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Inspector Methods for State Abstraction

Bart Jacobs, Frank Piessens, Katholieke Universiteit Leuven, Belgium

Most classes in an object-oriented program provide access to an object’s state through
methods, so that client code does not depend on and cannot interfere with the ob-
ject’s internal representation composed of fields and internal component objects. In
order to extend the benefits of methods to specifications, method contracts may them-
selves be expressed using methods, hence providing support for state abstraction in
specifications.
In this paper, we propose an approach to the verification of programs that use inspector
methods in method contracts and object invariants. Inspector methods must not have
side-effects and must not throw exceptions, but they may have parameters, and they
may depend on the state of objects passed as arguments. Our approach builds on the
Boogie methodology for object invariants and ownership.
Performing state abstraction in a programming language that allows aliasing through
object references poses a framing problem. Specifically, client code needs to be able
to tell whether modifying a given object or calling a given method may affect the
value of a given inspector method call. We solve this by modeling inspector methods
as functions that take as arguments only those parts of the heap on which they
depend. Thanks to a novel logical encoding of the heap, we can do this without
breaking information hiding, even in cases where inspector methods depend on internal
component objects.
The core of our approach has been implemented in a custom build of the Spec#
program verifier.

1 INTRODUCTION

Consider the program in Figure 1. Class Cell provides access to the state of a Cell
object using method getX . It also uses getX to specify the effect of the class’s con-
structor and of the setX method. This makes it possible to prove the correctness of
the client program using a proof that does not depend on the internal representation
of the Cell object’s state using field x. As a result, when class Cell ’s internal rep-
resentation is changed, only class Cell needs to be reverified. The client program’s
proof remains valid.

In this paper, we concern ourselves with how to prove the correctness of programs
such as the one in Figure 1.

Note that one of the key problems that needs to be solved by our verification
approach is the framing problem. Specifically, in order to prove the assertion in
Figure 1 that c2 .getX () = 5, it must be encoded in the verification logic that
c2 .getX () does not depend on any objects modified by method call c1 .setX (10).
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class Cell {
int x;

inspector int getX ()
{ return x; }

Cell(int value)
ensures getX () = value;

{ x := value; }

void setX (int value)
modifies this.∗;
ensures getX () = value;

{ x := value; }
}

Cell c1 := new Cell(0);
int y := c1 .getX ();
assert y = 0;
Cell c2 := new Cell(5);
c1 .setX (10);
assert c1 .getX () = 10;
assert c2 .getX () = 5;

Figure 1: A class specified using an inspector method, and a client program

The remainder of the paper is structured as follows. We introduce our approach
in five versions, each extending the previous one. In Section 2, we address the
framing problem in its basic form (Version 1). In Section 3, we introduce the Boogie
methodology [1] for object invariants (Version 2) and ownership, and we show how to
solve the framing problem for inspector methods that may depend on owned objects
(Version 3). In Section 4, we show how we allow inspector methods to depend on
the state of objects passed as arguments (Version 4). In Section 5, we deal with
a number of formal details. In Section 6, we describe our approach to inheritance
(Version 5). In the final sections, we discuss related work and offer a conclusion.

2 FRAMING

In this section, we show how our approach addresses the framing problem in the
simple setting where an inspector method may depend only on the fields of the
receiver object. In later sections, we extend the approach to allow inspector methods
to depend on fields of transitively owned objects and objects passed as arguments.

Our solution consists of three components: the way the heap is modeled, the
way inspector method calls are modeled, and the way non-inspector method calls
(which may modify the program state) are modeled.

In our verification logic, we represent the heap as an updatable function Heap
that maps object references to object states. For the simple setting we discuss here,
an object state is a function that maps field names to field values. Later sections
extend the notion of object state to deal with transitively owned objects.
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We treat inspector methods as follows. For each inspector method C.m declared
in the program, we introduce a function symbol C m in the verification logic, as well
as an axiom, derived from the inspector method’s body, that defines the function
symbol’s meaning. All information on which the inspector method depends is passed
as arguments to the corresponding function. Hence, in the simple setting we discuss
here, we pass only the receiver’s reference and state. For example, the assertion

assert c2 .getX () = 5;

is modeled as
assert Cell getX (c2 ,Heap[c2 ]) = 5;

Notice how the function application takes just the state of c2 , not Heap as a whole, as
an argument. This is sound thanks to the fact that the inspector method is allowed
to depend only on the fields of the receiver. It also takes the receiver’s identity c2
as an argument since we do not disallow inspector methods from depending on the
receiver’s identity.

