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Abstract 
While the dynamic linking mechanism of modern programming languages, such as 
Java, allows loading of classes dynamically, it does not allow class reloading. Hence, 
dynamic linking facilitates development of component platforms, such as eclipse RCP, 
which supports dynamic loading but not dynamic updates of components, since this 
requires reloading. This paper presents an approach that enhances eclipse RCP with 
dynamic updating capability. It overcomes the version barrier imposed by Java's 
dynamic linking, while maintaining the security and type safety of Java. The feasibility of 
the approach validates through a modified implementation of the eclipse RCP run-time 
system. Analysis indicates that our approach imposes a moderate performance penalty 
relative to the unmodified platform. 

1 INTRODUCTION 

Applications that suffer from the predominant halt, redeploy and restart update scheme 
can benefit from dynamic adaptation. Dynamic adaptation refers to changing an 
application’s behavior without stopping and restarting it. While most modern component 
platforms, such as eclipse, partially support dynamic adaptation through dynamic 
addition of new plug-ins, they lack support for dynamic update of plug-ins already 
running. The reason behind this is the missing support for dynamic update caused by 
restrictions on the dynamic linking scheme of modern object-oriented programming 
languages. Where the scheme, in for instance Java, supports dynamic loading and linking 
of classes, it does not support dynamic reloading of classes already linked. This 
restriction implies that Java considers objects of any class loaded twice as distinct types. 
Type correspondence between different loaded versions of the same class is therefore 
missing. [Sato04] discusses the implications of this problem, also known as the version 
barrier, in greater details. 

Due to the missing support for reloading classes, modern component systems built on 
top of Java, such as eclipse [RCP06], must provide the necessary mechanisms for 
allowing dynamic updates to take place. Despite the version barrier recent advances in 
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the architecture of eclipse [Eclipse06], allow addition of functionality in a more dynamic 
way than previous versions (versions 2.x). The capabilities of the Eclipse Update 
Manager, [EUM06] now include adding plug-ins dynamically without restarting the 
application thanks to the implementation of the OSGi Service Platform, [OSGi06]. 
However, when it comes to performing updates of already active plug-ins, that is plug-ins 
that have been assigned a class loader, the update manager comes out short, suggesting a 
restart (not of the VM but the workbench held by the eclipse runtime) before the changes 
are effectuated. Dynamically adding of new plug-ins in eclipse is made possible by 
organizing the class loading scheme in such a way that it compensates for the 
implications of the version barrier. It associates a class loader with every plug-in, which 
is solely responsible for loading all classes defined by a plug-in. Consequently, class 
loaders for plug-ins using classes in other plug-ins must delegate class loading to the 
class loader of the plug-in defining the class. This loading scheme ensures that all classes 
are loaded by one loader only, thus having only one type of each class. While this class 
loading scheme allows for new components to be added dynamically, due to the support 
for sharing class definitions, it cannot support dynamic update of running components 
because of the missing support for reloading classes in java. The only way to simulate the 
reloading capability is to reload the complete plug-in by associating it with a new class 
loader, which results in the version barrier problem.  

This paper presents a new approach capable of updating active plug-ins. The 
approach assumes no support from the language runtime thus allowing execution on a 
standard Java Virtual Machine. In fact, in eclipse RCP the approach is implemented by 
modifying the class loading scheme and the update manger. The approach solves the 
problem of the version barrier by introducing a level of indirection in a technique we call 
In-place proxification. The term is used to describe the process of making objects of a 
former class version behave like a proxy, [Gamma95a]. This technique proxificates all 
objects of the previous active plug-in at update time, leaving execution of application 
code only in the latest version of the object’s class. All invocations done by existing 
clients knowing only former versions (now proxies), forwards method invocations to the 
current version, thus allowing multiple version of a class to co-exist for the same "real" 
object. The level of indirection solves the common problem of dynamic component re-
wiring mentioned by [Kniesel99]. The approach handles correspondence between 
different versions of objects in terms of correspondence mappings, which section 2 
explains further. To ensure consistency in updated plug-ins only instances of classes in 
the most recent version hold state. In essence, objects go transparently back and forth 
through the version barrier making clients unaware of the update. 

The approach prepares the plug-ins in the original application for dynamic updates 
through a sequence of compile time transformations. These transformations consist of 
adding small pieces of code in classes reachable from the plug-in’s API and by 
performing some specified checks of version compatibility and plug-in dependencies. 
The classes reachable from a plug-in API are the set of classes that belong to the exported 
packages stated in the manifest file of the plug-in. Furthermore, it is subclasses of classes 
obtainable from return values of the API, which in general are all classes reachable 
directly or indirectly from other plug-ins. The term update-enabled refers to plug-ins 
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having gone through the transformation process. The overall characteristics of the 
approach are: 

Continuous execution. The update process only halts the execution of plug-ins 
affected by the update. Any user or system interaction involving non-affected plug-ins 
continues executing. 

Behavioral preserving. An update-enabled plug-in will behave as the original. 
Furthermore, the behavior of an application after a dynamic update is equivalent to that of 
the same application built from the updated set of plug-ins. 

Standard JVM. The approach does not require a modified virtual machine. It runs on 
top of any standard virtual machine, [Lindholm99]. 

Ease of use. The programmer only needs minimal knowledge of the approach. The 
transformation of the plug-ins is automatic and the update manager only needs access to 
the new versions of the plug-ins for the update. The programmer's insight is only required 
in case of new fields in updated classes. Section 2 returns to this issue. 

