
Vol. 6, No. 5, Special Issue: Workshop on FTfJP, ECOOP 2006, June 2007

A Parameterized Type System for Simple
Loose Ownership Domains

Jan Schäfer, TU Kaiserslautern, Germany
Arnd Poetzsch-Heffter, TU Kaiserslautern, Germany

Ownership Domains generalize ownership types. They support programming patterns
such as iterators that are not possible with ordinary ownership types. However, they are
still too restrictive for cases in which an object X wants to access the public domains
of an arbitrary number of other objects, which often happens in observer scenarios.
To overcome this restriction, we develop so-called loose domains which abstract over
several precise domains. Similar to the relation between supertypes and subtypes, we
get a relation between loose and precise domains. In addition, we simplify ownership
domains by reducing the number of domains per object to two and hard-wiring the
access permissions between domains. We formalize the resulting type system for an
OO core language and prove type soundness and a fundamental accessibility property.

1 INTRODUCTION

Showing the correctness of object-oriented programs is a difficult task. The inherent
problem is the combination of aliasing, subtyping, and imperative state changes.
Ownership type systems [13, 27, 12, 9] support the encapsulation of objects and
guarantee that all objects are reachable from the root only via paths through their
owner object. This property is called owners-as-dominators [13]. Unfortunately,
this property prevents important programming patterns such as the efficient imple-
mentation of iterators [28]. Iterators of a linked list, for example, need access to the
internal node objects, but must also be accessible by the clients of the linked list.

Ownership domains (OD) [2] generalize ownership types. Objects are not di-
rectly owned by other objects. Instead, every object belongs to a certain domain,
and domains are owned by objects. Every object can own an arbitrary number of
domains, but an object can only belong to a single domain. The programmer spec-
ifies with link declarations which domains can access which other domains. This
indirectly specifies which objects can access which other objects, as objects can only
access objects of domains to which its domain has access to. Beside the link decla-
rations, domains can be declared as public. If an object X has the right to access
an object Y, then X has also the right to access all public domains of Y.

In OD, variables and fields are annotated with domain types. The type rules
enforce the following restriction: If a field or variable v holds a reference to an object
X with a public domain D, and we want to store an object in D into a variable w,
then v has to be final and w is annotated by v.D . Thus, it is impossible with

Cite this article as follows: Jan Schäfer, Arnd Poetzsch-Heffter: A Parameterized Type Sys-
tem for Simple Loose Ownership Domains, in Journal of Object Technology, vol. 6,
no. 5, Special Issue: Workshop on FTfJP, ECOOP 2006, June 2007, pp. 61–86
http://www.jot.fm/issues/issues 2007 6/article3

http://www.jot.fm/issues/issues_2007_6/article3

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

Figure 1: The ownership and containment relation of objects and domains form a
tree rooted by a global domain. Solid rectangles represent objects, dashed rounded
rectangles represent domains, where gray rectangles are local domains and white ones
are boundary domains. An edge from an object X to a domain d means that X owns
d.

the OD approach to store an arbitrary number of objects of public domains in an
object, as for every object of a public domain there must be a corresponding final

field, and the number of final fields must be known statically.

The problem is that the OD approach requires that the precise domain of every
object is known statically. But sometimes there are situations in which a program-
mer does not know the precise domain but only knows a set of possible domains.
With our type system it is possible to specify so-called loose domains which represent
a set of possible domains, allowing to abstract from the precise domain.

The remainder of this paper is as follows. In the next section, we explain our
approach together with two examples. In Section 3, we present a formalization of
a core object-oriented language that encorparates simple loose ownership domains.
The dynamic semantics for that language is given in Section 4. In Section 5 we
present the central properties of our language. Section 6 discusses our approach
together with related work. We conclude and give an outlook on future work in
Section 7.

2 SIMPLE LOOSE OWNERSHIP DOMAINS

The basic idea of Simple Loose Ownership Domains (SLOD) is the same as that
of OD [2]: objects are grouped into distinct domains, domains are owned by ob-
jects, and every object belongs to exactly one domain. In this paper, we simplify
the ownership domain approach of Aldrich and Chambers [2] in two ways: Every
object owns exactly two domains, namely a local domain and a boundary domain.
Thus, SLOD needs no domain declarations. In addition, access permissions between
domains are hard-wired, so SLOD needs no link declarations.

62 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

2 SIMPLE LOOSE OWNERSHIP DOMAINS

Accessibility Properties

Objects that are in the local domain of an object X belong to the representation
of X and are encapsulated. Objects of the boundary domain of X are objects that
are accessible from the outside of X, but at the same time are able to access the
representation objects of X. In terms of OD the boundary domain is a public domain.
The ownership relation of objects and domains forms a hierarchy, where the root
of the hierarchy is a special global domain (see Figure 1). Furthermore, we call an
object X the owner of an object Y if X owns the domain of Y.

The domain structure determines which objects can access each other. Let X
and Y be objects. We say that X can access Y if and only if one of the following
conditions is true:

• Y belongs to the global domain.

• X is the owner of Y.

• The owner of X can access Y.

• Y belongs to the boundary domain of an object Z that X can access.

More interesting, however, than the objects that can be accessed are the objects that
can not be accessed, because this complementary relation leads us to a generalization
of the owners-as-dominators property which is enforced by ownership type systems
[13]. The ownership-as-dominators property states that all access paths from the
root to any object go through its owner object.

The domain subtree of an object X consists of X and, recursively, of all objects
that are owned by an object in the domain subtree. An object is outside of an object
X if it does not belong to the domain subtree of X. The boundary of X is the set
of objects consisting of X and, recursively, of all objects in the boundary domains
owned by an object in the boundary of X. An object is inside of X if it belongs to
the domain subtree of X, but not to its boundary. With these definitions, SLOD
guarantees the following property:

All access paths from objects outside of X to objects inside of X go
through X’s boundary.

This boundary-as-dominators property is a generalization of the owners-as-domina-
tors property, as the owners-as-dominators property for an object X can be enforced
in SLOD by putting no objects into the boundary domain of X, leading to a boundary
of X that only contains X.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 63

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

domain ::= global | same | d | owner .kind
owner ::= this | owner | x | domain

kind ::= local | boundary
d ∈ domain parameters
x ∈ final fields and final variables

Figure 2: Syntax of domain annotations in SLOD.

Domain Annotations

To statically check the boundary-as-dominators property, types in SLOD are aug-
mented with domain annotations. Figure 2 shows the complete syntax of domain
annotations.

