
Vol. 6, No. 5, Special Issue: Workshop on FTfJP, ECOOP 2006, June 2007

Modelling a JVM for polymorphic bytecode

Giovanni Lagorio, DISI, University of Genova, Italy

In standard compilation of Java-like languages, the bytecode generated for a given
source depends on both the source itself and the compilation environment. This latter
dependency poses some unnecessary restrictions on which execution environments can
be used to run the code.
When using polymorphic bytecode, a binary depends only on its source and can be
dynamically adapted to run on diverse environments.
Dynamic linking is particularly suited to polymorphic bytecode, because it can be
adapted to an execution environment as late as possible, maximizing the flexibility of
the approach.
We analyze how polymorphic bytecode can be dynamically linked presenting a deter-
ministic model of a Java Virtual Machine which interleaves loading and linking steps
with execution.
In our model, loading and execution phases are basically standard, whereas verification
handles also type constraints, which are part of polymorphic bytecode, and resolution
blends in verification.

1 INTRODUCTION

Java sources are compiled into .class binary files in order to be executed on a JVM
(Java Virtual Machine). These binaries contain JVM instructions, better known as
bytecodes, and other ancillary information.

Unsurprisingly, Java binaries contain many symbolic information: these are
needed for linking classes compiled separately. Furthermore, Java supports dynamic
linking so these information must be kept until runtime. Keeping references to class
members in symbolic form inside binaries, as opposed to fixing object layouts at
compile time1, greatly enhances the possibility of reusing binaries in diverse binary
environments.

For instance, when we compile the method invocation expression Math.sin(0)2

the compiler generates a particular JVM instruction, invokestatic, along with
some metadata containing the symbols Math and sin. This is legitimate: fixing a
particular implementation of the class Math at compile time sounds premature.

It is perhaps less known that Java compilers, when generating binaries, are re-
quired to fix the types of the formal parameters and the return type of any invoked

1As it happens, for instance, in languages as C/C++.
2What this method does is immaterial in our example; however, as the reader probably knows,

this standard method computes the sine of its argument.

Cite this article as follows: Giovanni Lagorio: Modelling a JVM for polymorphic bytecode, in
Journal of Object Technology, vol. 6, no. 5, Special Issue: Workshop on FTfJP, ECOOP
2006, June 2007, pp. 29–59 http://www.jot.fm/issues/issues 2007 6/article2

http://www.jot.fm/issues/issues_2007_6/article2

MODELLING A JVM FOR POLYMORPHIC BYTECODE

method. In our example, a compiler would annotate the invocation of Math.sin

with the type double for both the formal parameter and the return type. This
dependency is not apparent from the source code and, we argue, unnecessary.

If the invocation Math.sin(0) appears in our source code inside, say, an invo-
cation of System.out.println, then sin should be allowed to declare any return
type3. Yet, this is not the case: Java compilation model poses some unnecessary
restrictions on which execution environments can be used to run our code. For
instance, using standard JVMs an implementation of class Math that uses floats
instead of doubles cannot be linked with our example even if its recompilation
against such a math library would succeed.

Binaries would be more reusable if compilers did not enforce these invisible de-
pendencies. Polymorphic bytecode [1], which has been proposed as a means for ob-
taining a compositional compilation for Java-like languages, makes (polymorphic)
binaries dependent only on the sources they have been compiled from, employing
type variables and accompanying type constraints stored inside binaries.

In [1] the focus is on compilation and the described linking process, necessary to
instantiate polymorphic bytecode to standard monomorphic one, is static. However,
as already noted [3, 4], combining polymorphic bytecode with dynamic linking allows
programmers to reuse code with more flexibility, because the same polymorphic
binaries can be dynamically adapted to run on diverse environments.

Of course, standard JVMs cannot directly execute polymorphic bytecode, as
it contains type variables and type constraints. In a previous paper [11] we have
analyzed how the JVM specification could be modified in order to make polymorphic
bytecode run natively.

This paper improves our previous work. The main contribution of this paper
is presenting a model closer to what an implementation would look like: now our
runtime expressions resemble more closely actual JVM instructions. This is not
a mere notation change: we have replaced the instantiation phase, where polymor-
phic bytecode was translated into standard monomorphic code (containing symbolic
annotations), with a JIT-compilation phase4.

The JIT-compilation directly transforms polymorphic bytecode into (an abstract
version of) JVM instructions that do not contain any kind of symbolic annotations.
The annotations contained in field accesses and method invocations are resolved
once and for all into, respectively, field indexes and method indexes.

The former, field indexes, correspond to the positions of fields inside objects; an
actual implementation would use an offset with respect to the beginning of objects
in memory, while our model represents objects as tuples and uses a single slot for
each field, no matter what the type of the field is.

The latter, method indexes, correspond to the positions of the methods inside

3Except for void that, technically [9], is not a type.
4JIT stands for “Just in time”.

30 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

2 STANDARD JVM LINKING AND EXECUTION

the virtual method tables; this is basically the standard implementation technique,
though our virtual tables map indexes to method bodies instead of mapping indexes
to pointers to the actual bodies.

Section 2 recalls how JVMs link and execute classes, and then discusses some
design choices. Section 3 defines binary environments and describes the binary lan-
guage we model; this section can be seen as a crash course in polymorphic bytecode
and we refer to [1] for a complete presentation. Section 4 defines runtime expressions,
Section 5 describes execution and presents some results. Section 6 discusses some
implementation issues and, finally, Section 7 presents related work and concludes.

2 STANDARD JVM LINKING AND EXECUTION

Running a program, at the JVM level, actually means running a class c, that is,
the main method of class c, in a certain binary environment. A binary environment
is a collection of binaries, where the classes needed to execute c can be dynamically
loaded5 from.

Before a class can be executed, it must be loaded and linked. Linking consists
of three different activities: verification, preparation and resolution. Verification
ensures that binaries are structurally correct and that every instruction obeys the
type discipline of the Java programming language [9]. If an error occurs during
verification, then the exception VerifyError is thrown. Preparation, which we
do not model, creates and initializes static fields. Resolution validates symbolic
references to fields and methods6. If an error occurs during resolution, then the
exception IncompatibleClassChangeError or one of its subclasses, for instance
NoSuchMethodError, is thrown.

The JVM specification [12] does not impose an order of execution for loading and
linking activities, as long as errors detected during linkage are thrown at a point in
the execution where some action is taken by the program that might require linkage
to the class or interface involved in the error. Standard JVMs are indeed quite lazy:
they resolve symbolic references just before the execution of the instruction they are
associated with.

In our model, loading and execution phases are basically standard, whereas ver-
ification handles also type constraints, which are part of polymorphic bytecode, and
resolution blends in verification, because we chose to design the linking process as
an incremental version of the inter-checking algorithm described in [1].

One drawback of this choice is that we need to resolve references earlier than
standard JVMs; unfortunately, delaying the resolution of references gives rise to
many issues when dealing with polymorphic bytecode.

The main advantage of our design is that it could be implemented on top of

5This is a simplified view: we are not considering class loaders [12, 13].
6Constructors are considered special methods, named <init>, at binary level.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 31

MODELLING A JVM FOR POLYMORPHIC BYTECODE

B ::= b1 . . . bn

b ::= (cdb, γ̄)

cdb ::= class Object {} | class c extends c′ { fdb mdb } where c 6= Object

fdb ::= fdb
1 . . . fd

b
n

fdb ::= c f;

mdb ::= mdb
1 . . .mdb

n

mdb ::= mh { return eb; }
mh ::= c0 m(c1 x1, . . . , cn xn)
eb ::= x | eb[t.f t′] | eb

0[t.m(t̄)t′](eb
1, . . . , eb

n) | new [c t̄](eb
1, . . . , eb

n) |
(c)eb | �c, t� eb

t ::= c | α
t̄ ::= t1 . . . tn

γ ::= t ≤ t′ | φ(t, f, t′) | µ(t,m, t̄, (t′, t̄′)) | κ(c, t̄, t̄′) | c ∼ t

γ̄ ::= γ1 . . . γn

where class, field, method and parameter names in B, fdb, mdb and mh are distinct

Figure 1: Binary environments.

a standard JVM with a minimal effort: once a polymorphic fragment has been
verified, it becomes a standard piece of code that can be handled like any other
“.class”. Delaying this transformation would instead impact on most components of
a standard JVM, requiring a major revision. Section 6 discusses this topic in more
depth.

