is the inner class’s name. The constructor of a (non-static)
inner class in JAVA is a method of the containing class, and not of the class it constructs—
just like a client-side factory is a member of the containing class, and not of its target class.
In fact, Nystrom, Chong and Myers [16] have shown that if the concept of inner classes is
extended (using nested inheritance), most of the need for the FACTORY METHOD design
pattern disappears. But while nested inheritance has many distinct advantages with regard
to code modularity and the creation of extensible software systems, it only solves the

VOL 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 125

BETTER CONSTRUCTION WITH FACTORIES

need for factory methods for classes defined inside the same module as their client. Also,
it does not remove the need for instance-management patterns like INSTANCE POOL or
FLYWEIGHT.

8 DISCUSSION

Factories may be a minor perturbation to language syntax, but they are of benefit to lan-
gauge designers and programmers alike. We implemented factories as a JAVA extension
using the Polyglot [17] extensible compiler framework (v. 2.0a4). This took approxi-
mately two workdays of a single programmer.

In our implementation, supplier-side factories (both explicit and AGFa) are realized as
methods named new in the container class. The return type of new is the containing
class itself.

Client-side factories are stored in the client, and are named newclassname,
where classname is the fully-qualified target class name, with every dot replaced by
dot. For example, the factory for Accounts in class Bank (Fig. 7.1) is realized as a
method called newcomdotbankdotAccount (assuming Account’s fully qualified
name is com.bank.Account). The return type of client-side factories is the target type
(e.g., Account).

Any use of new is replaced by the proper method invocation, wrapped in a test that
ensures a non-null value is returned (and throws an exception otherwise).

The addition of factories to interfaces is less straightforward, since interfaces in JAVA

cannot contain any concrete methods. Instead, our extension, synthesizes an static inner
class (called $NewHolder$) for the interface, and places factories in this class.

The implementation generates bytecode that can be used on any JAVA virtual machine.
As discussed in Sec. 5, the introduction of AGFas implies that JAVA-with-factories is fully
compatible with existing JAVA source code. However, the code generated by our compiler
assumes that all instantiated classes have been compiled using the same compiler, and
thus have supplier-side factories (either explicit or AGFa). If factories are integrated into
the JAVA language, full backwards compatibility with existing, pre-compiled classes can
be achieved by having the class-loader (rather than the compiler itself) add any required
AGFa to each class. This will work equally well for old and newly-compiled classes.

Clearly, the notion of factories is not limited to JAVA alone. It is not so difficult to
approximate supplier-side—but not client-side—factories in SMALLTALK, by overriding
the new class method. Adding factories to C# seems rather straightforward, but it might
take some cunning to add them to C++, since the language introduces two obstacles:
First, C++ intrinsic overloading of the new operator, is focused on the memory allocation
problem rather than on instance generation. One possible solution is to introduce a new
keyword, such as factory, to the language. Declarations for factory new can then
exist alongside those for operator new. Such definitions can include both supplier-side
factories (no explicit return type) and client-side ones (with a specific return type). Client

126 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 6

8 DISCUSSION

calls to new will then be redirected to the factory, and should the factory decide to create
a new instance, the new operator will be used for memory allocation (as before).

The second obstacle is due to C++ value semantics. The compiler must know the
space requirements of class instances allocated e.g., on the stack, but this is not possible
with factories. A simple solution is that classes with factories are restricted to reference
semantics representation only.

The EIFFEL language presents a different challenge for introducing factories. Unlike
constructors in C++ or JAVA, creation procedures in EIFFEL are named. The advantage
of this approach is that the distinction between the different kinds of objects that may be
created is not by the kind of arguments, but rather through a meaningful name.

In terms of syntax design, the problem is that we must find a way, other than a special
name, to distinguish between factory methods (which have no object to work on), and
methods and creation procedures (which start their work with a system-supplied object.)

We propose to the integration of factories into EIFFEL by introducing a new part
to the EIFFEL class declaration, alongside features, creates, etc. The part is called
factory, and it may be included only in non-expanded types. Following EIFFEL’s ac-
cessibility rules, a class may provide different factories to different client classes by qual-
ifying the factory part with a type list. Supplier-side factories have the return type
“like Current”; any other return type indicates a client-side factory.

A subclass may re-classify a creation procedure as a factory (or vice-versa) when
overriding it, and in particular, the default creation procedure, default_create (defined
in the root class ANY) may be changed to a factory by any class that so desires. Following
the principle of uniform access, clients that include a creation instruction (or a creation
expression) employ the exact same syntax regardless of whether a creation procedure or
a factory is being used. The syntax !!x.make is used by clients to obtain an instance,
regardless of whether make is a creation procedure or a factory. Interestingly, the dis-
tinct name for each factory and creation method implies that this extension maintains
backwards compatibility with existing code, without resorting to automatically-generated
factories (AGFas).