A domain annotation consists of an owner part and a kind part. The owner part
represents the owner object of the domain, the kind part describes the domain kind.
For example, the domain annotation this.local has owner part this and kind part
local, where this represents the current this-object. The owner keyword stands
for the owner object of the domain in which the current this-object is contained1.
We also allow final fields or final variables as owners of domains. Beside the
composite domain annotations there are three single domain annotations, these are
global, same and d, where d is a domain parameter. The annotation global repre-
sents the global domain which is accessible from everywhere and same represents the
domain in which the this-object is contained in. With domain parameters classes
can be made parametric in certain domains.

Domain annotations statically restrict the possible values that a variable or field
can hold. For example, a local variable of type this.local T can only hold ref-
erences to T-objects that are in the local domain of the current this-object. This
subsection introduces the use of domain annotations. The next subsection will ex-
plain loose domains in more detail.

We describe domain annotations along with the linked list example in Fig. 3
that in particular illustrates how data structures with iterators can be handled. In
the code examples we give a full annotation of all types with domain annotations.
However, this annotation overhead can be significantly reduced by using defaults
and annotation inference which we describe elsewhere [30].

To make objects, such as the Node objects of the list, inaccessible from the
outside of the list, they are placed into the local domain of the owner. Hence, the
head field of LinkedList is annotated with this.local. As can be seen in method
add, this domain annotation is established when Node objects are created.

1This should not be confused with other ownership type systems such as the one of Clarke et al.
[13] where owner represents the owning context. In our system the domain in which the this-object
is contained in is denoted by same, which can be seen as equivalent to the owner keyword of Clarke
et al.

64 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

2 SIMPLE LOOSE OWNERSHIP DOMAINS

public class LinkedList<d> {
this.local Node<d> head;
void add(d Object o) {
head = new

this.local Node<d>(o,head);
}
this.boundary Iter<d> iter() {
return new

this.boundary Iter<d>(head);
}

}

public class Iter<d> {
owner.local Node<d> current;
Iter(owner.local Node<d> head) {
current = head;

}
boolean hasNext() {
return current != null;

}
d Object next() {
d Object result =

current.value;
current = current.next;
return result;

}
}

public class Node<d> {
d Object value;
same Node<d> next;
Node(d Object value,

same Node<d> n)
{
this.value = value;
this.next = next;

}
}

public class Main {
...
final this.local
LinkedList<this.local> l;

l = new LinkedList<this.local>();
l.add(new this.local Object());
// precise domain
l.boundary Iter<this.local> it;
it = l.iterator();
// loose domain
this.local.boundary
Iter<this.local> it2;

it2 = it;
this.local Object obj = it2.next();
...

}

Figure 3: A linked list with iterators.

As the Iter objects of the linked list should be accessible from the outside
of the linked list and at the same time must be able to access the internal Node
objects, the Iter objects are put into the boundary domain of the linked list. Hence,
the iterator method of the LinkedList class returns a new this.boundary Iter

instance. Within the class Iter, Node objects have domain annotation owner.local

indicating that they belong to the local domain of the list object. Thus, the current
field is annotated with owner.local. Note that our approach simplifies the use of
ownership domains, as in the approach of Aldrich and Chambers [2], the Iter class
would need a domain parameter to represent the domain of the Node objects.

In class Node, the next field of Node is annotated with same to indicate that
the next object is in the same domain as the current object. In case of the linked
list, this is the local domain of the list object (as the Node class is only used for the
linked list, we also could have annotated the next field with owner.local). The
value field illustrates the use of a domain parameter.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 65

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

The applications of classes LinkedList and Iter in Main demonstrate further
interesting features of SLOD. The variable it, for example, is declared with domain
annotation l.boundary. As l is a final variable, this is a precise domain anno-
tation. It represents the boundary domain of the LinkedList object referenced by
variable l. Such domain annotations are also supported by OD.

Our approach additionally provides the possibility to use loose domain annota-
tions. A domain annotation is loose if the owner part is a domain, For example,
this.local.boundary denotes a loose domain representing the set of all boundary
domains of all objects that belong to the local domain of the receiver object. Vari-
able it2 is declared exactly like that. As the domain l.boundary is contained in
the set of possible domains represented by this.local.boundary, it is possible to
assign it to it2. Note that this kind of annotation needs no final variable. More
details on loose domains are explained in the next subsection.

The LinkedList, Node and Iter classes are parameterized with a domain pa-
rameter d that represents the domain of the stored data. In the example, the Main

class instantiates that parameter with this.local.

Note that we only allow domains as type parameters and not general types. This
is done only to simplify the formalization of our language, it is not a limitation of
our approach. Dietl et al. [16] shows how to unify domain parameters with general
type parameters, which can also be applied to our language.

Loose Domains

Loose domains allow to abstract from the precise domain of an object. This is a
new feature of SLOD compared to the approach of Aldrich and Chambers [2], which
increases the flexibility of our system, without loosing any encapsulation properties.
In the following, we describe the application and soundness aspects of this feature.

To demonstrate the enhanced expressiveness of loose domains, we use a slightly
modified version of an example given by Aldrich and Chambers [2] (see Figure 4).
It is a model-view system. Model objects allow to register listener (Lstnr) objects.
When an event happens at the model, the model notifies all registered Lstnr objects
by calling the method update(int). View objects have a state that is updated
whenever one of its listeners is notified. Method lstnr() creates new ViewLstnr

instances as boundary objects of their view. The example is a simplified version of
the observer pattern [18] and is representative of a category of similar examples.

Loose ownership domains allow more than one Lstnr object to be registered
at a Model object. In the example, the domain parameter of the Model object
in class Main is instantiated with the loose domain this.local.boundary. The
calls of m.addLstnr(view.lstnr()) are allowed, because the result domain of
view.lstnr() is view.boundary, and view is in domain this.local. Thus,
view.boundary is in the loose domain this.local.boundary. In the ownership
type system of Aldrich and Chambers [2] this solution is not possible, because

66 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

2 SIMPLE LOOSE OWNERSHIP DOMAINS

interface Lstnr {
public void update(int data);

}
class View {

this.local State state;
this.boundary Lstnr lstnr() {
return new this.boundary

ViewLstnr(state);
}

}

class Model<d> {
this.local LstnrList<d> lstnrs;
void addLstnr(d Lstnr l) {
lstnrs.add(l);

}
void notifyAll(int data) {
for (d Lstnr l : lstnrs) {

l.update(data);
}

}
}

class ViewLstnr
implements Lstnr

{
owner.local State state;
ViewLstnr(owner.local State s)
{ this.state = s; }
public void update(int data)
{ /*perform changes on state*/ }

}

class Main {
...
this.local Model<
this.local.boundary Lstnr> m;

m = new this.local Model<
this.local.boundary Lstnr>();

this.local View view =
new this.local View();

m.addLstnr(view.lstnr());
view = new this.local View();
m.addLstnr(view.lstnr());
...