3 BINARY ENVIRONMENTS

Binary environments are our abstraction of “.class” containers and are defined in
Figure 1. Formally, a binary environment B is a sequence of binary fragments where
each fragment defines a differently named class7.

Binary fragments b are pairs consisting of a binary class declaration cdb and a
sequence of type constraints γ̄. These constraints express the requirements that a
binary environment B should meet in order to be compatible with cdb. In other
words, if γ̄ hold in an environment B, then cdb can be run on B without getting
stuck.

7This corresponds to the viewpoint of a JVM: when the binary of a certain class is searched,
the first one found in the CLASSPATH is used, no matter how many other binaries may define the
same class.

32 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

3 BINARY ENVIRONMENTS

With the exception of some very small changes, we have inherited the syntax
of binary class declarations and type constraints from [1]; the language is basically
a binary version of Featherweight Java [10]. The superscript “b”, used on many
syntactic categories, means binary ; for instance, a cdb is a binary class declaration
(that is, an abstract view of the bytecode contained in .class binary files). In [1] this
superscript is used to distinguish between source and binary entities. Although we do
not model any source level entity here, we keep the superscripts for two reasons: for
consistency and for distinguishing between binary and runtime expressions, which
we mark with the superscript “r”.

Class declarations cdb are either the declaration of the predefined class Object

which, for simplicity, we assume declares no fields and methods, or the declaration

of a class c, which contains a superclass name c′, a sequence of field declarations fdb

and a sequence of method declarations mdb.

Field and method declarations are standard, while binary expressions eb deserve
a detailed explanation. They are: parameter names, field accesses, method invoca-
tions, instance creations, casts and polymorphic casts (explained below).

Field accesses, method invocations and instance creations contain annotations
between square brackets. These annotations reflect, in an abstract way, the actual
encoding of those kinds of expression in Java bytecode.

Types t are either class names c (that is, the types ordinarily available at source
level) or type variables α, which are instead inherent to the polymorphic approach
and are not available to the source level programmer.

Let us describe annotations by means of an example: suppose we compile the
source expression anA.f.g , where anA is a parameter of type A, in the following
compilation environment:

class A {

B f ;

}

class B {

Object g ;

}

Because class A declares a field named f of type B, the subexpression anA.f is correct
and has type B. Following the same reasoning, any standard Java compiler figures
out that the whole expression is correct, has type Object, and generates the binary
expression

eb
mono = anA[A.f B][B.g Object]

The first annotation, [A.f B], means that type A must provide (that is, inherit or
declare) a field named f of type B. Analogously, class B must provide a field named
g of type Object.

Method invocations and instance creations are annotated as well. The former

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 33

MODELLING A JVM FOR POLYMORPHIC BYTECODE

are annotated with the static type of the receiver, and the name, parameter type
and return type of the method to be invoked. The latter are annotated with the
class name and the parameter type of the constructor to be invoked.

Back to our example, the fact that field f must have exactly type B is deduced
from the compilation environment, rather than explicitly expressed by the source
code: while the programmer clearly wants a field named g from whatever anA.f is,
there is no need for anA.f to have type B or anA.f.g to have type Object. Fixing
all these types at compile time hinders the reusability of the code.

Indeed, the following environment

class A {

C f ;

}

class C {

Object g ;

}

obtained from the previous one by renaming class B, cannot be used to run eb
mono even

though the original source could be successfully recompiled in this environment.

Polymorphic bytecode solves this problem by fixing at compile time only the
things that are known and cannot change. The code of our running example, for
instance, would be compiled in the following polymorphic bytecode:

eb
poly = anA[A.f α][α.g β]

where α and β are type variables. These variables can be replaced by class names
when the execution environment, as opposed to the compilation environment, is
known, making eb

poly usable in more environments than eb
mono.

However, type variables are just a part of the solution. Of course, an arbitrary
substitution of type variables into class names is not guaranteed to produce a sensible
result. This is why we need type constraints too. The polymorphic binary expression
eb
poly should go hand in hand with the following type constraints:

γ̄ = φ(A, f, α) φ(α, g, β)

whose informal meaning is: “class A must provide a field named f of type α which,
in turn, must provide a field named g of any type8”. Indeed, we can find the value
of α looking for a field named f in A; then, we either find the value of α (that is,
the type f is declared of) or we know that no substitution can produce a sensible
result9.

The compilation of cast expressions presents another issue to take care of: con-
sider the source expression es of type t and the expression: es

cast = (c)es. This

8In this case we are assuming that the variable β is not used in any constraint and can assume
any value.

9If A is unavailable or does not provide a field f, then no substitution can satisfy φ(A, f, α).

34 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

3 BINARY ENVIRONMENTS

cast is correct whenever t and c are in subtype relation, however the translation
of an upcast is different from the translation of a downcast. Indeed, in the former
case the cast is just discarded, while in the latter case a runtime check is required.
If the relation between t and c is unknown, then the polymorphic cast expression
� c, t� eb can be used. When polymorphic bytecode is instantiated, that expres-
sion is replaced by eb in binary environments where t is more specific than c, and
by a standard cast (c)eb in the others.

The bottom of Figure 1 shows the five kinds of constraints that we need; their
informal meaning is the following:

• t ≤ t′ — type t is a subtype of t′

• φ(t, f, t′) — type t provides a field named f of type t′

• µ(t,m, t̄, (t′, t̄′)) — type t provides a method named m, applicable to argu-
ment types t̄, with parameter types t̄′ and return type t′ (the subtle reason
why this kind of constraint and the following one need to consider both the
formal and the actual parameter types is explained below)

• κ(c, t̄, t̄′) — class c provides a constructor applicable to argument types t̄,
with parameter types t̄′

• c ∼ t — class c and type t are comparable.

These are the constraints given in [1], with the exception of constraints “∃ c”, with
the informal meaning “class c must exist”. Indeed, these existential constraints are
only needed in the static approach to make compositional compilation equivalent to
standard global compilation. In a JVM we do not need to require the existence of
all classes named in the sources: if a class is not needed for the execution, then we
do not care whether such a class exists.

As said, method and constructor resolution constraints need to deal with both
the formal parameter types and the actual parameter types. In [1], these are needed
to obtain standard bytecode, where invocations need to be annotated with formal
parameter types. By forbidding overloading (which we have decided not to, see
below) we could simplify the constraints; anyway, keeping the distinction between
formal parameter types and actual parameter types makes method lookups simpler.
Consider, for instance, the following example:

class C {}

class D extends C {}

class Test {

Test m(C aC) { return this ; }

}

...

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 35

MODELLING A JVM FOR POLYMORPHIC BYTECODE

er ::= v | er.getfield(n) | er.invokevirtual(n, er) |
c.new(er) | aload(n) | er.checkcast(c) |
ε | verifyCls(c, er) | bootstrap(γ̄, eb)

er ::= er
1, . . . , er

n

v ::= new c(v̄)
v̄ ::= v1, . . . , vn

ε ::= NoClassDefFoundError | ClassCircularityError | VerifyError |
ClassCastException

n ::= 0 | 1 | 2 | . . .