Flexibility. The approach provides the ability for a class to implement new interfaces, 
thus making future clients able to use the new inheritance hierarchy. Likewise, the 
programmer can add methods in existing classes and add any number of new classes. The 
API of a plug-in however cannot change in a way that breaks backwards compatibility. 
This is not overly restrictive, considering good practice for normal object oriented 
development. 

Updatable updates. A plug-in is equally updateable regardless of the number of 
previously performed updates on that particular plug-in.  

There have been quite a few proposals to dynamic software updating [Bialek04; 
Duggan01; Gupta96; Gustavson05; Hicks01; Malabarba00; Orso02; Redmond02; 
Vandewoude05a]. Some of them require a modified virtual machine and some lack the 
support of generic Java applications or target other languages. To the best of our 
knowledge, the approach described in this paper is the only pure software based approach 
with capabilities of adding new methods and new subclassing relationships in a new 
version. This section provided a brief overview of the main difficulties in dynamic 
software updating. For an overview of general pitfalls in dynamic updating see 
[Ebraert05] and for interested readers [Eclipse06] outlines more on the architecture of 
Eclipse. 

The contributions of this paper are twofold. Primarily to present the design of a new 
approach for dynamic update of Java applications. Secondly to provide implementation 
details for applying the approach to the eclipse rich client platform. 

Having introduced the problem domain and the main characteristics of our solution 
section 2 now turns to an in-depth description of the approach. Section 3 gives an 
overview of specific implementation details and section 4 discusses related work. Section 
5 gives an outline of status and future work, and finally section 6 concludes the paper. 
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2 DYNAMIC UPDATING 

This section presents the approach for dynamic updating of Java applications. First, it 
explains the essence of the approach and the problems it implies. Next, it discusses 
solutions to specific design problems and finally gives assumptions under which the 
approach will be applicable. Throughout the rest of this paper, the following terminology 
applies: 

Component. This paper uses the term component to describe a module in a running 
application built on top of a component system. A component consists of a number of 
classes, resources and file descriptions. These descriptions hold the unique id of the 
component typically split in a symbolic name and version identifier along with 
information about component dependencies. Furthermore, it states which packages of 
the component should be visible to other components. These packages constitute the 
component API. While eclipse plug-ins also include file declarations of extensions and 
extension points, this definition states the minimum information that the approach 
expects to find in a component. Furthermore, it is easier to generalize the principles of 
the approach given this subset. 

CompXn defines component X of version n. When the subscript n does not appear, 
component X is in a context not specific to a particular version.  

OBXn defines an object B that has dynamic type corresponding to a class loaded by the 
class loader associated with CompXn. In this context, CompXn declares the type or 
class of B. 

ClAXn defines a class A declared in CompXn. 

Dynamic updating in a component system is in essence the ability to replace one or more 
of the components while the system continues to execute. The main goal of the approach 
is to provide mechanisms that are purely software based and run on a standard virtual 
machine to enable such updating. It primarily deals with updating existing components 
and not the ability to add new ones as this support typically already exits in modern 
component system such as the eclipse RCP. It does not directly address problems 
involving updating distributed systems as such updates require a coordination 
mechanism. However, the nature of the approach presented is in fact suitable for 
enhancements of this kind in future studies. 

A dynamic update approach must face a number of issues in a statically typed 
language like Java. The root problem is the version barrier as stated in section 1. The fact 
that objects of the same class are considered to be of distinct types when loaded by 
different class loaders results in a number of language technical issues which the 
approach must face. These issues are briefly described below, whereas discussions and 
solutions are given in separate subsections. 
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Dynamic component re-wiring. In order for new code to be reachable from existing 
clients a re-wiring mechanism needs to be present. 

Object correspondence handling. In section 1 it was stated that the approach allows 
multiple versions of the same class to co-exist. Without proper handling of 
correspondence of such versions, an application using the approach is likely to end up in 
an inconsistent state.  

Type compatibility in state migration. In order for an updated component to 
continue consistent execution with the previous version, state has to be migrated. When 
allowing multiple versions of classes to co-exist, the state of a former version of a 
component is not likely to be compatible with the new class definitions due to the version 
barrier.  

Component dependency handling. The code managing dynamic updates (i.e., the 
update manager) must possess knowledge of dependencies between components. This is 
particularly relevant when two or more components interchange types of other 
components. 

Type compatibility in method invocation. Types of parameters and return values 
interchanged across components in method invocations suffer from the same 
incompatibility as field values do in state migration. However, in order to understand the 
workflow of method invocation in the approach a separate subsection is used. 

Fragile base class problem. Any component system must face the difficulties of 
decentralised development. Of particular interest in the sense of updating components is 
the fragile base class problem. In general, the problem states that changes to superclasses 
might break compatibility with unknown subclasses. 

The following subsections discuss the above problems in relation to the approach. 
Throughout the subsections a running example of different update scenarios is used.  

Dynamic component re-wiring 

In order to present how the approach handles re-wiring of components to execute the 
latest version of code this subsection gives a high-level view of component relations and 
the impact of dynamic updates. 

Consider the situation in figure 1 containing two components CompA and CompB in 
a running application. 