The final ingredient to our approach is the way non-inspector method calls are
modeled in our verification logic. The post-state heap of a non-inspector method call
is assumed to be an arbitrary new heap, constrained only by the method’s declared
postconditions and by an implicit postcondition called the frame condition. The
frame condition says that for all objects o that were allocated in the pre-state and
that are not listed by the method’s modifies clause, the object’s post-state is equal
to its pre-state. Formally:

∀o • old(Alloc[o] ∧ o /∈ W ) ⇒ Heap[o] = old(Heap[o])

where W denotes the set of objects listed by the modifies clause. (We allow only
items of the form o.∗ in modifies clauses. Also, note that a constructor’s modifies
clause is always considered to implicitly include this.∗.)

We can now prove the program of Figure 1. Let Heap and Heap ′ denote the
heap in the pre-state and the post-state, respectively, of the setX call. We need to
prove Cell getX (c2 ,Heap ′[c2 ]) = 5. From the postcondition of Cell ’s constructor,
we have Cell getX (c2 ,Heap[c2 ]) = 5. Finally, from the frame condition of the
setX call, we have Heap ′[c2 ] = Heap[c2 ], which allows us to arrive at our goal by
substitution.

3 OBJECT INVARIANTS AND OWNERSHIP

In this section, we integrate inspector methods with the support for object invariants
and ownership provided by the Boogie methodology [1]. The example in Figure 2
motivates and illustrates the approach. (Note: the expression (a : b) denotes the
range of integers i where a ≤ i < b.)

An object of class IntList in Figure 2 represents a container for a list of integers.
Internally, the integers are stored in an array elems . The array may be larger than
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the length of the list to minimize the number of heap allocations when adding or
removing elements. The actual number of elements is stored in the count field.

Object Invariants

Methods that operate on an IntList object, such as the add method, need to know
that count is never negative and never greater than the length of elems . It would be
unfortunate to require the method’s caller to guarantee this; this would cause the
caller to depend on the internals of class IntList . To solve this problem, the Boogie
methodology provides a mechanism called object invariants that allows a developer
to expose conditions on internal state to clients in an abstracted form. Specifically, it
allows a developer to declare an object invariant using the invariant keyword, and
in each object, it introduces a special boolean field inv and it restricts modifications
of this field and the object’s other fields in such a way that inv is true only when the
object invariant holds. Consequently, by exposing to clients only the inv field and
requiring inv to be true on entry to a method, the method can rely on the internal
object invariant without having to expose it. Note that methods are not allowed
to assume without proof that object invariants hold on entry to the method; this
would be unsound because of possible re-entrancy [1].

An object o for which o.inv is false is called mutable; if o.inv is true, the object
is called valid. An assignment to a field o.f is allowed only when o is mutable.

Field inv is initially false. It may be read only in method contracts, not in
program code. Also, it may be updated only through the special statements pack o;
and unpack o;. These statements behave as follows (where Inv(o) denotes o’s object
invariant):

pack o; ≡
assert ¬o.inv ;
assert Inv(o);
o.inv := true;

unpack o; ≡
assert o.inv ;
o.inv := false;

That is, the pack o; operation checks that o is mutable, and that o’s object invariant
holds. It then marks the object as valid. The unpack o; operation checks that o is
valid. It then marks the object as mutable.

Provided that an object o’s object invariant depends only on the fields of o, the
semantics of pack and unpack together with the restriction that target objects of
field assignments must be mutable guarantee that whenever the object is valid (i.e.
o.inv is true), its object invariant holds. We call this property the soundness of the
object invariant methodology.

Inspector methods and object invariants Non-inspector methods that rely on
an object’s invariant need to require the object’s validity as a precondition. Whereas
for non-inspector methods we provide the option of either requiring validity of a given
object or not requiring it, for inspector methods we always require validity of the
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final class IntList {
rep int[ ] elems;
int count ;

invariant 0 ≤ count ∧ count ≤ elems.length;

inspector int getCount() { return count ; }
inspector int getItem(int index )

requires 0 ≤ index ∧ index < getCount();
{ return elems[index ]; }

derived invariant 0 ≤ getCount();

IntList(int[ ] xs)
requires ¬xs.committed ;
ensures ¬this.committed ∧ this.inv ;
ensures getCount() = xs.length;
ensures

forall{int i in (0 : getCount()); getItem(i) = xs[i]};
{ . . . }

void add(int x)
requires ¬this.committed ∧ this.inv ;
modifies this.∗;
ensures ¬this.committed ∧ this.inv ;
ensures getCount() = old(getCount()) + 1;
ensures

forall{int i in old((0 : getCount())); getItem(i) = old(getItem(i))};
ensures getItem(old(getCount())) = x;

{
unpack this;
count++;
ensureCapacity(count);
elems[count − 1] := x;
pack this;

}

. . .
}

int[ ] xs := {1, 2, 3};
IntList list := new IntList(xs);
xs[0] := 5;
assert list .getItem(0) = 1;

Figure 2: A class that illustrates object invariants, ownership, parameterized in-
spector methods, inspector method preconditions, and derived invariants. (Note:
reference types are non-null types by default.)