Figure 2: Syntax of runtime expressions.

new Test().m(new C()) ; // µ(Test,m, C, α)
new Test().m(new D()) ; // µ(Test,m, D, β)

If method invocation constraints did not contain type variables representing the
formal paramter types, as in the comments of the above example, knowing that both
constraints would hold using the substitution {α 7→ Test, β 7→ Test} would not give
us any information on which method is to be invoked unless, as we mentioned, we
forbid overloading; in that case, there could be at most a method named m declared
in Test or its superclasses.

4 RUNTIME EXPRESSIONS

Figure 2 shows runtime expressions; except for verifyCls and bootstrap, which
are peculiar to our approach and are described, respectively, below and in the next
section, they are: values v, field accesses, method invocations, instance creations,
this/parameter fetching, cast expressions and exceptions ε. As said, their syntax
recalls the syntax of actual JVM instructions.

Note that aload instructions are contained only in the body of the methods and
are never directly executed. That is, these instructions are replaced by the target
object and the actual parameters when a method invocation is executed (see the
second metarule in Figure 12).

Values v represent objects; each object consists of the keyword new, followed by
its class name and the sequence of its field values between round brackets.

Field accesses and method invocations are annotated by an integer index. This
index indicates the position of the field to be fetched for field accesses, and the
position of the body to be executed for method invocations.

Exceptions ε are: NoClassDefFoundError, thrown when a needed class cannot
be found, ClassCircularityError, thrown when loading a certain class would in-
troduce a cycle in the inheritance hierarchy, VerifyError, thrown when the checking

36 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

5 EXECUTION

of a type constraint fails or when type constraints are not strong enough to guarantee
the safe execution of the class they are associated with, and ClassCastException,
thrown when the execution of a cast fails.

The special expression verifyCls is used to wrap an expression er when the
execution of er is stuck because it needs some class c to be verified.

The only expressions that can trigger this behaviour in our model are instance
creations: the creation of an object of type c can happen only if class c has been
successfully verified (this action, in turn, may require other classes to be loaded).

So, in an environment where c has not been verified yet, the expression
er
1 = new c(. . .) is rewritten into er

2 = verifyCls(c, er
1), that can be read as “verify

class c first, and then go on with the execution of er
1”.

Rewrite rules (Section 5) guarantee that either the execution of er
1 will restart

in a new environment where class c has been successfully verified, or the whole
expression er

2 will be rewritten into a loading/verification exception.

5 EXECUTION

Execution, modeled in a small step style, has the form: BL1,M1, e
r
1 ;B BL2,M2, e

r
2

where:

• B is the execution environment where classes are loaded from; it contains
polymorphic binary fragments.

• BL1 and BL2 contain the loaded classes; they are contained10 in B, and BL2 is
always equal to or greater than BL1.

• M1 andM2 are the environments of verified classes. These environments map
class names to virtual method tables ν. Virtual method tables ν, in turn, map
integer indexes to the runtime expressions that correspond to method bodies.

• er
1 and er

2 are the expressions to execute.

No rewrite rule changes all three components at once: the rewriting rules for loading
classes act only on BL, the ones for linking onM, and the ones for standard execution
on er.

Execution starts with the special expression bootstrap from the empty environ-
ments of loaded and verified classes, that is either rewritten into a runtime expres-
sion, when verification succeeds, or into an exception, if constraints γ̄ are not strong
enough to guarantee a safe execution for eb or if verification of γ̄ fails (more details
on bootstrap are given below).

10Formally they are sequences, but we assume that no binary environment contains different
declarations for the same class, so we can consider them as maps when this simplifies the discussion.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 37

MODELLING A JVM FOR POLYMORPHIC BYTECODE

Constraint verification is modeled by the execution of verification actions V .
The execution of these actions can either produce a new action, to go on with
the verification, or produce a final result: a substitution σ, when the verification
succeeds, or an exception ε, when the verification fails. Substitutions produced by
successful verifications map the type variables contained in the constraints to actual
type names (of the current environment) that satisfy the constraints.

Because the verification of a class can never trigger the verification of another
class, the execution of verification actions does not need to know or update the set
of verified classes. So, verification has the form BL1,V1 →B BL2,V2, where:

V ::= load(c,V) | verify(γ̄,V) | verifyEither(V1,V2,V3) |
match(t̄, c̄,V) | σ | ε

The informal meaning of actions V is, respectively,

• load c, and then execute V ;

• verify γ̄, and then execute V ;

• verify either V1 or V2, and then execute V3;

• produce a substitution σ matching t̄ with c̄, and then execute σ(V) – note
that this is the standard application of a substitution except when σ is applied
to another σ′ (inside V): in this case the result of the substitution is the
composition of σ and σ′;

• the verification has succeeded and the result is the substitution σ,

• the verification has failed and the exception ε has to be thrown.

In the following subsections we first describe the loading process and class verifi-
cation (which uses JIT-compilation and constraint verification that are detailed in
their own subsection). Then, we show how the system can be bootstrapped and,
finally, we prove some useful properties.

Loading

The rewrite rules for action load are shown in Figure 3: If the requested class
cannot be found or its loading would introduce a cycle in the type hierarchy, then
the corresponding exception is thrown (first and second rules). If everything is fine
then the verification continues with V in a new environment BL2 where the binary b,
loaded from B, has been added to BL1. Note that we check that loading a class does
not create cycles in the type hierarchy, whereas we do not check overriding rules; in
this regard we do exactly what standard JVMs do.

38 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

5 EXECUTION

BL, load(c,V)→B BL, NoClassDefFoundError
c 6∈ def (B)

BL1, load(c,V)→B BL1, ClassCircularityError

c ∈ def (B \ BL1)
BL2 = BL1 B(c)
isInsideACycleBL2(c)

BL1, load(c,V)→B BL2,V

c ∈ def (B \ BL1)
BL2 = BL1 B(c)
¬isInsideACycleBL2(c)

isInsideACycleB(c0) = ∃n ≥ 0 : superB(c0) = c1 ∧ . . . ∧ superB(cn) = c0

superB(c) = super(classDeclaration(B(c)))

classDeclaration((cdb, γ̄)) = cdb

super(class c extends c′ { fdb mdb }) = c′

Figure 3: Rewrite rules for loading classes.

In [1] method overloading and field hiding are not modeled, so we resolve type
constraints without taking these two features into account11. However, we do not
need to forbid the presence of overloaded methods or hidden fields, that is, we do
not check their presence when we load a class.

In checking constraints, when we search for a method named m, invoked with n
arguments, we end the lookup procedure at the first m accepting n arguments. If
overloading were supported, we should collect all the applicable methods and find
the most specific for the invocation, exactly as a standard Java compiler does.

Analogously, when we search for a field f we end the lookup procedure at the
first field named f.

Class verification

As said in the previous section, class verification, and the subsequent introduction
of successfully verified classes in the system, is carried out by the execution of the
special expression verifyCls, whose rewrite rules are shown in Figure 4. The first
four rules encode, respectively, that: there is no need to verify a class twice, to verify
a class we must load it first (second and third rules), and classes are verified after
their superclass.