CompA1 

CompB1 CompB2 

CompA2 

Legend

Update
Uses 

Time  
Figure 1: Two components in a running application. The figure shows that CompA1 depends on 
CompB1 and at a given time an update of CompB1 to CompB2 occurs and later CompA1 to 
CompA2, which now depends on CompB2. 
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One point of concern is how CompA1 in the time before the update to CompA2 uses 
the code in CompB2. The idea is to make CompB1 a proxy of CompB2 so that CompB1 
redirects any incoming method call to CompB2. To support this kind of restructuring of a 
component any method reachable from the API of CompB1 contains code to check if it 
should act as a proxy and some additional code to invoke the same method in a 
corresponding object (or class in case of a static method invocation) in CompB2. The 
code for invoking corresponding methods uses the Java Reflection API, [Sun06d]. This 
supports bug fixing in the methods already declared in CompB1 but lacks support of 
calling new methods in the API of CompB2. The solution to this issue lies in the class 
loading scheme of the approach, as every component has an associated loader. When 
CompA1 becomes CompA2, the class loader associated with CompA2 will contain 
references to the loaders of the latest versions of the required components. This implies 
that class lookup will search only the latest versions installed in the system and thereby 
locating classes in CompB2 instead of CompB1. The result of this is that code in CompA2 
can invoke newly added methods and treat classes in CompB2 as new types if they either 
extend or implement them in the new version. 

The above descriptions show how the approach addresses the problem of redirecting 
invocations to the latest version of a given component. As far as we know our approach is 
the first to actually use the original objects as proxies instead of wrapping them in a 
separate class, which unlike our approach does not allow adding new methods and 
interfaces to updated classes. 

Object correspondence handling 

To understand what happens in the object level of a system after applying updates, figure 
2 illustrates different scenarios. 

Sample 

Correspondence

mapping 
OAX1

OAX1 

OAX2 

OAX3 

OAX1 

OAX2 

OAX1 

OCY1 

OHW1 OGZ1 

OGZ2 

OCY1 

OGZ1 

OCY1 
CompX1 

CompX2 

CompX3 

OAX2 

Figure 2: Object behavior in the approach. 
The above figure illustrates what happens to object references after two updates of 
CompX. Each dashed line separates different versions of CompX. The top of the figure 
illustrates a situation before any dynamic updates have been performed. An object (OC) in 
a client component (CompY1) of CompX1 holds a reference to an object in CompX1 
(OAX1). In the second scenario between the dashed lines CompX1 has been updated to 
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CompX2. Now when OCY1 invokes a method in OAX1 it acts as a proxy forwarding the 
incoming call to OAX2, thus ensuring that only the latest version of the application code is 
in use. The figure shows a correspondence mapping from OAX1 to OAX2, which states 
that the two objects really represent the same instance in the system. As an example of 
the correspondence mappings workflow, consider if OCY1 invokes a method in OAX1 and 
this method takes a parameter of a type declared in CompX1. In such situations, a lookup 
in the correspondence map holding mappings of objects from CompX1 to CompX2 has to 
be performed to find the object representing the corresponding object in CompX2. When 
the correct object is found, the method with the same signature in OAX2 is invoked using 
this object as parameter. The approach ensures that the correspondence map holds the 
corresponding object at any time by moving the state of CompX1 to CompX2 at update 
time mapping corresponding objects. Furthermore, any constructor in CompX1 called 
after the update results in calling the same constructor in CompX2 and mapping the two 
objects instantiated. When the method returns, the return value can be a type of a class in 
CompX2, which is incompatible with the return value of the method called in OAX1. To 
address this problem the approach uses the reverse workflow doing a lookup in the 
correspondence map from CompX2 to CompX1. This mapping is not shown in the figure 
and is only used to decrease lookup time by indexing objects of CompX2 instead of 
CompX1. In this reverse lookup, it cannot be assured that mappings are available for all 
objects in CompX2 to objects in CompX1. For instance, if the return value is a new object 
created after the update, either internally by CompX2 or externally by another client. If 
the corresponding object in CompX1 is not found for the object in CompX2 a new proxy 
object, which forwards incoming calls to the object in CompX2 is instantiated and 
returned to the caller. The proxy and the "real" object are then mapped to allow fast 
lookups in future invocations. The middle section of the figure also shows that if a new 
client component (CompZ1) of CompX1 is added after the update to CompX2, then 
objects of CompZ1 bypasses the proxy component of CompX1 making direct references 
to objects in CompX2. The bottom of the figure represents the scenario of an update of 
CompX2. First of all, it is obvious that the proxy object OAX1 now forwards calls to OAX3 
instead of OAX2. In the figure, a later update of CompZ1 to CompZ2 is illustrated to see 
what happens when a proxy component has no clients. The result of updating CompZ1 is 
that CompZ1 now forwards method calls to CompZ2. This implies that CompX2 is never 
used by CompZ1 as no original application code is executed. The net effect of this is that 
all instances of CompX2 are garbage collected. Using correspondence mappings and in-
place proxification proves to solve the common self-problem mentioned in 
[Lieberman86], as it guarantees the use of the correct object understood by clients using 
it. If for instance a new version of a class defines a method that returns this, the object 
returned to the client calling it would in fact be a reference to the proxy itself forwarding 
to the "real" return value. 

This high-level view of the approach shows how the version barrier can be effectively 
circumvented to allow objects of different versions of the same class to co-exist at 
runtime. 
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Type compatibility in state migration 

The approach needs to face a number of compatibility issues when allowing distinct 
objects disguised as the same real object to cross the version barrier. Whenever a field, 
parameter or return type has a static type corresponding to a class in an update-enabled 
component there are possible conflicts that need handling when updating the system. To 
see such conflicts in a more illustrative way the next subsection turns to the example in 
figure 1. 