}

Figure 4: A model-view system with listener callbacks.

the parameter of the Model class had to be instantiated with the precise domain
view.boundary, where view had to be a final variable. Hence, it would not be
possible to add a Lstnr object of a different View object to the Model object.

To guarantee the soundness of our system, we have to restrict the usage of a type
that is annotated with a loose domain annotation (a loose type). It is, for example,
not possible to update same annotated fields on loose types. In the following code
example, the assignment b.f = b2.f is not allowed, even though the static types
of b.f and b2.f are the same, as b is a loose type, and thus the precise domain of
b.f is not known statically.

// ...

this.local A a = new this.local A();

this.local.boundary A b = a.b;

this.local A a2 = new this.local A();

this.local.boundary A b2 = a2.b;

b.f = b2.f; // forbidden

class A {

same A f;

this.boundary A b;

}

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 67

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

3 STATIC SEMANTICS

In this section, we present a formalization of the core of SLOD. We call the language
Simple Loose Ownership Domain Java (SLODJ). The formalization is based on
several existing formal type systems for Java, namely Featherweight Java (FJ) [22]
and ClassicJava [17], and is also inspired by several flavors of these type systems
which already incorporate ownership information [13, 12, 2, 31, 24].

Domain annotations in SLODJ are similar to those in SLOD. The only differences
are that in SLODJ fields cannot be owners of domain annotations and that class
parameters are only domain parameters and not type parameters.

Notations. We use similar notations as FJ [22]. A bar indicates a sequence:
L = L1, L2, . . . , Ln, where the length is defined as |L| = n. Similar, T f ; is equal to
T1 f1;T2 f2; . . . ;Tn fn. If there is some sequence x, we write xi for any element of
x. The empty sequence is denoted by •. We often use sequences as arguments for
functions which are only defined on single elements. This means that the function
is applied to each element of the sequence.

Syntax and Types

The abstract syntax of SLODJ is shown in Figure 5. Underlined syntactic elements
do not belong to the user syntax, but can occur during typing. Square brackets []
denote optional elements. A SLODJ program consists of a list of class declarations,
a class name, and an expression. A class declaration consists of a class name with
a list of domain context parameters, an optional super type, a sequence of field
declarations, and a sequence of method declarations.

In contrast to FJ and Java, but like the formalization of Lu and Potter [24],
we have no special root class Object which is the super class of all classes. This
simplifies the formalization and in fact makes the language more general. The Java
restriction can be enforced in our language by demanding that all classes except a
special Object class must have a super class. Classes have no constructors; objects
are created with all fields initialized to null. One consequence is that the new

expression takes a type as argument only. Method declarations always have a result
type, and a single body expression, which is always the result of the method. A type
consists of an owning domain, a class name, and a list of domain parameters. let

expressions bind variables and are similar to final variable declarations in Java. We
support field reads and also field updates to get a more realistic model of Java. The
domain annotations of a type T = d C〈d〉 consist of owning domain d and domain
parameters d. Note that the owning domain is not part of the domain parameters.
This is different from some ownership type system where the owning context is part
of the parameters.

68 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

3 STATIC SEMANTICS

P ∈ Program ::= (L,C, e)
L ∈ ClassDecl ::= class C〈α〉 [extends D〈β〉] { T f ; M }
M ∈ MethDecl ::= T m (T x){e}

T,U ∈ Type ::= d C〈d〉
e ∈ Expr ::= new T | x | e.f | e.f = e′ |

let x = e in e′ | e.m(e)
d, g ∈ Domain ::= a.b | global | α | same | !d
a ∈ DomOwner ::= x | this | owner | ?
b ∈ DomTail ::= c | b.c
c ∈ DomKind ::= local | boundary
f ∈ FieldName x, y ∈ Variable
m ∈ MethName C,D ∈ ClassName

α, β ∈ DomParam

Figure 5: SLODJ syntax

Lookup Functions

To retrieve methods and fields we define corresponding lookup functions which are
shown in Figure 6. As our language does not allow overloading, methods can be
looked-up by their name only. If a method is not found in the class definition it is
looked-up in the super class (meth-lkp-inhrt).

Auxiliary Functions

We need some auxiliary functions shown in Figure 7. isPrecise says whether a
domain is precise, i.e. not loose. The global domain is precise, domains where the
tail only consists of a single element are precise, and the domain same is precise. As
for domain context parameters it is not possible to say whether they are instantiated
by precise or loose domains, we have to assume that they are loose. The function
prcsOwner returns the precise owner of a given domain. If the domain has no known
owner, which is the case for domain context parameters, it returns “?”. “?” stands
for an invalid owner which leads to an invalid domain and an invalid type. In the
case, where a domain has a known owner, but the owner is not precise (d.c), the
owner is augmented with an exclamation mark “!”. Similar, the function prcsDomain
adds a “!” depending on whether the domain is precise or not. “!” is only used by
the assignable function. In all other rules we implicitly ignore the “!”. assignable
defines whether a domain is assignable or not. A domain is assignable if and only
if it is not augmented with a “!”. A type is assignable if all its domain annotations
are assignable.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 69

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

(params)

class C〈α〉 . . .
params(C) = α

(fields-drct)

class C〈α〉 {T f ; . . .}
fields(C〈d〉) = [d/α]T f

(fields-inhrt)

class C〈α〉 extends D〈β〉 {T f ; . . .}
fields(C〈d〉) = [d/α](T f, fields(D〈β〉))

(ftype)

fields(T) = . . . , T ′ f, . . .

fType(T, f) = T ′

(method-drct)

class C〈α〉 . . . T m(T x){e} . . .
method(C〈d〉,m) = [d/α] T ′ m(T ′ x){e}

(method-inhrt)

class C〈α〉 extends D〈β〉 {. . . ;M} m not in M

method(C〈d〉,m) = [d/α] method(D〈β〉,m)

Figure 6: Lookup functions

The Function σ

To translate domain annotations of fields and methods to the calling context we use
the function σ. It takes the receiver expression, the receiver type and the type to
be translated and returns the translated type. The function replaces the keywords
this, owner and same. this is replaced by the receiver expression e, owner is
replaced by the precise owner of domain d as defined by function prcsOwner, and
same is replaced by the domain resulting from the prcsDomain function.

Note that this replacement can produce illegal types. For example, domains
where this is replaced by an expression which is not a variable, or domains where
owner is replaced by ?. This is intended and these errors are caught by the type
system. In addition, it can happen that domains like global.local can appear,
which are not allowed by our syntax. We solve this by implicitly treating domains
of the form global.b as global.