The next three rules are more interesting and use two auxiliary predicates defined

11Type constraints would probably have to be changed to model overloading and hiding fully.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 39

MODELLING A JVM FOR POLYMORPHIC BYTECODE

BL,M, verifyCls(c, er) ;B BL,M, er
c ∈ def (M)

BL1, load(c, ∅)→B BL2, ∅
BL1,M, verifyCls(c, er) ;B BL2,M, verifyCls(c, er)

c 6∈ def (BL1)

BL, load(c, ∅)→B BL, ε
BL,M, verifyCls(c, er) ;B BL,M, ε

c 6∈ def (BL)

BL,M, verifyCls(c, er) ;B
BL,M, verifyCls(c′, verifyCls(c, er))

c ∈ def (BL) \ {Object}
c′ = superBL(c)
c′ 6∈ def (M)

BL1, verify(γ̄, ∅)→+
B BL2, σ

BL2,M1, σ ` c⇒M2

BL1,M1, verifyCls(c, er) ;B BL2,M2, er

readyTBV(c,BL1,M1)

(cdb, γ̄) = BL1(c)

wellFormedAndCompliant(γ̄, cdb)

BL1, verify(γ̄, ∅)→+
B BL2, ε

BL1,M1, verifyCls(c, er) ;B BL2,M1, ε

readyTBV(c,BL1,M1)

(cdb, γ̄) = BL1(c)

wellFormedAndCompliant(γ̄, cdb)

BL,M, verifyCls(c, er) ;B
BL,M, VerifyError

readyTBV(c,BL,M)

(cdb, γ̄) = BL(c)

¬wellFormedAndCompliant(γ̄, cdb)

readyTBV(c,BL,M) = (c ∈ def (BL) \ def (M)) ∧ (c = Object ∨ superBL(c) ∈ def (M))

wellFormedAndCompliant(γ̄, cdb) = wellFormed(γ̄) ∧ γ̄ ` cdb�

Figure 4: Rewrite rules for verifying and linking classes.

at the bottom of the figure: readyTBV and wellFormedAndCompliant. The former
predicate expresses that a class is “ready To Be Verified” when the class has been
loaded, has not been verified yet and its superclass, if any, has already been verified.
The latter encodes the requirements on the constraints γ̄ accompanying a binary
class cdb: they must be well-formed and cdb must be compliant with them. The
notation →+ indicates the standard transitive closure of the relation →.

Well-formedness of sequences of type constraints is defined in [1] and guarantees
that well-formed sequences can be reordered in a way that allows the checking of
them (w.r.t. a type environment) with a single iteration. At each step of such an
iteration a constraint γ is processed, finding either a substitution which makes γ

40 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

5 EXECUTION

hold in the current environment or a proof that no substitution exists.

The judgment γ̄ ` cdb�, shown in Figure 5 and described below, to be read “class
declaration cdb is compliant with type constraints γ̄”, holds when type constraints γ̄
are strong enough to guarantee the safe execution of cdb. Following the terminology
introduced in [5], this corresponds to the intra-checking of cdb, while inter-checking
happens incrementally when executing match actions (triggered by verification).

Back to the fifth rule: if all the above conditions are met and γ̄ are successfully
verified, starting from the empty substitution ∅ and producing the substitution σ
(premise of the rule), then the execution of er continues in BL2 (verification may
require to load new classes) and M2. The environment M2 is obtained by the
JIT-compilation of class c, corresponding to the judgment

BL2,M1, σ ` c⇒M2

to be read “given the binary environment of loaded classes BL2, the environment

γ̄ ` class Object {}�
γ̄, c ` mdb�

γ̄ ` class c extends c′ { fdb mdb }�

i ∈ {1, . . . , n} γ̄, c ` mdb
i �

γ̄, c ` mdb
1 . . .mdb

n�
n > 1

γ̄, {this 7→ c, x1 7→ c1, . . . , xn 7→ cn} ` eb : t
γ̄ ` t ≤ c0

γ̄, c ` c0 m(c1 x1, . . . , cn xn) { return eb; }�

γ̄,Π ` x : c
Π(x) = c

γ̄,Π ` eb : t
γ̄ ` φ(t, f, t′)

γ̄,Π ` eb[t.f t′] : t′

i ∈ {0, . . . , n} γ̄,Π ` eb
i : ti

γ̄ ` µ(t0,m, t1 . . . tn, (t
′, t̄′))

γ̄,Π ` eb
0[t0.m(t̄′)t′](eb

1, . . . , eb
n) : t′

i ∈ {1, . . . , n} γ̄,Π ` eb
i : ti

γ̄ ` κ(c, t1 . . . tn, t̄
′)

γ̄,Π ` new [c t̄′](eb
1, . . . , eb

n) : c

γ̄,Π ` eb : c′

γ̄ ` c ∼ c′

γ̄,Π ` (c)eb : c

γ̄,Π ` eb : t
γ̄ ` c ∼ t

γ̄,Π ` �c, t� eb : c

γ̄ ` t0 ≤ t1

γ̄ ` t0 ∼ t1

γ̄ ` t1 ≤ t0

γ̄ ` t0 ∼ t1

γ̄ ` t0 ≤ t1 γ̄ ` t1 ≤ t2

γ̄ ` t0 ≤ t2 γ̄ ` γi

γ̄ = γ1 . . . γn

Figure 5: Compliance of code and constraints.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 41

MODELLING A JVM FOR POLYMORPHIC BYTECODE

of verified classes M1 and the substitution σ, JIT-compiling class c produces the
verified class environmentM2”. The definition of this judgment is explained below.

The remaining two rules of the figure deal with error cases.

Metarules for compliance, defined in Figure 5, encode that: declaration of class
Object is compliant with any set of constraints since it has no requirements, decla-
ration of class c is compliant with γ̄ if all its methods are, and a method declaration
is compliant with γ̄ when its body can be typechecked and has a type that is a
subtype of the declared return type in γ̄.

Compliance of expressions is modeled by the judgment γ̄,Π ` eb : t to be read
“binary expression eb, in the local environment Π, is compliant with type constraints
γ̄ and has type t”. Local environment Π maps parameter names to their declared
type and the implicit parameter this to the current class name.

Note that, in Figure 5, while there are some trivial closures for subtyping, the
basic subtyping constraints have to be explicitly contained in γ̄ (as are all the other
constraints).

Compilers can infer the most general type constraints for a given source; the
idea, detailed in [1], is to use fresh type variables everywhere a type is not explicitly
given by the programmer, and to generate type constraints only corresponding to
required “actions” (that is, if the source contains a field access expression, then a
field access constraint is generated and so on). At the JVM level, however, we are
not interested to know whether they are the most general or not, as long as they are
strong enough. Indeed, developers could use type constraints to enforce particular
requirements, not apparent from the source code, if they desire to.

JIT-Compilation

The metarules defining the JIT-compilation judgment are shown in Figure 6; the
main judgment BL,M, σ ` c⇒M′ is defined in terms of the judgment

BL,M, σ ` cdb ⇒ ν

to be read “given the environment of loaded classes BL, the environment of veri-
fied classes M and the substitution σ, the JIT-compilation of class declaration cdb

produces the virtual method table ν”.

This last judgment is defined in the second and third rules; the former deals with
the special case of class Object, while the latter handles all the other classes.

For non-Object classes, the resulting virtual method table corresponds to table
of the superclass c′ updated with methods declared in c: new methods, that is
methods that do not override any inherited method, get new slots in the table, while
overriding methods reuse the indexes used by the superclasses. This calculation is
performed by the auxiliary function idxMth discussed below.