Consider what happens at update time when migrating state from CompA1 to 
CompA2. In general, field values represent the state of a running program. In presence of 
the version barrier, the approach cannot simply make a shallow copy of the field values in 
a given instance in a component that is about to be updated. The update manager must 
include runtime type checks to ensure that all field values are compatible with the ones 
seen by the updated component. The possible scenarios of static type of a given field that 
influence these checks are divided in two. Either the declaration of the type of a particular 
field lies in an update-enabled component or it does not. In case of the former, the 
location of the component declaring the static type of the field is found. Based on this 
knowledge the dynamic type of the field value must comply (that is being either that 
particular type or any subtype of it) with the most recent version declaring the particular 
static type due to the class loader scheme. 

In short, when an update occurs the approach (1) extracts the state from CompA1, (2) 
converts it to be compatible with CompA2 and (3) deploys the transformed state in 
CompA2. The main difficulties lie in converting the field values to let the new component 
understand them while mapping the correspondence between objects of the two versions. 
In order to explain these difficulties the following description uses examples starting with 
the simple update scheme of figure 1. Suppose that an instance in CompA1 (OEA1) needs 
updating to CompA2, which implies deep-copying the fields of OEA1. For every field the 
update manager checks to see if the static type is dynamically enabled. If that is the case, 
then it locates the components declaring both the static and the dynamic type of the field. 
Then it checks for equality of the two components found and in this case it requests an 
instance of the most recent version of that component. A situation like this occurs for two 
reasons in figure 1: Either a field has both a static and a dynamic type of class/classes 
declared in CompA1, or in CompB1. In the first situation, a request for a compatible 
instance of the dynamic type in CompA2 is made. This request must ensure that the value 
of the original field acts as a proxy for the new instance created, in the future. 
Furthermore, mapping of the two objects is kept, so when they later figure as parameters 
or return values in method invocations, the caller or callee recognizes them as a type 
known to them. Given that both types are declared in CompB1, a request for a new 
instance of the class corresponding to the dynamic type from CompB2 is made and the 
same proxyfication and mapping takes place as before. Consider what would have 
happened if CompB1 was not updated in time of the update of CompA1 as shown in figure 
3. Then fields in CompA1 having types declared in CompB1 would be compatible to 
CompA2 and a request for an updated instance would not be necessary. 
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CompA1 

CompB1 

CompA2 

Time  
Figure 3: Simple update from CompA1to CompA2 

Component dependency handling 

The complexity of the state migration process grows when the components declaring the 
static and dynamic type of field values differ. A situation like this occurs when a client of 
a component implements or extends a type of that component. Consider the scenario 
illustrated in figure 4 when updating an instance of a class in component CompA1. 

CompA1 

CompB1 

CompA2 

Time

CompC1 

Legend 

Update

Uses
Inheritance

 
Figure 4: Component scheme as in figure 3, but now CompAn depends on CompC1 as well. The 
inheritance relation between CompB1 and CompC1 means that CompB1 defines at least one 
subclass of a class in CompC1. 

Suppose the update manager at some point locates a field with static type declared in 
CompC1 and dynamic type in CompB1. To handle such situations it searches for the most 
recent component of the static type as this will be the one known by the updated 
component. After this, it checks if the latest version of the component containing the 
dynamic type requires the component found for the static type. In such cases, represented 
by the scenario in figure 4 , it simply copies the field if the types are already of the latest 
version. On the other hand, in case of further updating of the components declaring the 
static and dynamic types, the update manager requests a new instance as seen before. In 
rare situations, however, the most recent component declaring the dynamic type of the 
field does not require the latest version of the component with the static type. Consider 
the example in figure 5. 
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CompA1 

CompB1 

CompA2 

Time

CompC1 CompC2 

 
Figure 5: The problem of two components depending on different versions of a third. 

The problem at hand is that component CompA2 depends on the updated version of 
CompC (CompC2) and of CompB1, which on the other hand depends on CompC1. In this 
paper, we refer to this particular problem as the conflicting dependencies problem. A 
similar situation occurs when a field in CompA1 has a static type declared in CompA1 and 
a dynamic type declared in a component using CompA1. In that case the dynamic type 
will not comply with the updated version of the static type. To handle these situations the 
approach performs an analysis of component dependencies and inheritance across 
components. It consists of (1) analyzing component dependencies and inheritance 
relations across components before the start of the update, (2) Class loader migration of 
any component (CompB1) that might cause this particular conflict, (3) update CompA1 so 
that it would depend on CompB2 and CompC2 while CompB2 also depends on CompC2. 
Class load migration happens through moving the code and state of a component to a 
new namespace by loading classes with a new class loader. The difference between this 
and a normal update is that the same code base is used; only the types changes to comply 
with the new namespace. In this case, the component dependencies end up as illustrated 
in figure 6. 

CompA1 

CompB1 

Time

CompC1 CompC2 

CompA2 

CompB2 

 
Figure 6: Solving the conflicting dependencies problem. In the updated system the two 
components CompA2 and CompB2 will both depend on CompC2, thus preventing the conflict to 
occur. 

This approach in itself be relative time consuming in worst-case scenarios in which every 
dynamic-enabled component needs updating to fulfil the component dependencies 
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mentioned. However, in many cases the proposed restrictions are not necessary. 
Remember that a prerequisite of the conflicting dependency problem is that a component 
declares subtypes of classes in components other than itself. To capture those rare 
situations that require updates of other components, a mechanism to discover potential 
conflicts needs to be present. The approach handles the conflicting dependency problem 
by performing load time checks of relevant dependency and subtype relationships for 
every component. For a given component, CompX the approach must search for types in 
the component that might cause a conflict when updating CompX or any component 
depending on CompX.  It then writes the information gathered to the file system so that 
the update process can use it in later updates. In relation to figure 5, the approach finds a 
cross component subtype in CompB1 when it is installed and it determines that CompB1 
depends on CompC1. This information is used when updating CompA1 to CompA2 to 
ensure that CompB1 updates before the update of CompA1. 