σ(d C〈 〉, e) · T = [e/this, prcsOwner(d)/owner, prcsDomain(d)/same]T

Type System

The type rules of SLODJ are shown in Figures 12 and 13. We use the judgments
shown in Figure 8. The environment Γ is a finite mapping from variables to types.

70 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

3 STATIC SEMANTICS

isPrecise(global) isPrecise(a.c) isPrecise(same)

prcsOwner(global) = global prcsOwner(a.c) = a prcsOwner(same) = owner

prcsOwner(d.c) =!d prcsOwner(α) =?
¬isPrecise(d)

prcsDomain(d) =!d

isPrecise(d)
prcsDomain(d) = d

@d′ : d = !d′

assignable(d)
assignable(d, d)

assignable(d C〈d〉)

Figure 7: Auxiliary functions

Γ; ∆ ` � Γ is a well-formed environment
Γ; ∆ ` T T is a well-formed type in Γ
Γ; ∆ ` d d is a well-formed domain in Γ
Γ; ∆ ` T <: U T is a subtype of U in Γ
Γ; ∆ ` e : T e is a well-formed expression of type T in Γ
Γ; ∆ ` d→s d′ domain d can access domain d′

C `M M is a well-formed method declaration in class C
` L L is a well-formed class declaration
` P : T P is a well-formed program of type T

Figure 8: Judgments for the type system of SLODJ

The context ∆ stores a list of valid domain context parameters.

Γ ::= ∅ | Γ, x : T

∆ ::= • | ∆, d

For any program (L,C, e), we assume an implicitly given fixed class table CT
mapping class names to their definitions. All judgments are implicitly parameterized
with that class table. The class table is assumed to satisfy the following conditions.
(1) L = ran(CT); (2) ∀C ∈ dom(CT). CT (C) = class C . . .; (3) For every class
name C appearing anywhere in CT , we assume C ∈ dom(CT); (4) There are no
cycles in the subclass relation induced by CT . In contrast to FJ and Java, we did
not model a special Object class as a superclass of every class, as this has no effect
to the encapsulation properties.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 71

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

(sa-refl)

Γ; ∆ ` d→s d

(sa-same-owner)

Γ; ∆ ` a.c→s a.c′

(sa-param)

a ∈ {this, owner} d ∈ ∆
Γ; ∆ ` a.c→s d

(sa-same-1)

d ∈ ∆
Γ; ∆ ` same→s d

(sa-same-2)

a ∈ {this, owner}
Γ; ∆ ` a.c→s same

(sa-owner-1)

Γ; ∆ ` this.c→s owner.c′

(sa-owner-2)

Γ; ∆ ` same→s owner.c

(sa-boundary-1)

Γ; ∆ ` d→s d′

Γ; ∆ ` d→s d′.boundary

(sa-boundary-2)

Γ; ∆ ` d.boundary→s d

(sa-boundary-var)

Γ; ∆ ` x : d C〈 〉 Γ; ∆ ` d′ →s d

Γ; ∆ ` d′ →s x.boundary

(sa-global)

Γ; ∆ ` d→s global

Figure 9: Static Accessibility Relation

Static Accessibility Relation

Domain annotations represent sets of possible runtime domains. During runtime
the accessibility between objects is restricted by their runtime domains. To stati-
cally guarantee that during runtime certain accesses may not happen, we define a
relation on domain annotations. We call this relation the Static Accessibility Re-
lation. It is written as Γ; ∆ ` d →s d′, read: “Domain d can access domain d′

under type environment Γ and context ∆”. The derivation rules of this relation are
shown in Figure 9. For example, the relation states that domains can always access
the boundary domain of domains they can access (sa-boundary-1). The Static
Accessibility Relation is only used by the (t-type) rule to ensure that no illegal
accesses can be introduced by domain annotations. Note that the relation is not
transitive.

Environments and Valid Types

The rules for well-formed environments and valid types are shown in Figure 10.
(t-type) ensures that the owning domain of a type can access the domain param-
eters, and that this.local can access all domains of a type. This ensures that no
illegal access can be introduced by domain parameters, and that all domains are ac-
cessible by the receiver object. For example, the type owner.local C〈this.local〉
is not allowed, because domain owner.local cannot access domain this.local.

72 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

3 STATIC SEMANTICS

(t-env ∅)

∅; ∆ ` �

(t-env x)

Γ; ∆ ` T x /∈ dom(Γ)
Γ, x : T ; ∆ ` �

(t-type)

Γ; ∆ ` � Γ; ∆ ` this.local→s d, d Γ; ∆ ` d→s d |params(C)| = |d|
Γ; ∆ ` d C〈d〉

Figure 10: Environments and types

(s-domain refl)

Γ; ∆ ` d <:d d

(s-domain loose)

Γ; ∆ ` x : d C〈 〉
Γ; ∆ ` x.c <:d d.c

(s-domain ext)

Γ; ∆ ` d <:d d′

Γ; ∆ ` d.c <:d d′.c

(s-type dom)

Γ; ∆ ` d <:d d′

Γ; ∆ ` d C〈d〉 <: d′ C〈d〉

(s-type class)

class C〈α〉 extends D〈β〉 . . .
Γ; ∆ ` d C〈d〉 <: d D〈[d/α]β〉

(s-type refl)

Γ; ∆ ` U <: U

(s-type trans)

Γ; ∆ ` T ′ <: U Γ; ∆ ` U <: T ′′

Γ; ∆ ` T ′ <: T ′′

Figure 11: Subtyping

Subtyping

The subdomain and subtype relations are shown in Figure 11. Three rules de-
fine the subdomain relation. Reflexivity is given by (s-domain refl). The rule
(s-domain loose) states that a precise domain with a variable x as owner and c
as kind is a subdomain of the loose domain d.c if d is the domain of x. For example,
the domain annotation x.boundary is a subdomain of this.local.boundary if x
is typed with some type this.local 〈 〉. If a domain d is a subdomain of domain
d′ then extending both domains by the same kind preserves the subdomain relation
(s-domain ext). Note that <:d is transitive (for the proof cf. [32]).