42 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

5 EXECUTION

BL,M, σ ` cdb ⇒ ν

BL,M, σ ` c⇒M[ν/c]
BL(c) = (, cdb)

BL,M, σ ` class Object {} ⇒ ∅

i ∈ 1..n BL, c ` σ(mdb
i)⇒ er

i

BL,M, σ ` class c extends c′ { fdb mdb
1 . . .mdb

n } ⇒
M(c′)[er

1/idxMthBL(c,mdb
1), . . . , er

n/idxMthBL(c,mdb
n)]

BL, {this 7→ 0, x1 7→ 1, . . . , xn 7→ n} ` eb ⇒ er

BL, c ` c0 m(c1 x1, . . . , cn xn) { return eb; } ⇒ er

BL,P ` x⇒ aload(n)
P(x) = n

BL,P ` eb ⇒ er

BL,P ` eb[c.f c′]⇒ er.getfield(n)
n = idxFldBL(c, f, c

′)

i ∈ 0..k BL,P ` eb
i ⇒ er

i

BL,P ` eb
0[c.m(c̄)c′](eb

1, . . . , eb
k)⇒

er
0.invokevirtual(n, er

1, . . . , e
r
k)

n = idxMthBL(c,m, c̄, c
′)

i ∈ 1..n BL,P ` eb
i ⇒ er

i

BL,P ` new [c](eb
1, . . . , eb

n)⇒ c.new(er
1, . . . , e

r
n)

BL,P ` eb ⇒ er

BL,P ` (c)eb ⇒ c.checkcast(er)

BL,P ` eb ⇒ er

BL,P ` �c, c′� eb ⇒ er
subtypeB(c′, c)

BL,P ` eb ⇒ er

BL,P ` �c, c′� eb ⇒ c.checkcast(er)
¬subtypeB(c′, c)

Figure 6: Rewrite rules for compilation.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 43

MODELLING A JVM FOR POLYMORPHIC BYTECODE

idxFldB(c, f, c′) = i if

allFieldsB(c) = fdb

1 . . . fd
b
n

fdb
i = c′ f
¬∃j > i : fdb

j = c′ f

allFieldsB(Object) = Λ
allFieldsB(c) = allFieldsB(superB(c)) fieldsB(c)

subtypeB(c, c′) = (c = c′) or ∃n ≥ 0 : superB(c) = c1 ∧ . . . ∧ superB(cn) = c′

idxMthB(c, c0,m, c1 . . . cn) =

idxMthB(superB(c), c0,m, c1 . . . cn) if defined
max({−1} ∪ {idxMthB(superB(c), , ,)})+∑i

j=1 notPresentB(superB(c),mdb
j)

where:

methodsB(c) = mdb
1 . . .mdb

k

mdb
i = c0 m(c1 x1, . . . , cn xn) { return eb; }

otherwise

notPresentB(c,mdb) =

{
1 if idxMthB(c,mdb) undefined
0 otherwise

idxMthB(c, c0 m(c1 x1, . . . , cn xn) { return eb; }) = idxMthB(c, c0,m, c1 . . . cn)

Figure 7: Auxiliary function for compilation.

44 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

5 EXECUTION

This metarule uses the auxiliary judgment

BL, c ` mdb ⇒ er

to be read “given the environment of loaded classes BL, inside the class c, the binary
method declaration mdb is JIT-compiled to runtime expression er”.

This judgment is defined using the judgment

BL,P ` eb ⇒ er

to be read “given the environment of loaded classes BL and the parameter environ-
ment P , the binary expression eb is JIT-compiled to the runtime expression er”. The
parameter environment P maps this and parameter names into their corresponding
position; this is treated as the zeroth (implicit) parameter, so its index is 0. In the
translation:

• Parameter names and this are translated into aload instructions.

• Field accesses into getfield instructions.

• Method invocations into invokevirtual instructions.

• Instance creation expressions into new instructions; note that we ignore the
type of formal parameters of the invoked constructor because in our model
there is only one, synthetic, constructor for each class.

• Cast expressions into checkcast instructions.

• Polymorphic cast expressions into either the translation of their subexpression,
when we already know that such casts would always succeed, or into checkcast
instructions otherwise.

The metarules for field accesses and method invocations are straightforward because
they depend heavily on a couple of auxiliary functions defined in Figure 7.

The auxiliary function idxFldB(c, f, c′) returns the index of the field named f of
type c′ in an object of type c in the given binary environment B. If more than one
field named f of type c′ is declared in c and its superclasses, then the greatest index
is returned: this corresponds to choosing the field declared nearest to c.

The auxiliary function idxMthB(c, c0,m, c1 . . . cn) returns the index of the method
named m, whose return type is c0 and formal parameters have types c1, . . . , cn in the
virtual method table of class c, in the given binary environment B. This function
must take into account that the index of an overriding method must be the same
of the overridden method, and that all new methods (that is, methods that do not
override any other method) should get indexes that are not used by any superclass.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 45

MODELLING A JVM FOR POLYMORPHIC BYTECODE

BL, verify(γ,V)→B BL, load(c, verify(γ,V))

c 6∈ def (BL)
γ ∈ { c ≤ , φ(c, ,),

µ(c, , , (,)), κ(c, ,)}

BL, verify(c1 ≤ c2,V)→B BL,V
c1 ∈ def (BL) ∧ (c1 = c2 ∨ c2 = Object)

BL, verify(φ(c, f, t),V)→B BL, match(t, c′,V)

c ∈ def (BL)
c′ f ∈ fieldsBL(c)

BL, verify(µ(c,m, c̄, (t, t̄)),V)→B
BL, verify(c1 ≤ c′1 . . . cn ≤ c′n, match(t t̄, c′ c̄,V))

c ∈ def (BL)
c′ m(c̄′) ∈ methodsBL(c)
c̄ = c1 . . . cn

c̄′ = c′1 . . . c
′
n

BL, verify(κ(Object,Λ,Λ),V)→B BL,V
Object ∈ def (BL)

BL, verify(κ(c, c̄a c̄b, t̄a t̄b),V)→B
BL, match(t̄b, c

′
1 . . . c

′
m,

verify(cn+1 ≤ c′1 . . .
cn+m ≤ c′m κ(c′, c̄a, t̄a),V))

c ∈ def (BL)
c̄a = c1 . . . cn

c̄b = cn+1 . . . cn+m

t̄a = t1 . . . tn

t̄b = tn+1 . . . tn+m

c′1 f1 . . . c
′
m fm = fieldsBL(c)

c′ = superBL(c)

BL, verify(c ∼ c′,V)→B BL,V
c′ ∈ {c, Object}

BL, verify(c ∼ c′,V)→B
BL, verifyEither(verify(c ≤ c′, ∅), verify(c′ ≤ c, ∅),V)

BL, match(α, c,V)→B BL,V [α 7→ c] BL, match(c, c,V)→B BL,V

BL, match(c, c′,V)→B BL, VerifyError
c 6= c′

fieldsB(c) = fields(classDeclaration(B(c)))

fields(class c extends c′ { fdb mdb }) = fdb

methodsB(c) = methods(classDeclaration(B(c)))

methods(class c extends c′ { fdb mdb }) = mdb

Figure 8: Rewrite rules for verifying constraints.

46 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

5 EXECUTION

Constraint Verification

Rewriting rules for constraints verification are given in Figure 8. The first rule
ensures that a class is loaded before we try to check any property about it. For
instance, if we need to check whether class c provides a certain field and c has not
been loaded yet, then we load it and postpone the check until c has been loaded.

The second rule checks the subtype constraint c1 ≤ c2 when c1 has already
been loaded and c2 is equal to c1 or to Object. If these conditions are met, then
the constraint holds (without any substitution) so we can discard it and go on. Of
course, this is a very special case: what if the side conditions are not met? If they
are not met because c1 has not been loaded, then the first rule would come into play;
however, we need something else for all other cases. If c1 6= c2 and c2 6= Object

then we have two possibilities: if c1 is equal to Object then the verification should
fail (since Object is the only subtype of itself) otherwise we should check whether
the constraint holds taking the superclass of c1 in place of c1. Both situations are
covered by the error and propagation rules shown in Figure 9 and described below.

The third rule checks whether class c provides a field named f. As it happens
for the subtype constraint checking just described, this rule deals only with the
case when c directly declares the field f, while propagation/error rules in Figure 9
handle the other cases. If c declares a field named f of type c′ the verification of the
constraint is rewritten into a match action, matching the expected type t (usually
a type variable) with the declared type c′. As shown in the lower part of the figure,
matching a type variable α with a class name c always succeeds and corresponds
to replace all occurrences of α with c in V . Matching a class name c with another
class name c′ always fails (except for the trivial case c = c′) because it corresponds
to the fact that a particular class was expected and a different one has been found
in the system.