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 9



INSPECTOR METHODS FOR STATE ABSTRACTION

receiver object. That is, each inspector method implicitly gets a precondition saying
that the receiver object is valid. We made this choice because supporting inspector
methods that do not require the validity of their receivers would complicate the
approach, and scenarios where the abstraction provided by inspector methods is
required but the abstraction provided by object invariants is not are probably rare.
Note that this means that inspector method calls on this typically cannot be used in
intermediate assertions (such as assert statements or loop invariants) in a method
body, since the receiver is typically unpacked at the start of the method body and
packed at the end. However, typically no other objects are unpacked so inspector
method calls on other objects can still be used in these places.

Since an object invariant could be evaluated in a state where it does not hold,
we do not allow inspector method calls on this in an object invariant. However,
in addition to an object invariant, a class may declare a derived invariant, using
one or more derived invariant declarations. If a class declares a derived invariant,
this implies a proof obligation that the derived invariant follows from the object
invariant. Contrary to an object invariant, a derived invariant may include inspector
method calls on this. If a class mentions private fields in its object invariant, it must
declare the object invariant itself private, and as a result, other classes cannot use
it in proofs. Still, the class can expose information to other classes in the form of
public derived invariants, provided that the information is stated in terms of public
inspector methods.

We could have allowed postconditions on inspector methods instead of, or in
addition to, derived invariants. This would be equivalent in terms of expressiveness.
However, since such postconditions would in general have to mention other inspector
methods, to express relationships between inspector methods, it seems more natural
to centralize this information at the class level.

Derived invariants (or an equivalent mechanism) serve to reduce specification
effort. For example, if class IntList did not declare a derived invariant, each method
that takes an IntList object list as an argument would have to specify 0 ≤ list .getCount()
in its precondition and postcondition.

Ownership

Does the client program provided in Figure 2 verify? Without an ownership system,
the answer would be yes, regardless of whether IntList ’s constructor copies xs into
a new array or simply stores a reference to xs into the elems field. Clearly, this is
unsound.

The cause of this unsoundness is the fact that the getItem inspector reads the
elements of elems , even though, as discussed in Section 2, the function generated
for the logical encoding of getItem takes only the state of this, i.e., Heap[this], not
the state of the elems array, as a parameter.

In order to allow inspector methods like getItem, which depend on the state of
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objects other than the receiver object, we apply the Boogie methodology’s ownership
system, where an object can own other objects. Specifically, whenever an object o
is valid, it owns the objects referred to by o’s rep fields. For example, in Figure 2,
whenever an IntList object o’s inv field is true, o owns the array pointed to by
o.elems .

We allow inspector methods to depend on their receiver object, as well as any
objects directly or indirectly owned by it. However, in the verification logic, we still
wish to pass just the state of the receiver object as an argument, as opposed to
passing an additional argument for each owned object. The reason is that rep fields
are typically private fields, so requiring clients to pass an additional argument for
each rep field in inspector method function applications when verifying their code
would break information hiding.

To make this work, we change the logical encoding of the heap. Object references
still map to object states, but the notion of object state is extended to deal with
ownership. An object o’s object state is extended to contain a copy of the state
of each of o’s owned objects. Specifically, for each rep field o.f , we introduce an
additional field o.fstate which maps to a copy of the state of the object referred to by
o.f whenever o.inv is true. Of course these additional fields exist only in the logical
encoding; they do not exist at run time. We do not change the program’s run time
semantics.

This extended notion of object state allows inspector method results to be defined
entirely in terms of the state of the receiver object. For example, the axiom that
defines the function symbol for inspector method getItem is as follows:

∀o, ostate, i •
IntList getItem(o, ostate, i) = ostate[IntList elemsstate][i]

Clearly, using a copy of an object’s state instead of the original is sound only if the
copy is up-to-date whenever it is used. This is exactly what the heap consistency
theorem below shows. The proof of this theorem relies on another aspect of the
Boogie methodology. The methodology does not allow updates to fields of committed
objects, i.e. objects owned by other objects.

An object p is committed if and only if there is some valid object o that has
a rep field o.f such that o.f = p. However, to simplify the verification logic, we
track whether an object o is committed explicitly in the form of a boolean field
o.committed . Like the inv field, this field can be read only in method contracts and
cannot be assigned to explicitly in code.

To deal with ownership, we extend the meaning of the pack and unpack com-
mands as in Figure 3.