The example above shows how the conflicting dependency problem is solved in 
relation to state migration. However the conflict manifests itself differently at runtime. 
Suppose the dependencies of figure 5 holds but no inheritance relation is present between 
CompB and CompC. Then the approach allows the update to CompA2 leaving possible 
runtime conflicts in cross component method invocations where types of CompC are 
used. Suppose CompB1 defines a method in its API returning a type from CompC1.  
When CompA2 invokes the method it expects a type from CompC2. The approach solves 
this issue by a combination of pre-compile modifications and load time wrapping. At pre-
compile time checks of component API identifying conflicts are made by determining the 
components declaring every return or parameter type. If a dynamic enabled type declared 
in a component other than the one defining the method in which it belongs is found, then 
this type is changed to the interface that every dynamically enabled type must implement 
(this is actually code generated by the pre-compiler, leaving the programmer unaware). 
Information about the substitution must be kept by the dynamic update manager for later 
use when updating components using the involved component. Every method call done 
by components using a method that returns a conflicting type is wrapped (at load time) in 
a method defined by the update manager that always returns the expected type. In case of 
conflicting parameter types, the converting is done by load time generated code in the 
start of the method. 

Previously described solutions of state transfer ensures that migration of fields does 
not end up in runtime errors, because it is guaranteed that any dynamic type either 
directly copied or requested as a new version complies with the static type of the field.  
However, there are still cases where the types reachable from the new state instances can 
cause errors. Consider what happens when a field has a type belonging to the "Java 
Collection Framework", [Sun05a] or any internal declared data structure defined by 
CompB1 that could hold instances of types not directly known to CompB1. If such data 
structures references any type declared in CompA1, then these types would not be 
compatible to CompA2. To capture these cases the update manager checks if the field 
value is member of the collection framework and converts the instances (if necessary) 
held by the collection to types known by the new version. To ensure compatibility of any 
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instance reachable from the updated component, it simply recursively traverses and 
convert all fields that are dynamically enabled. 

Type compatibility in method invocation 

Problems related to method invocation when using the approach has its origin in the 
version barrier. Consider the following pseudo code in a given method in the API of an 
update-enabled component (the code for checking the proxy field and invoking the 
corresponding method in the new version are code generated). 

public ATypeInThisComp getTheType(String name, 
AnotherTypeInThisComp theClass) { 

if proxy then // Execute the same method in updated version 
return dynRef.invoke(“getTheType", …; 

else … // Execute normal method body 
} 

An obvious problem in this case is the return type when invoking the corresponding 
method in the dynamic reference to the latest version. Because of the version barrier, the 
return type in the latest version needs converting in order to be usable as return type. This 
process is similar to the one seen in transferring state by using static and dynamic type 
information to retrieve an instance of correct version. Another issue is the parameter 
types which is essentially the same problem you have with return types. Thus, to ensure 
correct method invocation all methods in the API of a component need to comply with 
the following template generated by the pre-processor. Of course, lookups in the 
appropriate correspondence mappings are performed before any converting. 

public TypeX methodName(TypeY param1, TypeZ param2 …) { 
 if proxy then // Execute the same method in updated version 

// Convert parameters to types  
// understood by latest version 
Object newParam1 = convertType(param1, newVersion …) 
// Get the return value from latest version 
Object res = dynRef.invoke((“getTheType”,newParams …); 

  // Convert it to type understood by this comp 
  res = convertType(res, thisVersion …); 

return res; 
 else … //Execute normal method body 

This ensures that the caller or callee understands any return and parameter type. In the 
description of state transfer, the problem of having type belonging to the collection 
framework or other such data structures was mentioned. The same problem arises in 
method invocation across components, as the return type could be a collection containing 
types declared in a previous version of a component using the particular method. Suppose 
this was the case, then a situation in which one component functions as a keeper of 
instances of another component occurs. A possible scenario exemplifying this could be a 
bank where different departments define a specialized class of an account superclass. The 
system could consist of a common model component holding every account and a 
number of department components that register their instances of accounts by casting 
them to the common superclass. Imagine that a department retrieves an instance of an 
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account known to that particular department (this would require that the common model 
component deliver a key to inserted instances) and casting it to the particular subtype of 
that department. Consider now if the department is updated and all its instances are 
updated (all old instances are now proxies of the new ones). Subsequently, when 
retrieving that same instance as before it would not be compatible with the expected type 
when casting it to the subtype. The needed instance is in fact the one referenced by the 
proxy returned by the common model. The approach addresses the problem by replacing 
all casts to types that are dynamically enabled with a cast-method that returns the 
expected instance in runtime. Another issue arises when the department tries to check if a 
given instance is in a given collection retrieved from the common model. This check 
along with the remove functionality provided by collections will always fail after an 
update. To address this issue the approach makes sure that every comparison of different 
representations of the same object version always returns true. It accomplishes this by 
overriding the equals and hashcode methods. 

Fragile base class problem 

The presence of inheritance relations across components reveals another problem known 
as the fragile base class problem described in [Szyperski98], which states that if a class 
in a component evolves it might break either syntax or semantics of subclasses 
implemented in client components.  