The fourth rule checks whether a class c provides a method named m with the
right number of parameters. As before, rules in Figure 9 handle the other cases. If
the method is found the constraint is satisfied as long as the actual argument types
are subtypes of the formal ones, and the expected formal parameter and return type
match the actual ones12.

The fifth and sixth rules check constructor constraints. The former encodes that
class Object provides just the default constructor, while the latter deals with all
other classes. Again, error cases are dealt in Figure 9. In our model all classes
implicitly provide a constructor that receives the initial values for all fields (that is,
the declared and the inherited fields) of the class. For this reason, the parameter
types of a constructor always consists of the sequence of the types of inherited fields
followed by the types of the declared fields. So, if class c declares m fields, whose

12There might seem to be a duplication here: why do we need to match the formal parameter
types with, presumably, type variables when we already know that the actual parameter types are
subtypes of the formal ones? The point is that we inherited the type constraints from [1] where
they need this distinction to handle a peculiarity of the standard Java binary format.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 47

MODELLING A JVM FOR POLYMORPHIC BYTECODE

BL, verify(Λ,V)→B BL,V

BL, verify(γγ̄,V)→B BL, verify(γ, verify(γ̄,V))
γ̄ 6= Λ

BL, match(Λ,Λ,V)→B BL,V

BL, match(cc̄, tt̄,V)→B BL, match(c, t, match(c̄, t̄,V))
c̄ 6= Λ

BL ` [c]Super

BL, verify([c]Super ,V)→B BL, verify([superBL(c)]Super ,V)

c ∈ def (BL)
c 6= Object

[·]Super ::= [·] ≤ c | φ([·], ,) | µ([·], , ,)

BL ` c1 ≤ c2

c1 6= c2

c2 6= Object

BL ` φ(c, f,)
f 6∈ fieldsBL(c)

BL ` µ(c,m, c1 . . . cn, (,))
m(c′1 . . . c

′
n) 6∈ methodsBL(c)

BL, verify(γ,V)→B BL, VerifyError

Object ∈ def (BL)
c 6= Object

n,m > 0
γ ∈ { Object ≤ c, φ(Object, ,),

µ(Object, , , (,)),
κ(Object, c1 . . . cn, t1 . . . tm)}

Figure 9: Propagation and error rules for verifying constraints.

48 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

5 EXECUTION

BL1,V1 →B BL2,V4

BL1, verifyEither(V1,V2,V3)→B BL2, verifyEither(V4,V2,V3)

BL, verifyEither(σ,V2,V3)→B BL, σ(V3)

BL1,V2 →B BL2,V4

BL1, verifyEither(ε,V2,V3)→B BL2, verifyEither(ε,V4,V3)

BL, verifyEither(ε, ε′,V)→B BL, ε′

BL, verifyEither(ε, σ,V)→B BL, σ(V)

Figure 10: Contextual closure for execution of verifyEither.

Λ, verify(γ̄, ∅)→+
B BL, σ

BL, ∅ ` σ(eb)⇒ er

Λ,Λ, bootstrap(γ̄, eb) ;B BL,Λ, er

wellFormed(γ̄)
γ̄, ∅ ` eb :

Λ, verify(γ̄, ∅)→+
B BL, ε

Λ,Λ, bootstrap(γ̄, eb) ;B BL,Λ, ε
wellFormed(γ̄)
γ̄, ∅ ` eb :

Λ,Λ, bootstrap(γ̄, eb) ;B Λ,Λ, VerifyError
¬wellFormed(γ̄) ∨ γ̄, ∅ 6` eb :

Figure 11: Rewrite rules for bootstrapping the system.

types are c′1 . . . c
′
m, we match these types with the expected ones13, verify that each

actual argument is assignable to the corresponding field and, finally, verify that the
remaining arguments can be applied to the superclass.

The seventh and eighth rules check whether the class names c and c′ are compa-
rable. They are trivially comparable when they are equal or one of them is Object

(seventh rule), otherwise we need to check whether one of them is a subtype of the
other. This is obtained through the action verifyEither, whose execution rewriting
rules are given in Figure 10.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 49

MODELLING A JVM FOR POLYMORPHIC BYTECODE

Bootstrapping

Now that we have seen all the ingredients, we can describe the rules for bootstrap
given in Figure 11. Execution starts with the special expression bootstrap from
the empty environments of loaded and verified classes:

Λ,Λ, bootstrap(γ̄, eb) ;B BL,M, . . .

The binary expression eb corresponds to the code of the main method and γ̄ con-
tains its type constraints. In the first rule of the figure, the constraints γ̄ are well-
formed (first side-condition), the expression eb is compliant with them (second side-
condition) and verification succeeds producing the substitution σ (premise). In these
setting we can use the JIT-compilation judgment to obtain the runtime expression
to run.

The other two rules deal with error case: if verification fails with an exception
ε, second rule, then ε is propagated so it becomes the result of the computation. If
the constraint γ̄ are not well-formed or the expression eb is not compliant with γ̄,
third rule, then the execution immediately ends with the exception VerifyError.

Finally, the rules describing normal execution, abnormal execution (that is, ex-
ception throwing) and standard closures are given in Figures 12 and 13.

These rules are quite standard, with the notable exception of the third rule of
Figure 12: this rules triggers the verification of class c, if it has not verified yet,
before allowing the execution of the new expression to create instances of c.

Results

To show that the execution does not get stuck we first define a typing judgment on
runtime expressions and a notion of consistency between loaded classes and virtual
tables. Then, we use the standard approach of proving subject reduction, Theorem 5,
and progress, Theorem 6.

The judgment BL,Π ` er : c, defined in Figure 14, means “given the binary envi-
ronment of loaded classes B, and parameter environment Π, the runtime expression
er has type c”; the parameter environment, which maps parameter positions to their
types, is necessary only to type method bodies.

A binary environment B and a set of virtual tables M are consistent when the
tables map indexes into method bodies having a type which is a subtype of the
declared return type; this is formalized by the judgment B ` M, also shown in
Figure 14.

Before stating the main theorems, we introduce some auxiliary lemmas and the-
orems. The proofs are only sketched.

13Same reason of the method constraints, see the previous footnote for further details.

50 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

5 EXECUTION

BL,M, new c(v1, . . . , vn).getfield(i) ;B BL,M, vi

BL,M, new c(v̄).invokevirtual(i, v1, . . . , vn) ;B
BL,M,M(c)(i)[new c(v̄)/aload(0), v1/aload(1), . . . , vn/aload(n)]

BL,M, c.new(v1, . . . , vn) ;B
BL,M, verifyCls(c, c.new(v1, . . . , vn))

c 6∈ def (M)

BL,M, c.new(v1, . . . , vn) ;B BL,M, new c(v1 . . . vn)
c ∈ def (M)

BL,M, new c(v̄).checkcast(c′) ;B
BL,M, new c(v̄)

subtypeBL(c, c
′)

BL,M, new c(v̄).checkcast(c′) ;B
BL,M, ClassCastException

¬subtypeBL(c, c
′)

Figure 12: Rewrite rules for execution.