Heap consistency As explained above, if the body of an inspector method deref-
erences an owned object this.f , we retrieve its state from a special field this.fstate

VOL 6, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 11



INSPECTOR METHODS FOR STATE ABSTRACTION

pack o; ≡
assert ¬o.committed ∧ ¬o.inv ;
foreach (non-null rep field o.f)

assert ¬o.f.committed ∧ o.f.inv ;
assert Inv(o);
foreach (non-null rep field o.f) {

o.f.committed := true;
o.fstate := Heap[o.f ];

}
o.inv := true;

unpack o; ≡
assert ¬o.committed ∧ o.inv ;
foreach (non-null rep field o.f)

o.f.committed := false;
o.inv := false;

Figure 3: The pack and unpack commands in the ownership system

instead of looking it up in the heap as usual. This is sound because this is rep-
consistent :

Definition 1 (rep-Consistency). An object o is rep-consistent if, for each non-null
rep field o.f , it holds that

o.fstate = Heap[o.f ]

In fact, we have the following theorem:

Theorem 1 (rep-Consistency). In each program state of each execution of each
valid program, each valid object is rep-consistent.

Proof. Since the restrictions on field assignments and the evolution of inv and
committed bits in our approach are as in the Boogie methodology [1], we may as-
sume the Boogie methodology’s known properties. In particular, we know that
objects pointed to by rep fields of valid objects are valid and committed, and that
committed objects have unique owners.

We prove the theorem by induction over the length of an execution. This holds
for the empty execution, since in the initial program state no object is valid. Now
consider a non-empty execution. We now look at the final command performed in
this execution:

• A field assignment p.g := v;. We know that p is mutable and rep-consistency
involves only valid objects; therefore, this command does not invalidate the
theorem.

• A pack p; operation. This operation establishes the rep-consistency of p, and
it does not break the rep-consistency of the objects pointed to by the rep
fields of p since changing o.committed does not influence the rep-consistency
of an object o.
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• An unpack p; operation. Since p is made mutable, the theorem no longer
applies to p. Also, since committed objects have unique owners, changing the
committed bits of p’s owned objects does not invalidate the rep-consistency
for any valid object o 6= p.

• No other commands modify existing objects.

Ownership and frame conditions Recall from Section 2 that each method gets
an implicit postcondition, called the frame condition, that encodes in the verification
logic that some objects are not modified by the method. The frame condition given
in Section 2 was:

∀o • old(Alloc[o] ∧ o /∈ W ) ⇒ Heap[o] = old(Heap[o])

In the presence of ownership, a different frame condition is required. Specifically,
we wish to allow a method that lists an object o in its modifies clause to modify
not just o, but objects directly or indirectly owned by o as well. (We cannot require
the method to list these owned objects in the modifies clause because of information
hiding.) To achieve this, we follow the Boogie methodology [1] in allowing the
method to modify any object that is committed in the pre-state, in addition to the
objects listed in the modifies clause:

∀o • old(Alloc[o] ∧ o /∈ W ∧ ¬o.committed) ⇒ Heap[o] = old(Heap[o])

4 MULTI-DEPENDENT INSPECTOR METHODS

In this section, we show how the approach supports multi-dependent inspector meth-
ods, i.e. inspector methods that depend on the state of objects passed as arguments,
in addition to the state of the receiver object.

A motivating example is shown in Figure 4. It shows part of the Microsoft
.NET Framework’s support for restricting the access partially trusted code has to
system resources.1 A PermissionSet object holds the permissions assigned to a given
piece of code. Permissions are represented using objects that implement interface
Permission. For example, a SecurityPermission object may represent permission to
run, or permission to skip bytecode verification (or both, or neither).

Interface Permission declares an inspector method isSubsetOf that returns whether
one permission of a given type is implied by another permission of the same type.
Also, class PermissionSet declares an inspector method contains that returns whether
the set contains a given permission.

1We changed names to conform to Java naming conventions.
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interface Permission {
inspector boolean isSubsetOf (state Permission other)

requires other .getClass() = getClass();
}
final class SecurityPermission implements Permission {

static final int EXECUTION := 1;
static final int SKIP VERIFICATION := 2;

int flags;
inspector int getFlags() { return flags; }
inspector boolean isSubsetOf (state Permission other) {

return (flags & ∼((SecurityPermission)other).flags) = 0;
}
derived invariant

forall{state SecurityPermission p;
isSubsetOf (p) = ((getFlags() & ∼p.getFlags()) = 0)};

SecurityPermission(int flags)
ensures getFlags() = flags;

{ this.flags := flags; }

void setFlags(int flags)
ensures getFlags() = flags;

{ this.flags := flags; }
}
final class PermissionSet {

import Permission;
. . .
inspector boolean contains(state Permission p) { . . . }

PermissionSet()
ensures forall{state Permission p; ¬contains(p)};

{ . . . }

void setPermission(Permission p)
ensures forall{state Permission q;

contains(q) = (q.getClass() = p.getClass() ? q.isSubsetOf (p) : old(contains(q)))};
{ . . . }

}

// Client code:
PermissionSet s := new PermissionSet();
Permission p := new SecurityPermission(SecurityPermission.EXECUTION );
s.setPermission(p);
assert s.contains(p);
p.setFlags(SecurityPermission.EXECUTION |SecurityPermission.SKIP VERIFICATION );
assert ¬s.contains(p);

Figure 4: An example demonstrating multi-dependent inspector methods and quan-
tification over object states
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Importantly, in the .NET Framework Permission objects are mutable. That is, a
given Permission object may be made to represent different permissions at different
points in time. However, a PermissionSet object contains specific permissions, not
Permission objects. Therefore, the contains inspector method must be allowed to
depend on the state of the Permission object passed as an argument, not just its
identity.