Beside reflexivity and transitivity, the subtyping relation is defined by two rules.
Rule (s-type class) states that a type T is a subtype of type T ′ if the owning
domains are the same and T ′ is the declared supertype of T ′, where the domain
context parameters are substituted by the corresponding domain parameters of T .
Rule (s-type dom) says that a type T is a subtype of type T ′ if the owning domain
of T is a subdomain of the owning domain of T ′. The other domain parameters must
be the same.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 73

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

(t-prog)

` L this : global C〈•〉; • ` e : T

` (L,C, e) : T

(t-class)

∆ = α T = same C〈α〉 Γ = this : T Γ; ∆ `M
∅; ∆ ` T [β ⊆ α] [override(D〈β〉,M)] [nohiding(D〈β〉, f)]

` class C〈α〉 [extends D〈β〉] { T f ; M}

(t-method)

Γ′ = Γ, x : T Γ′; ∆ ` e : Te Γ′; ∆ ` Te <: Tr ∅; ∆ ` T , Tr

Γ; ∆ ` Tr m(T x){ e }

(override)

M = T m(T){ } if method(U,m) = T ′ m(T ′){ } then T, T = T ′, T ′

override(U,M)

(nohiding)

fields(U) = f f /∈ f
nohiding(U, f)

Figure 12: Program, class, and method typing

Programs, Classes and Methods

Figure 12 shows the rules for program, class and method typing. A program (L,C, e)
is typed by typing e in the type environment mapping this to global C〈•〉. We
demand that class C has no domain context parameters. In addition, all class
declarations must be well-typed. A class declaration is well-typed if all its method
declarations are well-typed under the type environment mapping this to same C〈α〉,
and the types of its fields are well-typed in the empty type environment. This
ensures that the domain annotations of fields cannot contain local variables. If the
class inherits from another class, all domain parameters of the super type must
be domain context parameters of the class itself. In addition, overridden methods
must have the same type signature and fields of super classes may not be hidden.
A method declaration is well-typed if its body expression is well-typed in the type
environment containing this and the formal parameters of the method. We demand
∅; ∆ ` Tr, T to ensure that the domain annotations of formal parameters and the
result type do not contain local variables. Note that in principle it would be possible
that domain annotations of formal parameters contain other formal parameters as
owners, but this feature is omitted for simplicity.

74 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

4 DYNAMIC SEMANTICS

(t-var)

Γ; ∆ ` �
Γ; ∆ ` x : Γ(x)

(t-new)

Γ; ∆ ` T
Γ; ∆ ` new T : T

(t-field)

Γ; ∆ ` e : T ′ T = σ(T ′, e) · fType(T ′, f) Γ; ∆ ` T
Γ; ∆ ` e.f : T

(t-fieldup)

Γ; ∆ ` e.f : Tf assignable(Tf)
Γ; ∆ ` e′ : T Γ; ∆ ` T <: Tf

Γ; ∆ ` e.f = e′ : T

(t-let)

Γ; ∆ ` e : T x /∈ dom(Γ)
Γ, x : T ; ∆ ` e′ : T ′ Γ; ∆ ` T ′

Γ; ∆ ` let x = e in e′ : T ′

(t-invk)

Γ; ∆ ` e : Te method(Te,m) = T m(T ′) . . . Ts, T ′s = σ(Te, e) · (T, T ′)
Γ; ∆ ` e : U assignable(T ′s) Γ; ∆ ` U <: T ′s Γ; ∆ ` Ts

Γ; ∆ ` e.m(e) : Ts

Figure 13: Expression typing

Expressions

The expression type rules are shown in Figure 13. Much is standard, so we only
explain the highlights of our system. In the (t-field) and (t-invk) rules, the
types of the fields and methods are translated to the calling context by the σ func-
tion. This gives the keywords this, owner, and same a meaning in the current
context. The rules (t-fieldup) and (t-invk) both test whether the assigned
types are assignable. This prevents illegal assignments of loose domains to do-
mains that are loose in the current context, but are precise in the original context.
For example, a field update x.f = e, where f is declared with an owning domain
owner.boundary, x has owning domain this.local.boundary, and e has owning
domain this.local.boundary, would be forbidden by rule (t-field). This is be-
cause owner would be replaced with !this.local by the σ function, leading to a
non-assignable domain.

4 DYNAMIC SEMANTICS

The dynamic entities of SLODJ are given in Figure 14. A value v is either null of
an object represented by some object identifier o. A runtime domain is a tuple of a
value v and a domain tail b, or global. An object state s is a tuple (τ, v), consisting
of a runtime type τ and a list of field values v. A store S is a finite mapping from
objects o to object states s. A stack frame F is a finite mapping from variable names

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 75

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

o ∈ Object
v ∈ Value ::= null | o
d ∈ Domain ::= . . . | δ
a ∈ DomOwner ::= . . . | o
T ∈ Type ::= . . . | τ
δ ∈ RuntimeDomain ::= o.b | global
τ ∈ RuntimeType ::= δ C〈δ〉
s ∈ ObjectState ::= (τ, v)
S ∈ Store ::= o 7→ s
F ∈ StackFrame ::= x 7→ v

Figure 14: Dynamic entities of SLODJ

x to values v.

Runtime Types and Runtime Domains

Domains at runtime are modeled as a tuple o.b consisting of an owner object o and a
domain tail b, which is a sequence of boundary and local. Like domain annotations,
runtime domains can either be precise or loose. A precise runtime domain has either
the form o.c or is global, otherwise it is loose. We call types with runtime domains,
runtime types.

The domain information at runtime is needed to prove the correctness of our type
system. However, the evaluation rules do not depend on the domain information
and hence in a real implementation it is not required to store the actual domains in
the object state. Note that objects always belong to domain global or to runtime
domains with objects as owners.

Auxiliary Functions

Figure 15 shows some auxiliary functions. To be able to compare static types with
runtime types, we use a translation function rtd, which translates a static type into
a corresponding runtime type. The function replaces local variables by their values
and uses the receiver object to replace syntactic owners by values. In addition, it
sets the subscripted value of the runtime type.

Subtype Relation on Runtime Types

Similar to the subtype relation on static types we define a subtype relation ⊂:
on runtime types (see Figure 16). It uses the subdomain relation ⊂:d to compare
runtime domains. S ` δ ⊂:d δ

′ states that runtime domain δ is equal to or included

76 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

4 DYNAMIC SEMANTICS

(t-null)

S ` null : τ

(t-obj)

S(o) = (τ,)
S ` o : τ

(rtd)

S ` v : τ
rtdS(F, v, T) = σ(τ, v) · [ran(F)/dom(F)]T

(actd)

S ` v : δ C〈δ〉
actdS(v) = δ

(owner)

actdS(v) = v′.c

ownerS(v) = v′

Figure 15: Auxiliary functions

(sr-domain refl)

S ` δ ⊂:d δ

(sr-domain loose)

S ` actdS(o) ⊂:d o′.b′

S ` o.b ⊂:d o′.b′.b

(sr-type dom)

S ` δ ⊂:d δ′

S ` δ C〈δ〉 ⊂: δ′ C〈δ〉

(sr-type class)

class C〈α〉 extends D〈β〉 . . .
S ` δ C〈δ〉 ⊂: δ D〈[δ/α]β〉)

(sr-type refl)

S ` τ ⊂: τ

(sr-type trans)

S ` τ ⊂: τ ′ S ` τ ′ ⊂: τ ′′

S ` τ ⊂: τ ′′

Figure 16: Runtime subtyping

in runtime domain δ′. This follows the intuition that loose runtime domains can be
regarded as sets of precise runtime domains.