[·]Exp ::= [·].getfield(n) | c.new(v̄, [·], er) | [·].checkcast(c) |
[·].invokevirtual(n, er) | v.invokevirtual(n, v̄, [·], er)

BL1,M1, e
r
1 ;B BL2,M2, e

r
2

BL1,M1, [er
1]

Exp ;B BL2,M2, [er
2]

Exp

BL1,M1, e
r ;B BL2,M2, ε

BL1,M1, [er]Exp ;B BL2,M2, ε

Figure 13: Contextual closure for regular and abnormal execution.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 51

MODELLING A JVM FOR POLYMORPHIC BYTECODE

i ∈ 1..k BL,Π ` vi : ci

BL,Π ` new c(v1, . . . , vk) : c

allFieldsBL(c) = c′1 f1; . . . c
′
k fk;

i ∈ 1..k subtypeBL(ci, c
′
i)

BL,Π ` er : c

BL,Π ` er.getfield(n) : c′
allFieldsBL(c) = fdb

1 . . . fd
b
k

fdb
n = c′ f;

i ∈ 0..k BL,Π ` er
i : ci

BL,Π ` er
0.invokevirtual(n, er

1 . . . e
r
k) : c′

n = idxMthBL(c0, c
′,m, c′1 . . . c

′
k)

i ∈ 1..k subtypeBL(ci, c
′
i)

i ∈ 1..k BL,Π ` er
i : ci

BL,Π ` c.new(er
1, . . . , e

r
k) : c

allFieldsBL(c) = c′1 f1; . . . c
′
k fk;

i ∈ 1..k subtypeBL(ci, c
′
i)

BL,Π ` aload(n) : c
Π(n) = c

BL,Π ` er :

BL,Π ` er.checkcast(c) : c

BL,Π ` er : c

BL,Π ` verifyCls(c, er) : c

BL,Π ` bootstrap(,) : Object

B ` M⇔

∀c, n :M(c) = ν, ν(n) = er

n = idxMthBL(c, cres,m, c1 . . . ck)
∀c′ : subtypeB(c′, c) :
B, {0 7→ c′, 1 7→ c1, . . . , k 7→ ck} ` M(c′)(n) : c′res
subtypeB(c′res, cres)

Figure 14: Runtime typechecking and consistency.

52 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

5 EXECUTION

Lemma 1 If allFieldsB(c) = c1 f1; . . . ci fi; . . ., then ∀c′ : subtypeB(c′, c) we have:
allFieldsB(c′) = c1 f1; . . . ci fi;

Proof By definition, see Figure 7. 2

Lemma 2 ∀c, c′ : subtypeB(c, c′), if idxMthBL(c, c0,m, c1 . . . cn) = i then
idxMthBL(c

′, c0,m, c1 . . . cn) = i. Moreover, if idxMthBL(c
′, c′0,m

′, c′1 . . . c
′
n) = j then

i = j ⇔
{

c0 = c′0 . . . cn = c′n
m = m′

Proof By definition, see Figure 7. 2

Theorem 1 If B, {0 7→ c0, . . . , n 7→ cn} ` er : c
i ∈ 0..n B, ∅ ` er

i : c′i s.t. subtypeB(c′i, ci)
then B, ∅ ` er[er

0/aload(0), . . . , er
n/aload(n)] : c′′ and subtypeB(c′′, c′).

Proof By induction on the derivation of the typing judgment
B, {0 7→ c0, . . . , n 7→ cn} ` er : c (metarules in Figure 14), using Lemmas 1 and 2.
2

Lemma 3 If BL1 ⊆ B, then either

• BL1, load(c,V)→B BL2,V and BL2(c) = B(c), or

• BL1, load(c,V)→B BL, ε

Proof By definition, see Figure 3. 2

Lemma 4 If BL1 ⊆ B and BL1,V1 →B BL2,V2 then BL1 ⊆ BL2 ⊆ B.

Proof Trivial. 2

Lemma 5 If BL1 ⊆ B and BL1,M1, e
r
1 ;B BL2,M2, e

r
2 then BL1 ⊆ BL2 ⊆ B and M1 ⊆

M2. Moreover, if M1(c) = ν then M2(c) = ν.

Proof Trivial. 2

Theorem 2 If wellFormed(γ̄), then either

• BL1, verify(γ̄, ∅)→+
B BL2, σ or

• BL1, verify(γ̄, ∅)→+
B BL2, ε

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 53

MODELLING A JVM FOR POLYMORPHIC BYTECODE

Proof The well-formedness of γ̄ implies that input parameters of γi are contained
in the output parameters of γ1 . . . γi−1 so verification cannot get stuck. Moreover,
constraints are removed from the term when they are processed, so the reduction
must eventually terminate (into either a substitution or an exception). See Lemma 3
and Figures 8, 9 and 10. 2

Theorem 3 If BL1, verify(γ̄, ∅)→+
B BL2, σ then σ(γ̄) are ground constraints satisfied

in BL2.

Proof By definition of single constraint cases BL, verify(γ,V) →B BL, , action
match and propagation rules; see Figures 8, 9 and 10. 2

Theorem 4 If
BL1 ` M1

(cdb, γ̄) = BL1(c)
readyTBV(c,BL1,M1)

wellFormedAndCompliant(γ̄, cdb)
BL1, verify(γ̄, ∅)→+

B BL2, σ

then
BL2,M1, σ ` c⇒M2

BL2 ` M2

Proof By compliance and using Theorem 3 it is easy to see that JIT-compilation is
defined. The requirements for BL2 ` M2 are, by lemmas 4 and 5, met for all classes
already inM1. By Theorem 1 they are met for inherited methods too, so it remains
to check only new and overridden methods introduced by class c.

For all method declarations of class c,

c0 m(c1 x1, . . . , cn xn){return eb;} ∈ cdb

we know, by hypothesis, that:

• γ̄, {this 7→ c, x1 7→ c1, . . . , xn 7→ cn} ` eb : t

• γ̄ ` t ≤ c0

and, by Theorem 3, subtypeBL2(σ(t), c0) holds.

Moreover, by induction on typing of binary expressions, considering figures 5, 6
and 14, it can be shown that if γ̄, {this 7→ c, x1 7→ c1, . . . , xn 7→ cn} ` eb

2 : t′′ then
BL2, {this 7→ 0, x1 7→ 1, . . . , xn 7→ n} ` eb

2 ⇒ er
2 and

BL2, {0 7→ c, 1 7→ c1, . . . , n 7→ cn} ` er
2 : c′′ where c′′ is such that subtypeBL2(c

′′, σ(t′′))
holds. This reasoning, applied to method bodies, proves that all requirements for
BL2 ` M2 are met. 2

54 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

6 IMPLEMENTATION ISSUES

Theorem 5 (Subject Reduction) If

BL1,Π ` er
1 : c1

BL1 ` M1

BL1,M1, e
r
1 ;B BL2,M2, e

r
2

then, er
2 is an exception or BL2,Π ` er

2 : c2

subtypeBL2(c2, c1)
BL2 ` M2

Proof By induction on the reduction rules defining executions (Figures 12, 13 and
11) using Theorem 1 and Theorem 4. 2

Theorem 6 (Progress) If BL1 ` M1, er
1 is neither a value v nor an exception ε,

and BL1, ∅ ` er
1 : then

BL1,M1, e
r
1 ;B BL2,M2, e

r
2

Proof By induction on typing rules and using Theorem 2 for action rewriting. 2

6 IMPLEMENTATION ISSUES

As briefly mentioned in Section 2, running polymorphic bytecode, as opposed to
transforming polymorphic bytecode into standard bytecode at the verification stage,
would substantially complicate the implementation of a JVM and it would make very
difficult to reuse an existing implementation.

In this section we show some examples of why polymorphic bytecode is more
difficult to handle. Let us start discussing method invocation instructions.

The low level code for invoking a method depends on what kind of method is to
be invoked. Virtual method invocations typically use an indirection (and a check for
nullity), static method invocations do not. A (non-final) private instance method
is treated differently from a (non-final) public instance method because the former
cannot be overridden. The same reasoning applies, of course, between final and non-
final instance methods. All these considerations are invisible at source level, but they
matter at binary level. For these reasons, standard Java compilers produce different
instructions for handling these cases (namely, invokevirtual, invokestatic and
invokespecial).