For example, in the piece of client code shown at the bottom of Figure 4, permis-
sion to execute is added to a permission set, and the contains method returns true
for the Permission object that represents this permission. However, if subsequently
permission to skip verification is added to the Permission object, calling contains
with the same object returns false. This shows the need for multi-dependent inspec-
tor methods.

The following issues arise when multi-dependent inspector methods are admitted:
how are calls of such methods translated into the verification logic, how do we ensure
consistency of the resulting logic, and how do we specify the abstract state of an
object using multi-dependent inspector methods.

An inspector method is allowed to depend on the state of the receiver object,
the objects that are passed as arguments for parameters marked state, and their
transitively owned objects. A call of an inspector method is translated into an
application of the corresponding function symbol with the following arguments:

• The first two arguments to the function symbol application model the receiver’s
identity and state, respectively.

• For each argument a to the inspector method call, there is an argument to the
function symbol application that models the value a.

• In addition, for each argument a to the inspector method call for a parameter
marked state, there is an argument to the function symbol application that
models the state of the object a.

For example, a call p.isSubsetOf (q) is translated to

Permission isSubsetOf (p, pstate, q, qstate)

An inspector method implicitly gets a precondition that says that each argument
a for a state parameter must be valid (i.e., a.inv is true).

Consistency of the verification logic For each inspector method, an axiom is
added to the verification logic that defines the corresponding function symbol. We
restrict inspector method bodies to be of the form { return E; }, so that we can
translate an inspector method whose body is { return E; } into an axiom

axiom (∀x1, . . . , xn • C m(x1, . . . , xn) = [[E]]);
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where [[E]] denotes the translation of programming language expression E to a term
in the verification logic. A potential problem with this approach is that the result-
ing set of axioms may be inconsistent. Notice that this is the case only if there is
an inspector method call that does not terminate. To ensure that inspector meth-
ods always terminate, we restrict which method calls may appear inside inspector
method bodies. Specifically, if a method call o.m1(. . .) appears in the body of an
inspector method m2, then m1 must be an inspector method and the declaring class
of m2 must transitively import the static type of o. A type may import another
type explicitly using an import declaration. Also, when a class C implements an
interface I, I implicitly imports C (sic). For example, in Figure 4, PermissionSet
imports Permission and Permission imports SecurityPermission. (We discuss the
import relation in the presence of subclassing in Section 6.) It is checked at load
time that the import relation is acyclic. This ensures that inspector method calls
always terminate.

Discussion As stated above, in order to be able to easily generate axioms for
inspector method functions and to ensure that the generated axioms are consistent,
we restrict inspector method bodies to be of the form { return E; } and we do not
allow recursive inspector methods. These restrictions mean that not all methods
can be used as inspector methods, even if they are side-effect-free and read only
state on which they are allowed to depend. For example, a method that returns the
i’th element of a linked list cannot be used as an inspector method.

One can relax these restrictions by using a more complex approach for checking
read and write effects and termination. Also, an abstraction relation needs to be
provided separately and verified against the method body.

Quantification over object states We wish to make it possible for a postcondi-
tion of a non-inspector method to fully specify the post-state of each object o that
is modified by the method. It may do so by specifying the value of each inspector
method call on o. If an inspector method has parameters, this requires quantifying
over the possible argument values. For example, in the IntList example (Figure 2),
both the constructor and the Add method have an ensures clause that quantifies
over a range of integers, to serve as the argument to the getItem inspector method.

If an inspector method takes an object reference as an argument, one may quan-
tify over object references, using the following syntax:

forall{T o; E}

Variable o ranges over both unallocated and allocated objects, so that if the inspector
method whose value is being defined by the quantification is called with an argument
object that is allocated after the quantification is asserted, the quantification applies
to that call as well. However, expression E is not allowed to access the state of o
and E cannot assume the validity of o; therefore, o cannot be passed as an argument
for a state parameter.
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To support full specification of the abstract state of an object that has inspector
methods that take object states as arguments, we support quantification over object
states, using the following syntax:

forall{state T o; E}

Variable o again ranges over both unallocated and allocated object references, but
when the state of o is inspected, it is not looked up in the heap; rather, the state,
too, is considered to be bound by the quantification, and it ranges over all possible
valid object states. That is, the above quantification translates into the verification
logic as follows:

(∀o, ostate • valid(o, ostate) ⇒ [[E]])

where valid(o, s) denotes that object o’s invariant holds in object state s.