Fig. 8.1 shows an EIFFEL version of the singleton class from Fig. 5.1. This class re-
classifies default_create as a factory, so clients can use the creation instruction !!x
(for a variable x of type S_TEMPLATE) to obtain the shared instance.

As we can see from the figure (line 7), no special syntax is needed to create an in-
stance from inside the factory (the equivalent of the special this() call in the JAVA ver-
sion): Since a class may include both creation procedures and factories, each with distinct
names, there is no risk of undesired recursion. Whenever a new instance is required, the
factory simply calls a (possibly private) creation procedure.

VOL 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 127

BETTER CONSTRUCTION WITH FACTORIES

1 class
2 S_TEMPLATE

4 factory −− obtain an instance
5 default_create: like Current is
6 once
7 !!Result.instance
8 end

10 create {NONE} −− private instance creation mechanism
11 instance is
12 do
13 −− initialize fields, etc.
14 end

16 end −− class S TEMPLATE

Figure 8.1: A singleton defined in EIFFEL using a factory.

REFERENCES

[1] G. Booch. Object Oriented Design with Applications. The Benjamin/Cummings
Publishing Company, Inc., 1991.

[2] T. A. Budd. An Introduction to Object-Oriented Programming. Addison-Wesley
Publishing Company, first ed., 1991.

[3] M. Campione, K. Walrath, and A. Huml. The Java Tutorial: A Short Course on the
Basics. Addison-Wesley Publishing Company, 2000.

[4] P. S. Canning, W. R. Cook, W. L. Hill, and W. G. Olthoff. Interfaces for strongly-
typed object-oriented programming. In OOPSLA’89.

[5] C. Chambers. The Cecil language, specification and rationale. Technical Report
TR-93-03-05, University of Washington, Seattle, 1993.

[6] L. G. DeMichiel, L. U. Yalçinalp, and S. Krishnan. Enterprise JavaBeans specifica-
tion, version 2.0. http://java.sun.com/j2ee/, 2001.

[7] ECMA International. Standard ECMA-367: Eiffel Analysis, Design, and Program-
ming Language. ECMA International, 2005.

[8] M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley Publishing Company, 1994.

[9] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an
object-oriented language. In OOPSLA’03.

[10] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Publishing Company, 1995.

128 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 6

8 DISCUSSION

[11] J. Gosling, B. Joy, G. L. J. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley Publishing Company, third ed., 2005.

[12] M. Grand. Patterns in Java, Volume 1. John Wiley & Sons, 1998.

[13] I. Jacobson. Object-Oriented Software Engineering - A Use Case Driven Approach.
Addison-Wesley Publishing Company, first ed., 1992.

[14] K. Marx. Das Kapital: Kritik der politischen Oekonomie. Otto Meissner, 1867.

[15] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs,
New Jersy 07632, second ed., 1997.

[16] N. Nystrom, S. Chong, and A. C. Myers. Scalable extensibility via nested inheri-
tance. In OOPSLA’04.

[17] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler
framework for Java. In CC’03.

[18] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala programming
language. Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[19] D. L. Parnas. Information distribution aspects of design methodology. In IFIP’71.

[20] B. Shannon. Java 2 Platform Enterprise Edition Specification, v1.4. Sun Microsys-
tems Inc., 2003. http://java.sun.com/j2ee/j2ee-1 4-fr-spec.pdf.

[21] B. Stroustrup. The C++ Programming Language. Addison-Wesley Publishing Com-
pany, third ed., 1997.

[22] N. Wirth and M. Reiser. Programming in Oberon—Steps Beyond Pascal and Mod-
ula. Addison-Wesley Publishing Company, 1992.

ABOUT THE AUTHORS

Tal Cohen is a computer science Ph.D., currently employed in Google’s engineering
center in Haifa. This research was done during his Ph.D. studies in the Technion in Haifa,
Israel. He can be reached at ctal@cs.technion.ac.il. See also http://tal.forum2.org/cv.

Yossi Gil is on the faculty of the department of computer science at the Technion and
head of the software and systems development laboratory there. His research interests
include software engineering, programming languages and database systems. All of Gil’s
academic titles were conferred by the Hebrew University of Jerusalem: B.Sc. (summa
cum laude) in mathematics and physics, M.Sc. (summa cum laude) in computer science,
and Ph.D. in computer science. He can be reached at yogi@cs.technion.ac.il.

VOL 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 129

mailto:ctal@cs.technion.ac.il
http://tal.forum2.org/cv
mailto:yogi@cs.technion.ac.il