When sources are compiled in total isolation, compilers cannot, of course, predict
which kind of method will be invoked14. This suggests that we should probably
encode any method invocation using a single generic JVM instruction, at least until
we discover, during execution, the specific kind of each method invocation (then

14Except for few special cases; for instance when a private method is invoked and its parameter
types match exactly the argument types.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 55

MODELLING A JVM FOR POLYMORPHIC BYTECODE

we could replace the generic instruction with a specific one). Of course, it is more
efficient to know beforehand which low level actions are to be taken to execute an
invocation. Furthermore, different instructions may need differently sized encoding
(for instance, the implicit this parameter should not be passed to static methods),
so substituting a generic invoke instruction with a specific one, when the kind of
method is finally discovered, may be not so easy.

Other information that are not know are, of course, the return type and the
types of formal parameters of the method we want to invoke (and even the number
of parameters if variable arity parameters, added in Java 5, are considered). After all,
avoiding to fix these information prematurely is what makes polymorphic bytecode
interesting! The lack of these information is problematic because two arbitrary
types can be compatible at source level but be rather different at binary level. If a
method expects a double and we call it with an int, then the compiler will silently
add a conversion instruction (i2d). More importantly, a temporary15 of type double
requires twice the memory space of a temporary of type int: this poses the problem
of how to allocate the temporaries on the local stack. Furthermore, we cannot
predict how much the local stack of a method can grow, something that the current
JVMs require to know for security reasons.

The list of problems that we have just discussed is surely incomplete; yet, it
should be enough to make it clear that supporting polymorphic bytecode at the
JVM level requires a great amount of changes across the architecture of the JVMs
unless one accepts to verify all constraints of a class when it has to be verified. While
we think that implementation complexity is something that should not interfere too
much with design decisions, it is a fact that embracing polymorphic bytecode would
put a lot of burden on JVM implementors while, on the other hand, it would ease
the task of compiler writers. For this reason, we chose to begin our study with
a conservative approach where all constraints of a class are verified together; in
this case, the involved types are known upfront and the code can be treated in the
“traditional” way.

From a design point of view, it is not easy to match the behaviour of standard
JVMs and there is certainly a spectrum of choices to be explored. Delaying too
much the verification of constraints is a double-edged sword: taking this delay to
the extreme, that is, waiting until the very last moment to verify the constraints
would make the constraints useless: why using constraints if we could directly check
each instruction before its first execution?

Leaving the extremes aside, it seems quite problematic to decide when constraints
have to be verified. Matching the standard JVMs behaviour would be nice but, as
we have seen, it is no picnic.

15A compiler generated local variable used to store an intermediate result.

56 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

7 RELATED AND FURTHER WORK

7 RELATED AND FURTHER WORK

Dynamic linking for Java has already been described [6, 13], also in more abstract
models covering both the Java and .NET behaviours [7, 8]. How assemblies are
resolved, loaded and used in .NET has been modeled in [2]. Of course, modelling
standard dynamic linking, these models do not consider the possibility of having
type variables inside the bytecode.

Some recent work [3, 4] has introduced the notion of flexible dynamic linking
in .NET, where type variables are contained in binaries exactly as it happens in
polymorphic bytecode [1].

In our approach binaries are equipped with type constraints which drive the
process of substituting variables, while [3] is not concerned in how substitution are
chosen, but rather in when they can be chosen and applied maintaining type-safety.
Furthermore, the non-deterministic model in [3] allows type variables to appear in
field declarations and method signatures as well.

We designed the dynamic linking process as an incremental version of the inter-
checking algorithm described in [1], trying to reflect the linking phases and timing
from the JVM specification. These design choices led to a deterministic model where
each concern (loading, verification and so on) is nicely isolated from the others.

One drawback of our choice is that we need to resolve references earlier than stan-
dard JVMs; unfortunately, delaying the resolution of references gives rise to many
issues, as we discussed. Our conservative approach exploits polymorphic bytecode to
make the linking of Java like languages more flexible without losing the guarantees
of statically typed languages; on the contrary, our approach enforces stricter checks
than standard JVMs (where a “used” method can not exist if the corresponding
invocation is never executed): we allow the linking of classes together only if their
sources could be recompiled together. This is a remarkable result, considering that
we do not need to know their sources at all! We can achieve this goal thanks to the
fact that a polymorphic binary, differently from a standard binary, depends on its
source only.

Nevertheless, we feel that making our approach lazier (but not the laziest) would
be an important improvement and it is a subject of further work.

On the implementation side, we also need to support some more features of Java
in order to promote the polymorphic bytecode approach. In particular, method
overloading and (user defined) exceptions are two features that users expect to be
available in any Java-like language and that are challenging to deal with.

Acknowlegments We are grateful to Alex Buckley and Sophia Drossopoulou for
having provided an incredible amount of insightful comments and helpful suggestions
on the previous workshop version of this paper. We also warmly thank Davide
Ancona and Elena Zucca for their advice and feedback.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 57

MODELLING A JVM FOR POLYMORPHIC BYTECODE

This work has been partially supported by MIUR EOSDUE - Extensible Object
Systems for Dynamic and Unpredictable Environments.

REFERENCES

[1] Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou, and Elena Zucca.
Polymorphic bytecode: Compositional compilation for Java-like languages. In
ACM Symp. on Principles of Programming Languages 2005. ACM Press, Jan-
uary 2005.

[2] Alex Buckley. A Model of Dynamic Binding in .NET. In Component Deploy-
ment 2005, November 2005.

[3] Alex Buckley and Sophia Drossopoulou. Flexible dynamic linking. In 6th Intl.
Workshop on Formal Techniques for Java Programs, June 2004.

[4] Alex Buckley, Michelle Murray, Susan Eisenbach, and Sophia Drossopoulou.
Flexible bytecode for linking in .NET. Electronic Notes in Theoretical Computer
Science, 141(1):75–92, 2005.

[5] L. Cardelli. Program fragments, linking, and modularization. In ACM Symp.
on Principles of Programming Languages 1997, pages 266–277. ACM Press,
1997.

[6] Sophia Drossopoulou. An abstract model of Java dynamic linking and loading.
In Types in Compilation, pages 53–84, 2000.

[7] Sophia Drossopoulou, Giovanni Lagorio, and Susan Eisenbach. Flexible mod-
els for dynamic linking. In Pierpaolo Degano, editor, ESOP 2003 - European
Symposium on Programming 2003, number 2618 in Lecture Notes in Computer
Science, pages 38–53. Springer, April 2003.

[8] Sophia Drossopoulou, Giovanni Lagorio, and Susan Eisenbach. A flexible model
for dynamic linking in Java and C#. Theoretical Computer Science, 368(1–2):1–
29, December 2006.

[9] James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. The Java language
specification. The Java series. Addison-Wesley, third edition, 2005.

[10] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. In ACM Symp. on Object-Oriented
Programming: Systems, Languages and Applications 1999, pages 132–146,
November 1999.

[11] Giovanni Lagorio. Dynamic linking of polymorphic bytecode. In 8th Intl. Work-
shop on Formal Techniques for Java-like Programs, 2006.

58 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 5

7 RELATED AND FURTHER WORK

[12] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series. Addison-Wesley, Second edition, 1999.

[13] Z. Qian, Al. Goldberg, and A. Coglio. A formal specification of Java class load-
ing. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA 2000), volume 35(10) of SIGPLAN No-
tices, pages 325–336. ACM Press, 2000.

ABOUT THE AUTHORS

Giovanni Lagorio took a Ph.D. in Computer Science at the Uni-
versity of Genova in May 2004. His research interests are in the
area of programming languages; in particular, design and founda-
tions of modular and object-oriented languages and systems. He
can be reached at lagorio@disi.unige.it.
See also http://www.disi.unige.it/person/LagorioG/.

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 59

mailto:lagorio@disi.unige.it
http://www.disi.unige.it/person/LagorioG/