For example, referring to Figure 4,

forall{state Permission q; contains(q) = . . .}

is encoded as

(∀ q, qstate • valid(q, qstate) ⇒
PermissionSet contains(this ,Heap[this ], q, qstate) = . . .)

5 FORMAL DETAILS

Well-formedness conditions Method preconditions and postconditions, object
invariants, and derived invariants must be pure expressions, and the body of an
inspector method must be of the form { return E; } where E is a pure expression. A
pure expression is a Java expression that does not contain object or array creations,
simple or compound assignments, or increment or decrement operators, and that
calls only inspector methods. This ensures that evaluation of pure expressions has
no side-effects and that they can be translated easily into first-order logic. Pure
expressions are verified to check that they do not throw exceptions.

Additionally, object invariants and derived invariants may depend only on the
fields of this and on the fields of objects transitively owned by this. An object
invariant cannot assume that this is valid; therefore, it cannot include inspector
method calls on this. It can, however, include inspector method calls on objects
pointed to by rep fields of this. Also, as stated before, inspector method bodies
may depend only on the fields of the receiver object, objects passed as arguments
for parameters marked state, or objects transitively owned by these objects.

Soundness of derived invariants The declaration of a derived invariant in a
class C generates a proof obligation saying that it holds for all valid objects of
class C. For discharging this obligation, one may assume that all derived invariants
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declared by classes that precede C in the import relation and applicable to the
owned objects of o hold for those objects. To show that this proof rule is sound, we
prove the following theorem:

Theorem 2 (Derived invariants). In each execution state, for each valid object, each
derived invariant applicable to it holds.

Proof. By induction on the length of the execution. The only interesting case is
when the last operation is a pack o; operation. The induction hypothesis allows
us to apply the aforementioned proof obligation to prove that all derived invariants
applicable to o hold.

Dynamically bound inspector method calls An inspector method call may
be either statically or dynamically bound. For example, calls of inspector methods
of final classes are statically bound, and calls of inspector methods of interfaces
are dynamically bound. (In the presence of subclassing, methods may generally be
called both ways. We discuss subclassing in Section 6.)

In contrast with a statically-bound inspector method, the function for a dynamically-
bound inspector method is not defined once and for all by the method’s declaration;
rather, it is partially defined by each non-abstract inspector method that overrides
it. Specifically, for each non-abstract inspector method m in class C, and each
dynamically-bound inspector method m in class or interface T that it overrides, an
axiom is generated that says that if the target object’s type is C, both functions
coincide. Formally:

∀o, ostate, a1, . . . , an • type(o) = C ⇒
T m(o, ostate, a1, . . . , an) = C m(o, ostate, a1, . . . , an)

6 SUBCLASSING

In this section, we describe an extension of our approach that allows a superclass to
hide its internal representation not only from client code, but from code in subclasses
as well.

Our approach is based on the observation that if we want to enable subclasses
to use an abstract view of superclass state, then objects are no longer the unit of
abstraction. Indeed, we must subdivide an object along the classes that contribute
state to it. We call each such subdivision an object frame (or frame for short). That
is, a frame (or frame reference) is a tuple (o, C) consisting of an object reference o
and the name of a class C of which o is an instance. If a class D extends a class C
which extends class Object , then an object whose type is D consists of three frames:
(o,D), (o, C), and (o,Object).

We update our heap representation accordingly. Rather than mapping object
references to object states, in our new encoding the heap maps frames to frame
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class Cell {
int x;
invariant 0 ≤ x;
inspector int getX () { return x; }
derived invariant 0 ≤ getX ();
dynamic invariant 0 ≤ getX ();

Cell(int x)
requires 0 ≤ x;
ensures ¬committed ∧ inv ;
ensures getX () = x;

{ this.x := x; pack this; }

void setX (int x)
requires ¬committed ∧ inv ;
requires 0 ≤ x;
modifies this.∗;
ensures ¬committed ∧ inv ;
ensures getX () = x;

{
unpack this;
this.x := x;
pack this;

}
}

class MyCell extends Cell {
invariant 1 ≤ super.getX ();
inspector int getX ()
{ return super.getX ()− 1; }

MyCell(int x)
requires 0 ≤ x;
ensures ¬committed ∧ inv ;
ensures getX () = x;

{ super(x + 1); pack this; }

void setX (int x)
requires ¬committed ∧ inv ;
requires 0 ≤ x;
modifies this.∗;
ensures ¬committed ∧ inv ;
ensures getX () = x;