Evaluation Rules

The evaluation rules are shown in Figure 17. We use a big-step natural semantics.
Local variables are handled by a stack frame F , a store S models the state. The
evaluation relation has the form

S, F ` e ⇓ v, S ′

meaning that under store S and stack frame F expression e evaluates to value v and
new store S ′.

The rules are more or less standard. As in other ownership type system the
runtime domains play no role for the evaluation rules, which shows that they are
only needed for the soundness proof. The only rule which requires some explanation
is (r-new). It shows that an object is created by initializing all fields with null.
The runtime type τ of the new object is determined by applying the rtd function to
the static type T .

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 77

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

(r-var)

F (x) = v

S, F ` x ⇓ v, S

(r-let)

S, F ` e ⇓ v, S′ S′, F [x 7→ v] ` e′ ⇓ v′, S′′

S, F ` let x = e in e′ ⇓ v′, S′′

(r-field)

S, F ` e ⇓ o, S′ S′(o) = (τ, v)
S, F ` e.fi ⇓ vi, S

′

(r-fieldup)

S, F ` e ⇓ o, S′
S′, F ` e′ ⇓ v, S′′ S′′(o) = (τ, v)

S, F ` e.fi = e′ ⇓ v, S′′[o 7→ (τ, [v/vi]v)]

(r-invk)

S, F ` e ⇓ o, S′ S′, F ` e1 ⇓ v1, S1 · · · Sn−1, F ` en ⇓ vn, Sn

typeS′(o) = τ method(τ,m) = m(x){eb} Sn, {this 7→ o, x 7→ v} ` eb ⇓ v, S′′

S, F ` e.m(e) ⇓ v, S′′

(r-new)

fields(T) = f

o /∈ dom(S) τ = rtdS(F, F (this), T) S′ = S[o 7→ (τ, null)] |null| = |f |
S, F ` new T ⇓ o, S′

Figure 17: SLODJ evaluation rules

5 PROPERTIES

We now present two important properties of our formalization, namely the Subject
Reduction Theorem and the Accessibility Theorem that leads to the boundary-as-
dominators property.

Type Soundness

In this section we present the Subject Reduction Theorem for SLODJ. We have to
show that during the evaluation of a SLODJ program all values can only be of types
that correspond to their declared static type. For precise formulation of the theorem,
we need additional properties for stores, stack frames, and contexts (Figure 18):

` S Store S is well-formed
S,Γ ` F Stack frame F is well-formed w.r.t. S and Γ
T ` ∆ Context ∆ is well-formed w.r.t. T

The judgment ` S means that the types of field values of all objects in S correspond
to the declared type of the objects’ classes, and S,Γ ` F means that the types of
values of a stack frame F correspond to the types recorded in the type environment

78 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

5 PROPERTIES

(t-store ∅)

` ∅

(t-store object)

` S S′ = S[o 7→ (τ, v)]
T f = fields(τ) |v| = |f | S′ ` v : τ S′ ` τ ⊂: rtdS′(∅, o, T)

` S′

(t-stack ∅)

S,∅ ` ∅

(t-stack var)

S,Γ ` F S ` v : τ
S ` τ ⊂: rtdS(Γ, v, T)
S,Γ[x 7→ T] ` F [x 7→ v]

(t-context)

∆ = d Γ; ∆ ` d→s d

Γ; d C〈d〉 ` ∆

Figure 18: Store and stack frame well-formedness

Γ. T ` ∆ states that ∆ is equal to the list of domain parameters of T , and that the
owning domain of T can access all domains in ∆.

The Subject Reduction Theorem states that if an expression e is typed to T and
e evaluates to value v, then the runtime type τ of v is a subtype of the runtime rep-
resentation of T . The theorem also states that the store stays well-formed under the
evaluation of e. This is needed by the proof to have a stronger induction hypothesis.

Theorem 1 (Subject Reduction). If Γ(this) ` ∆ and Γ; ∆ ` e : T and S, F ` e ⇓
v, S ′ and ` S and S,Γ ` F and S ′ ` v : τ , then

1. S ′ ` τ ⊂: rtdS′(F, F (this), T), and

2. ` S ′

Proof. The proof is by structural induction on the reduction rules of the operational
semantics and a case analysis for every rule. It uses a main lemma that relates the
static subtyping relation with the runtime subtype relation. The crucial cases for
the first equation are (r-field), (r-invk), and (f-fieldup). The crucial cases for
the well-formedness of the store are (r-fieldup) and (r-new). The other parts of
the proof are by straightforward application of the induction hypothesis.

Encapsulation Guarantees

To show the encapsulation property of our type system, we first define which accesses
are allowed at runtime and then show that our type system guarantees that during
the execution of a well-typed program only such accesses can happen.

The accessibility rules in Figure 20 define which domains are accessible by an
object at runtime. They are of the form o −→S δ, read “Under store S, object o can
access the runtime domain δ”. They use the transitive ownership relation shown in
Figure 19. These rules give a formal definition of the access properties we described

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 79

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

(own-direct)

ownerS(o) = o′

o ≺S o
′

(own-trans)

o ≺S o
′ o′ ≺S o

′′

o ≺S o
′′

Figure 19: Ownership relation

(a-own)

o −→S o.c

(a-boundary)

o −→S actdS(o′)
o −→S o

′.boundary

(a-owner)

o ≺S o

o −→S o.c

(a-global)

o −→S global

Figure 20: Accessibility rules

on Page 3. They state that an object o can access a domain δ if and only if one of
the following holds.

• o is the owner of δ (a-own)

• δ is the boundary domain of an object o′, and o can access the domain that o′

belongs to (a-boundary)

• δ is owned by a transitive owner of o (a-owner)

• δ is the global domain (a-global)

We write o −→S v as an abbreviation for o −→S actdS(v). Note that these rules
guarantee that an object o can access the local domain of an object o′ if and only
if o = o′, or o′ is a transitive owner of o. Thus, it is guaranteed that local objects of
an object o can only be accessed by o itself or by objects owned by o.

Similar to the Subject Reduction Theorem we need to define some properties on
stores and on stack frames. These are given in Figure 21. All objects of a store
must have access to the values of their fields (a-store ∗), and all values of a stack
frame must be accessible by the this-object (a-stackframe ∗).