ClAY1 ClAY2 

ClBX1 

m() 

eval() 
m() 

eval() 

 
Figure 7: The fragile base class problem. The method m() is not originally implemented in the 
superclass, but added dynamically. The two methods may be semantically different. 

Figure 7 illustrates how easily decentralized development can introduce the fragile base 
class problem in the presence of inheritance relations across components. Consider what 
happens when CompX declares a subclass of ClAY1 which defines a method m() that is 
not present in the superclass. Suppose now that the developers of CompY defines a 
method also called m() in ClAY2. In a previous subsection it was explained how the 
approach in such cases would trigger class loader migration of CompX to make the 
subclass comply with the correct super type. A dispatch issue arises from this as the 
approach cannot determine which method to execute when method m() is invoked. While 
"Old" clients expect the semantics of the method in the subclass, which is chosen by 
default in Java, new clients aware of the updated superclass would expect the new 
method definition in the superclass. One solution would be to implement an advanced 
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stack trace to see from where the method was invoked, however, this solution brings too 
much of an overhead to be feasible in the approach of this paper. In fact the fragile base 
class problem poses the same difficulties if the system is updated through the restart 
scenario. Hence, to ensure system integrity the approach rejects all updates of a 
component declaring a superclass to a class declared in another component, if the update 
results in modifications to the superclass, causing either syntactic or semantic 
incompatibilities. 

This concludes the description of the main issues faced by the approach. Some of the 
technical implementation details, of which a description will follow in section 3, are left 
out. 

Assumptions 

The approach works for arbitrary java applications under some assumptions, presented in 
this subsection. 

Public and protected fields. To maintain the level of indirection of the approach, it 
only allows access to public or protected fields across components through appropriate 
accessor methods. This restriction complies with information hiding, first described by 
[Parnas72], which is a common requirement in object-oriented programming. Retrieving 
field values internally in components is not subordinated to this restriction. 

Reflection. Values of fields retrieved by the reflection API can be inconsistent with 
the right value held by the latest version of the instance. For instance, if reflection is used 
to capture the values of particular fields of a class whose state has been transferred to the 
latest version, it would not be semantics preserving. Furthermore, malicious programmers 
can exploit all fields, methods and the initializing constructor generated by the approach 
posing a security risk.  For this scenario to happen a programmer has to know of the 
approach. 

API evolution. The approach preserves type safety by defining restrictions on 
component API. All classes in the API must be backwards compatible in the sense that 
they should at least provide the same set of public methods and constructors as the 
previous version. Classes in the API can add any number of methods, fields and 
constructors in a new version, which makes the approach very flexible. In short, a class in 
the API can evolve following the normal API design guidelines [McManus05]. You are, 
however, free to add, remove or substitute internal classes not included (directly or 
indirectly) in the API, as only types reachable from the API are affected by indirection. 

Timing of updates. The approach does not support updating of components 
containing active methods at the time of the update request. If one or more methods 
belonging to a component that needs updating are executing, then it has to wait for them 
to stop. This may imply that some updates never takes place. 

Native methods. The approach assumes that classes reachable from the API of a 
component do not contain native methods. Native methods are methods implemented in 
another language that can be used in Java through the Java Native Interface, [JNI06].  
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Field values. The approach cannot assign values to fields in a new version of a class, 
if the fields were not present in the preceding version. In case of additional fields in a 
new version of a class, the approach assumes that the programmer implements default 
values at the class level. Moreover, the programmer should take these values into account 
when using the fields, as instantiation of new objects which is part of moving state, is 
done by a code generated constructor which do not initialize fields. 

3 IMPLEMENTATION 

This section explains how the approach handles the problems stated from a technical 
point of view. 

A system implementing the approach consists of two main components; a pre-
processor and the dynamic update manager (DUM). The main purpose of the pre-
processor is to prepare components for dynamic updates. The job of the DUM is to 
perform the updates by migrating state and maintaining correspondence mappings of 
corresponding objects in the system. Furthermore, it handles the runtime conversions of 
return and parameter types. As previously mentioned, any class reachable from the API 
of a component needs pre-processing. In such classes the pre-processor add fields as 
follows to let instances of the classes behave like a proxy. 

• A static proxy field that determines the behavior of the class. 
• A static reference to the class representing the latest version if it is proxy. 
• A reference to the current version of the instance if it is proxy. 
• A static field that references the component instance in which the class is 

declared. 
• A field containing the value returned by the hashcode method. 

Redirecting static method invocations happens by the use of the static field that represents 
the latest version of the class whereas redirecting instance methods uses the object 
reference to the corresponding instance in the latest version. In order to redirect methods 
the DUM declares two general methods for method invocation from a proxy, one for 
static and one for instance invocations. 

The component class (singleton pattern, [Gamma95b]) which is code generated holds 
values for determining the unique id of each component, typically divided in a symbolic 
name and a version identifier. Furthermore, it holds a list of all instances currently active 
in the component. This enables the DUM to retrieve instances of a component that needs 
updating one at a time. To ensure that no memory leaks appear in this case, weak 
references in java.lang.ref package, [Sun05b] is used in order for the garbage collector to 
reclaim objects that is unreachable from the main program. 