{
unpack this;
super.setX (x + 1);
pack this;

}
}

Figure 5: Example illustrating the approach for verification of programs with sub-
classing. An instance of type Cell may hold an arbitrary nonnegative integer value,
which may be retrieved using inspector method getX and set using method setX .
Both class Cell and class MyCell implement the Cell type. Class Cell does so
by storing the value in a field x, whereas MyCell does so by storing the value
plus one in its superclass frame. While contrived, this example shows how our ap-
proach supports the clean separation of the two aspects of subclassing: interface
re-implementation and implementation inclusion. There need be no relationship be-
tween how the superclass and the subclass implement the superclass’s interface; in
particular, if the subclass chooses to re-use the included superclass implementation,
it need not do so by direct delegation. This clean separation promotes modularity,
i.e. separate development and evolution of superclass and subclass code. Note: all
methods in this example are virtual and subclass methods override the correspond-
ing superclass methods.
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states. The frame state for a frame (o, C) consists of the values of the fields of o
declared in C.

In previous sections, we achieved abstraction of object state for the sake of client
code by introducing per-object inv and committed fields, introducing pack and
unpack operations on objects, introducing an ownership relation between objects,
caching owned object state in owner objects, and passing object states as arguments
in inspector method function applications. Similarly, to achieve abstraction of super-
class state for the sake of subclass code, we introduce per-frame inv and committed
fields, pack and unpack operations on frames, and an ownership relation between
frames, and we cache owned frame state in owner frames and we pass frame states
as arguments in inspector method function applications. Note that in the absence
of subclassing, we again obtain the approach of the previous sections as a special
case.

Frame ownership The definition of the ownership relation between frames in-
volves a few design issues. One is: are there ownership relationships between the
frames of a given object? In order to allow the subclass object invariant and subclass
inspector methods to depend on superclass state, we consider a valid subclass frame
to own its superclass frame. In fact, each class other than Object gets a special
rep field called super that refers to the superclass frame. (Note that this field is
exceptional in that it contains a frame reference instead of an object reference.) It
follows that packing a subclass frame requires that the superclass frame is valid and
uncommitted and commits it. Also, if the most derived frame of an object (i.e., the
frame corresponding to the object’s run-time type) is valid, it transitively owns all
of the object’s frames and encapsulates the entire object’s state.

There is one other design decision involving the ownership relation between
frames. Specifically, if a rep field o.f declared in a class C of a valid object o
points to an object p, which ownership relationship does this give rise to? In or-
der to allow the object invariant and the inspector methods of class C to perform
dynamically-bound inspector method calls on p, which access p’s most derived frame,
we consider frame (o, C) to own p’s most derived frame. Due to the previous design
decision, it follows that (o, C) transitively owns all of p’s frames.

Static and dynamic binding As pointed out earlier, in general inspector method
calls may be statically bound or dynamically bound. Calls of abstract methods
are always dynamically bound and calls of private methods are always statically
bound, but for a non-private non-abstract inspector method of a non-final class,
we have a choice of statically binding some calls of such methods and dynamically
binding others. (How we make this choice is discussed below.) Since at run time,
dynamically bound calls of a given method may bind to different methods and yield
different results from statically bound calls of the same method, we encode them
differently in the verification logic. Specifically, for calls resolved at compile time to
a method m of a class or interface T , we encode statically bound ones as T m(. . .)
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and dynamically bound ones as T mD(. . .). Function symbol T m is defined fully
by the body of method m in T ; function symbol T mD is defined partially by each
non-abstract method that overrides it, as explained earlier.

In the encoding of a statically bound call to an inspector method m of class C
on an object o, the frame state passed as the state of the receiver is always the state
of frame (o, C), whereas in the encoding of a dynamically bound call, the frame
state passed is always the state of the most derived frame. (Also, an argument for a
parameter marked state in a call of a multi-dependent inspector method is always
interpreted as the most derived frame.)

The object invariant and the derived invariants declared in a class C apply to
frames (o, C). Since they must depend only on the state of the frame to which they
apply (plus transitively owned frames), they must not include dynamically bound
inspector method calls on this. Therefore, we always interpret inspector method
calls on this in object invariants and derived invariants as statically bound calls.

Inspector method calls may occur in preconditions of inspector methods and in
preconditions and postconditions of non-inspector methods. (Recall that inspector
methods have no postconditions.) It is crucial for the soundness of verification that
there be no confusion as to whether these calls are statically or dynamically bound.
Our approach is sound regardless of which choice is made, so long as the choice is
the same when verifying the caller and when verifying the callee. Note in this regard
that it is sound, and often appropriate, to make different choices for statically and
dynamically bound calls of the method in whose contract the inspector method call
appears. This is sound so long as it is verified that the contract for dynamically
bound calls is implied by the contract for statically bound calls under the assumption
that the run-time type of the receiver equals its static type. The method body need
then only be verified against the contract for statically bound calls.