The Accessibility Theorem states that if an expression e is evaluated to v, and
e is well-typed by the type system, then the current receiver object can access v. In
addition, all objects of the new store S ′ can access their field values.

Theorem 2 (Accessibility). If Γ(this) ` ∆ and Γ; ∆ ` e : T and ` S and Γ, S ` F
and
 S and S
 F and S ` e ⇓ v, S ′ then

F (this) −→S′ v ∧
 S ′

80 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

6 DISCUSSION AND RELATED WORK

(a-store ∅)

 ∅

(a-store object)

 S S′ = S[o 7→ (, v)] o −→S′ v

 S′

(a-stackframe this)

S
 {this 7→ o}

(a-stackframe var)

S
 F F ′ = F [x 7→ v] F ′(this) −→S v

S
 F ′

Figure 21: Store and stack frame accessibility

Proof. The proof is by induction on the rules of the operational semantics and a case
analysis on each rule. The proof is mainly done by using the results from Theorem 1
and by using the static accessibility relation to show that the accessibility rules at
runtime are established.

Note that this theorem enforces the boundary-as-dominator property described
on Page 3. Local objects can only be accessed by the owner object, or objects owned
by the owner object. That is, in order to access local objects from the outside, the
access path must go through the owner object, or through boundary objects.

6 DISCUSSION AND RELATED WORK

Our work belongs to the category of mechanisms for alias prevention [21] in general,
and uses the ownership types idea in particular.

Ownership type systems

The first systems encapsulating objects were proposed by Hogg with Islands [20]
and by Almeida with Balloons [4]. Ownership Types are a static way to guarantee
encapsulation of objects during runtime. The notion of ownership types stems from
Clarke [13] to formalize the core of Flexible Alias Protection [29]. Ever since, many
researchers investigated ownership type systems [11, 27, 9, 3]. Ownership type
systems have been used to prevent data-races [6], deadlocks [7, 5], and to allow the
modular specification and verification of object-oriented programs [26, 15]. Lately,
ownership types have been combined with type genericity [31].

All the mentioned ownership type systems have one thing in common: They have
problems with multi-access ownership contexts. In particular, they cannot handle
the iterator problem properly. It turns out that the central property of ownership
type systems prevents a solution: the owners-as-dominators property. Recently
several more or less powerful solutions have been proposed. The first allows the
creation of dynamic aliases to owned objects [12], that is, aliases stored in the stack.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 81

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

The second approach [11, 7] is to allow Java’s inner member classes [19] to access
the representation objects of their parent objects. Both solutions do not provide the
full power to generalize the owners-as-dominators property.

Recently, Lu and Potter [24] presented a type system which separates object
ownership and accessibility. Instead of only giving the owner of a type, types are
also annotated by their possible accessibility. This results in a system that is in
many respects more flexible than ours. However, there are as well programming
patterns that are handled better in our system (see below). The iterator pattern
can be solved in their system by giving the iterator the accessibility of the owner
of the list. For example, the type of the iterator within the List class could be
[owner] Iterator<this>, which specifies that the iterator is owned by the List

object, but can be accessed by the owner of the list (owner is the owner parameter of
the List class). If the list is typed by the client as [world] List<this>, then the
iterator would be typed in that context as [this] Iterator<*>, where * stands for
an unknown owner. This allows the client to access the iterator, but the owner of the
iterator is completely abstract. This is an important difference to our system, as we
do not lose the owner information of the iterator. This allows us to give boundary
objects back to their owner, which is not possible in the system of Lu and Potter.

An earlier system by Lu and Potter [25] considers the encapsulation of effects
instead of objects. This allows, for example, to access internal representation objects
from the outside, but disallows their direct modification. This mechanism is similar
to the read-only mechanism of the Universes approach [27], where it is allowed to
have read-only references to representation objects. However, this approach forbids
programming patterns where boundary objects should be able to directly change
the state of representation objects without using the owner object.

Ownership Domains

The basic idea of ownership domains stems from Clarke [11] with ownership contexts.
Objects are not directly owned by other objects, but instead are owned by contexts.
Contexts in turn are owned by objects. While Clarke’s formalization was based on
the Object Calculus [1], Aldrich and Chambers [2] applied this idea to a subset of
Java and extended it with several features. A programmer has the possibility to
declare an arbitrary number of domains per object and can define which domains
can access which other domains by link declarations. So in parts the OD approach
is more flexible than our approach, thus it is no surprise that our system can be
partly encoded in OD [32].

The iterator problem is solved by OD with so-called public domains, which can
always be accessed if the owner object can be accessed. However, in OD a public
domain must always by attached to a final field or variable to unambiguously
identify the owner object. This restricts the usage of public domains as the owner
object must always be known to the client in order to access its public domain. Our
approach solves this by introducing loose domains which can be declared without a

82 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

7 CONCLUSION AND FUTURE WORK

final field or variable. OD has been combined with an effects system [33]. A more
general version of OD has been formalized in System F [23].

Other Related Work

All work that addresses aliasing in object-oriented programming, especially which
statically guarantee the absence of aliasing, is related to our work. Confined Types
[34] ensure the encapsulation of objects within the boundary of a package. Other
approaches enforce the uniqueness of references to prevent aliases [35, 10].

Limitations

As our system is purely static, the domain of an object cannot be changed after its
creation. Thus ownership transfer is not possible in SLOD. A variant of ownership
transfer, the initialization problem [14], is also not solvable in SLOD, but could be
tackled with unique variables [10], for example.

A loose domain in SLOD cannot be turned back into a precise domain. Such
a cast needs runtime information, which would introduce a non-negligible space
overhead in practice, as every object needs its domain recorded. However, the space
overhead might be minimized by only storing runtime information that is really
needed to support such casts, similar to the approach by Boyapati et al. [8].

7 CONCLUSION AND FUTURE WORK

Simple Loose Ownership Domains (SLOD) simplifies Ownership Domains by omit-
ting link and domain declarations, but keeping the idea of public and private do-
mains. Hence, we maintain most of the expressiveness of Ownership Domains, while
significantly reducing the syntactical overhead. Besides this, SLOD supports so-
called loose domains, which allow to abstract from precise domains. This enables,
for instance, the implementation of model-view systems with an arbitrary number
of listener callbacks, which is not possible with standard Ownership Domains. Our
system is sound and guarantees a property we call boundary-as-dominator, which is
a generalization of owners-as-dominators.

We are currently inspecting existing libraries and programs to measure the prac-
ticability of our approach. In addition, we are working on the inference of domain
annotations in order to reduce the annotation effort. After we did a theoretical work
on the inference of domain annotations [30], we are now working on a checking and
inference tool for a practical subset of Java. Another interesting aspect is to use
domain information at runtime, in order to reduce the annotation effort and to allow
casts from loose domains to precise domains. Finally, we are investigating how the
encapsulation boundaries of SLOD can be used to give thread-safety guarantees.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 83

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

REFERENCES

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.