To see what goes on behind the scenes of the DUM this subsection exemplifies what 
happens when updating a component and more importantly how the approach handles 
updates of previously updated components. On time of an update request caused by either 
user interaction or a push-through strategy from a web-server, of which the specific 



 
EXTENDING ECLIPSE RCP WITH DYNAMIC UPDATE OF ACTIVE PLUG-INS 

 
 
 
 

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 6 

technique is out of the scope of this paper, the DUM first checks if additional updates of 
other components should take place as described in section 2. It then starts the 
proxification and state transfer process by traversing the list of live instances in the 
component. For every instance the proxy field is set to true and the newly created object 
from the new version is associated with the proxy instance. Furthermore, it maps the two 
corresponding objects in two different maps indexed by proxy objects in one and real 
objects in the other to keep lookup time minimal when using these maps in parameter and 
return value determination. It also makes sure to set the hashcode field to the value 
returned by invoking hashcode() on the proxificated object. This ensures correct 
comparison between objects representing the same instance. The creation of new objects 
happens by the use of a code generated constructor that actually does nothing. The 
approach cannot use a copy constructor like the technique in [Orso02] that takes the state 
of the former version because the encoding of state needs to create new instances. Instead 
it adds any new instance to the correspondence mapping so they can be used when 
transferring the fields of the instance. When transferring state of a specific field is 
completed the state held by the old field is cleared to free up memory. This leaves the 
memory print of a proxy relatively small. After the update any constructor called in a 
former version of a component invokes the corresponding constructor in the current 
version and associating itself with the object returned. Furthermore, the created instance 
of the current version is added to the active objects list in the appropriate component 
instance. 

When a component eventually needs updates a second or third time, special care must 
be taken not to introduce more than one level of indirection from former to latest version. 
The approach needs to update the field representing the real objects and classes in any 
previous version of live instances. This is handled in parallel with state migration by 
looking up objects in former versions that correspond to the one being proxificated. In 
some cases a given object does not have a representation in any former versions if it has 
been created at a point after an update and has never been returned to clients using 
particular versions of the updated component. In such cases the approach simply updates 
proxy instances of the versions currently present in the maps. As a result of this scheme a 
lot of objects in versions between the first and the current can be garbage collected, thus 
minimizing memory overhead. Actually, the only live objects of a particular version after 
an update are the ones being directly referenced by clients using this version. 

An issue arises after an update in handling references in the correspondence 
mappings. It has been described that use of weak references solves the problem of 
reclaiming objects that are unreachable from application code. Consider what would 
happen using this type of references when an instance of the latest version is created, and 
at some later point figures as a return value (directly or indirectly in collections or 
likewise) in a method called by a client using a former version. In this case a proxy 
instance of the corresponding class in the particular version is requested and put into a 
correspondence map. If weak references are chosen, the proxy instance would not be 
reachable from application code and thus reclaimed in the first coming garbage collection 
leaving the DUM of doing the same request every time this specific instance takes place 
in method invocations (assuming that the clients receiving the object not caching it 
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permanently). In correspondence mappings from a new version to a former 
java.lang.ref.SoftReference, [Sun06c] is used instead. In this way the garbage collector 
reclaims objects referenced in this way only when needing more memory. 

Performance 

This section briefly discusses performance issues related to the approach. The migration 
of state is of concern along with converting parameters and return types in method 
invocation.  

 As stated before the migration of state happens through converting old types to new 
ones which implies executing one constructor for every live instance in a component. 
This approach is relatively time consuming and very dependant of component size. The 
fact that the approach updates whole components regardless of the impact of the change 
in the updated version could seem odd. However, what is lost in one place is gained in 
another. By accepting longer update time, the actual runtime performance increases 
significantly in the sense that internal classes run as normal java classes. A system where 
every class is a component like in [Orso02], makes the update of finer granularity and 
thus requires less update time in average per component. This approach, however, implies 
that every class is penalized by a proxy or wrapper making the conversion between types 
much more frequent in runtime. Our approach ensures that classes which are tightly 
connected belong to the same namespace and are thus compatible when communicating. 
Assuming that dependencies between components are kept as low as possible, it is 
concluded that the vast majority of interaction happens inside components making the 
approach very efficient indeed. As an extreme example in opposition to defining every 
class as a component, an entire application could be one huge component. In this case 
making a dynamic update corresponds to the normal stopping and restarting scenario. In 
our opinion we have found a golden middle way between these extremes. We stress that 
the purpose of the approach is to support normal desktop applications such as java IDE's 
in which users are tired of restarting when updating. Another issue that benefits the 
approach of updating entire components at a time is that an update typically consists of 
more than just one component. In real life an entire feature containing several 
components is typically the normal updating granularity. In this case a lot of bindings 
between previous versions get converted to new ones thus not needing ever to go through 
a proxy except for components in the very bottom controlling the event flow triggered by 
user interactions. 
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4 RELATED WORK 

This section focuses on work that relates to the approach described in this paper in the 
sense that it possesses one or more of the capabilities needed to do a dynamic update of a 
running system. First, it looks into work contributing to working around the version 
barrier held by Java, which has shown to be a major problem in dynamic updating 
systems as anticipated in [Ebraert05]. Secondly, it focuses on existing approaches for 
supporting multiple representations of the same objects. Finally, we turn to the subject of 
transferring state between versions. 

Different approaches for handling the version barrier have been discussed in the 
literature and can generally be divided into the following two subcategories: 

• Running a modified version of a standard VM to allow object compatibility of 
multiple versions of the same class. 