[2] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from
mechanism. In M. Odersky, editor, Proc. ECOOP 2004, volume 3086 of LNCS, pages
1–25. Springer, June 2004.

[3] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program under-
standing. In Proc. OOPSLA 2002, pages 311–330. ACM Press, Nov. 2002.

[4] P. S. Almeida. Balloon Types: Controlling sharing of state in data types. In
Proc. ECOOP’97, volume 1241 of LNCS, pages 32–59. Springer, June 1998.

[5] C. Boyapati. SafeJava: A Unified Type System for Safe Programming. PhD thesis,
Massachusetts Institute of Technology, Feb. 2004.

[6] C. Boyapati and M. Rinard. A parameterized type system for race-free java programs.
In Proc. OOPSLA 2001, pages 56–69. ACM Press, Oct. 2001.

[7] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: Pre-
venting data races and deadlocks. In Proc. OOPSLA 2002, pages 211–230. ACM
Press, Nov. 2002.

[8] C. Boyapati, R. Lee, and M. Rinard. Safe runtime downcasts with ownership types.
Technical Report TR-853, MIT Laboratory for Computer Science, June 2002.

[9] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In
Proc. POPL ’03, pages 213–223. ACM Press, Jan. 2003.

[10] J. Boyland. Alias burying: Unique variables without destructive reads. Software –
Practice and Experience, 31(6):533–553, May 2001.

[11] D. Clarke. Object Ownership and Containment. PhD thesis, University of New South
Wales, July 2001.

[12] D. Clarke and S. Drossopoulou. Ownership, encapsulation, and the disjointness of
type and effect. In Proc. OOPSLA 2002, pages 292–310. ACM Press, Nov. 2002.

[13] D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection. In
Proc. OOPSLA ’98, pages 48–64. ACM Press, Oct. 1998.

[14] D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure. Research
Report 156, Digital Systems Research Center, July 1998. SRC-RR-156.

[15] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object
Technology, 4(8):5–32, 2005.

[16] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In Foundations
and Developments of Object-Oriented Languages (FOOL/WOOD ’07), Jan. 2007.

[17] M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction semantics
for classes and mixins. Formal Syntax and Semantics of Java, 1523:241–269, 1999.

84 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

7 CONCLUSION AND FUTURE WORK

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[19] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification –
Second Edition. Addison-Wesley, June 2000.

[20] J. Hogg. Islands: Aliasing protection in object-oriented languages. In Proc. OOP-
SLA ’91, pages 271–285. ACM Press, Nov. 1991.

[21] J. Hogg, D. Lea, A. Wills, D. de Champeaux, and R. Holt. The Geneva convention
on the treatment of object aliasing. SIGPLAN OOPS Messenger, 3(2):11–16, 1992.
ISSN 1055-6400.

[22] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core cal-
culus for Java and GJ. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(3):396–450, May 2001.

[23] N. Krishnaswami and J. Aldrich. Permission-based ownership: Encapsulating state
in higher-order typed languages. In Proc. PLDI’05, pages 96–106. ACM Press, June
2005.

[24] Y. Lu and J. Potter. On ownership and accessibility. In D. Thomas, editor,
Proc. ECOOP 2006, volume 4067 of LNCS, pages 99–123. Springer, July 2006.

[25] Y. Lu and J. Potter. Protecting representation with effect encapsulation. In In
Proc. POPL ’06, pages 359–371. ACM Press, 2006.

[26] P. Müller. Modular Specification and Verification of Object-Oriented Programs, vol-
ume 2262 of LNCS. Springer, 2002.

[27] P. Müller and A. Poetzsch-Heffter. A type system for controlling representation expo-
sure in Java. In S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T. Leavens, P. Müller,
and A. Poetzsch-Heffter, editors, Formal Techniques for Java Programs. Technical
Report 269–5, Fernuniversität Hagen, 2000.

[28] J. Noble. Iterators and encapsulation. In Proceedings of the Technology of Object-
Oriented Languages and Systems (TOOLS 33), page 431, St. Malo, France, June
2000. IEEE Computer Society. ISBN 0-7695-0731-X.

[29] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor,
Proc. ECOOP’98, volume 1445 of LNCS, pages 158–185. Springer, July 1998.

[30] A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer. Infering ownership types for encap-
sulated object-oriented program components. In Program Analysis and Compilation,
Theory and Practice: Essays Dedicated to Reinhard Wilhelm. Springer, 2007. to
appear.

[31] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership for generic java.
In Proc. OOPSLA 2006. ACM Press, 2006.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 85

A PARAMETERIZED TYPE SYSTEM FOR SIMPLE LOOSE OWNERSHIP DOMAINS

[32] J. Schäfer and A. Poetzsch-Heffter. Simple loose ownership domains - TR. Techni-
cal Report 348/06, Department of Computer Science, University of Kaiserslautern,
Germany, P.O. Box 3049, 67653 Kaiserslautern, Germany, Mar. 2006. Available at
http://kluedo.ub.uni-kl.de/volltexte/2006/1941/.

[33] M. Smith. Towards an effects system for ownership domains. In ECOOP Workshop
- FTfJP 2005, July 2005.

[34] J. Vitek and B. Bokowski. Confined types in Java. Software – Practice and Experience,
31(6):507–532, 2001.

[35] P. Wadler. Linear types can change the world! In M. Broy and C. Jones, editors,
Working Conference on Programming Concepts and Methods (PROCOMET), pages
347–359. North-Holland, Apr. 1990.

ABOUT THE AUTHORS

Jan Schäfer is a PhD student and research assistant at the Software Technol-
ogy Group at the TU Kaiserslautern, Germany. His research is supported by the
Deutsche Forschungsgemeinschaft (German Research Foundation). Contact him at
jschaefer@informatik.uni-kl.de.
See also http://softech.informatik.uni-kl.de/˜janschaefer.

Arnd Poetzsch-Heffter is a professor at the Computer Science Department of the
TU Kaiserslautern, Germany. He is heading the Software Technology Group. He can
be reached at poetzsch@informatik.uni-kl.de. See also http://softech.informatik.uni-
kl.de/.

86 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

http://kluedo.ub.uni-kl.de/volltexte/2006/1941/
mailto:jschaefer@informatik.uni-kl.de
http://softech.informatik.uni-kl.de/~{}janschaefer
mailto:poetzsch@informatik.uni-kl.de
http://softech.informatik.uni-kl.de/
http://softech.informatik.uni-kl.de/