• Introducing method indirection and state transfer between versions. 
Although not directly intended for dynamic software updating, [Sato05] presents an 
approach based on modifying a VM that relaxes the version barrier under certain 
circumstances. They propose a terminology called "Sister namespaces" that extends the 
normal class-loader scheme with the ability to associate a sister class-loader. This means 
that multiple versions of the same class loaded by sister class-loaders can effectively be 
assigned to each other under the assumption that they are version compatible. They give a 
definition of version compatibility that builds on binary compatible changes in the Java 
language specification [Gosling00]. Other approaches that modify a standard virtual 
machine and thus not directly comparable to our work are [Malabarba00; Redmond02; 
Gustavson05]. Among techniques not requiring a modified virtual machine, [Orso02] 
presents DUSC which is purely software-based like the approach presented here. It 
addresses the version barrier problem by statically modifying a Java application to be 
dynamically enabled by wrapping all classes in the system, thus introducing indirection 
of all public method calls in every class. One advantage of the technique is that it does 
not heavily exploit the reflection API, as interfaces of the wrapper classes are frozen and 
all references to types in the original application classes interchanged with wrapper types. 
Unlike our approach, one disadvantage of that approach is the fact that you cannot add 
new methods to existing classes without making a completely new wrapper and thus 
loosing any state held by the previous version. Another drawback of the approach is that 
a class cannot implement or extend any new class in a new version, which makes a lot of 
normal refactoring impossible. [Bialek04] presents a similar approach, which uses 
wrappers and renaming of classes like [Orso02] to support hot swapping. In [Bialek04], 
however, it is possible to alter the signature of existing methods by using interface 
adaptors. 

Different approaches for supporting multiple representations of the same object, by 
dynamically changing the class of the object, have been discussed in [Drossopoulou01; 
Serrano99; Malabarba00]. The approach in [Serrano99] called "Wide classes" proposes to 
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let an instance of a class be reclassified as a subtype and later to be shrunk back to the 
original. Unlike our approach the different views cannot exist simultaneously which is 
necessary in order to let old clients see old types and new ones new types. This kind of 
support is proposed in [Bertino95], which introduced the idea that an object can have 
multiple most specific classes. Class selection is then based on the static type of the 
object reference through which the object is accessed. This allows for multiple 
simultaneous representations of the same object. However, their approach cannot be used 
for classes belonging to disjoint class hierarchies, which is the case when loading classes 
with different class loaders, because it requires the set of most specific classes to have a 
common superclass. Another approach called "Aliased Multi-Object Type Widening" 
presented in [Joergensen04] defines wrappers for extending both state and behaviour of 
objects. Clients have a specific view of the object like in our approach (a component 
using another is a client of that component). However, the approach is not applicable to 
the problem addressed in this paper, because an object has differing state and behaviour 
depending on the particular view in which it operates. The approach presented here 
preserves the semantics of corresponding objects regardless of the specific clients using 
them. 

When it comes to transferring state, several approaches have been suggested. The 
technique most similar to ours is the one in [Orso02] where copy-constructors are used. 
They simply encode the values of the fields of the former version of an instance and 
apply it to a code-generated copy-constructor in the new version. This approach cannot 
be directly transferred to our approach because, as stated in section 2, the update manager 
needs to keep track of both the old and new versions of the instance while migrating state. 
In [Vandewoude05a] an approach for dynamically updating component systems is 
presented. The work mainly focuses on developing a tool that can assist a programmer in 
transferring state in an intelligent way. This implies finding correspondence between 
fields in two versions of a class in which either name or type (or both) of the fields have 
changed. The tool they have developed called DEEPCOMPARE is presented in 
[Vandewoude05b]. In our work, we focus on the underlying ideas of the approach and as 
a result of that, we have chosen a simple and to some extend primitive way of migrating 
state. In future studies, however, a tool such as DEEPCOMPARE would be interesting to 
integrate in the approach as it would provide the programmer with a more flexible 
approach to refactoring. We point out that the main ideas behind the approach do not rely 
on specific state transferring logic. 

The work of Gupta et al. [Gupta96] also includes dynamic software updating although 
it mostly focuses on validating updates. A method that likewise falls into the domain of 
dynamic updating is the one presented in [Hicks01]. This method, however, targets a C-
like language and does not deal with the problems related to object-oriented languages. 

[Duggan01] presents a proposal of a new language that relaxes the requirement that 
all distinct types should be converted when interacting with clients depending on 
different versions. While the research presented is not related to providing suitable 
solutions to applications written in existing languages such as Java, it contributes to the 
area of defining a language that supports dynamic adaptation. 
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5 FUTURE WORK 

One area of interest for future work is the investigation of performance penalty when 
component size changes. Using an automatic profiling tool to analyze runtime 
performance of method calls across components could lead to a better configuration of 
component size. The update manager should handle merge or split operations needed to 
optimize performance along with additional updates of newly configured components. 

Furthermore, we plan to extend the approach with the ability to perform compile-time 
checks of version compatibility to ensure that no runtime exceptions such as 
NoSuchMethodException occur.  

As stated in section 1, the approach does not handle updates of distributed 
applications. This support could be added by implementing a transaction manager that 
controls the coordination of the updates.  

6 CONCLUSION 

This paper presented the design and implementation of a dynamic update approach for 
extending eclipse RCP with dynamic update. Using in-place proxification as the 
necessary indirection mechanism, allows the approach to execute updated code. It thereby 
introduces an object correspondence issue, which appropriate correspondence mappings 
handle, thus maintaining object identity. Hence, the approach provides a technique for 
objects to go back and forth through the version barrier with as little overhead as a hash 
table lookup. It balances update time with runtime performance by making components 
the granularity of updates. Experiments show that the approach runs with a moderate 
performance overhead that would be acceptable for most applications. 
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