The question remains as to how the choice of static or dynamic binding of inspec-
tor method calls in method contracts is made. Java specifies that a call in program
code is dynamically bound unless the call is a super call or the method being called
is private. However, this approach is not always appropriate for inspector method
calls in method contracts. For example, consider the getX () call in the contract of
method setX of class Cell in Figure 5. Interpreting the call as dynamically bound
would be approriate for dynamically bound calls of setX , but not, for example, for
the super.setX call that occurs in class MyCell . Indeed, super.setX (5) ensures
super.getX () = 5, not getX () = 5.

Therefore, we interpret calls in contracts differently from calls in program code.
Also, the interpretation is different depending on whether the contract is used for a
statically bound call or a dynamically bound call. The rule is as follows: all calls
are bound dynamically, except for super calls, calls of private methods, or calls on
this in contracts for statically bound calls. Calls whose target expression is not this
(explicitly or implicitly) or calls on this in contracts for dynamically bound calls
are bound dynamically. To paraphrase, binding of inspector methods is as per Java,
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except that a call on this in a contract for a statically bound call is bound statically.
For example, for the purpose of verifying the super.getX call in Figure 5, the getX
call in the contract of Cell .setX is interpreted as a statically bound call. Note that
this rule ensures that the contract for dynamically bound calls is equivalent to the
contract for statically bound calls under the assumption that the receiver’s run-time
type is equal to its static type.

The import relation In the presence of subclassing, the import relation which
we use to ensure termination of inspector method calls, and consistency of their
axiomatization, must be refined. In particular, for each class, we introduce two
nodes in the import graph, which we shall call the static node and the dynamic
node. An interface only has a dynamic node. The rules are as follows:

• The dynamic node of C imports the static node of C.

• If a class C declares an import T ; declaration, this means the static node of
C imports the dynamic node of T .

• If a class D extends a class C, this means the static node of D imports the
static node of C, and the dynamic node of C imports the static node of D.

• If a class C implements an interface I, this means the dynamic node of I
imports the static node of C.

• If a class C declares an inspector method whose body includes a dynamically
bound inspector method call resolved at compile time to a method of a type
T , then the static node of C must transitively import the dynamic node of T .

• If a class C declares an inspector method whose body includes a statically
bound inspector method call declared by a class D, then the static node of C
must import the static node of D.

This ensures that there can be no inspector method call cycles within an inheritance
hierarchy.

Dynamic invariants As stated above, a class C may declare a derived invariant,
using the derived invariant keyword. This invariant applies to frames (o, C) only,
and inspector method calls in derived invariants are always interpreted as statically
bound calls. This means that derived invariants declared by a class C are useful for
a subclass of C when performing super calls, or if C is a final class, but not for
client code that accesses an instance of C through dynamically bound calls.

To convey properties of and relationships between dynamically bound inspector
methods, a class or interface may declare one or more dynamic invariants, using
the dynamic invariant keyword. A dynamic invariant declared by a type T is
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enforced against all non-abstract classes that implement or extend T . It follows
that a dynamic invariant declared by a type T holds for all instances of T .

Note: dynamic invariants do not subsume derived invariants; for example, an
abstract class that implements some of its inspector methods may declare a derived
invariant to specify a relationship between the inspector methods it implements.

Method inheritance As in the Boogie methodology [1], we do not allow method
inheritance as such. That is, each class must override all visible methods of its
superclass. This rule is crucial for the soundness of our approach since our approach
is based on the assumption that if a dynamically bound call binds to a method m
declared by a class C, then the static type C of m’s receiver is equal to its run-time
type. This is true only if m was not inherited from C by the receiver’s run-time
type.

However, to reduce programming overhead, we follow the Boogie methodology
in generating a default override for each method that is not overridden explicitly.
The body of the default override for a method m not explicitly overridden by a class
C is of the form

{ unpack this from C; super.m(); pack this as C; }
(or similar if m has parameters or a return value). Note that default overrides are
subject to verification just like explicitly declared methods. If a default override
fails to verify, an explicit override must be provided.

7 RELATED WORK

The Boogie methodology Our approach is based for object invariants, owner-
ship, and method framing on the Boogie methodology [1]. In order to add support
for inspector methods, we applied the following modifications:

• In the Boogie methodology, the heap is encoded in the verification logic as a
function that maps an object reference and field name combination to a field
value. We encode the heap as a function from frame references to frame states.
(Note: the notion of object frames was introduced in [1], under the name class
frames, but in [1] it was not used as the basis for the encoding of the heap.)

• We extend the semantics of the pack command to store a copy of each owned
frame’s state in a special field of the owner frame. This allows inspector
method calls to be encoded as function applications that take frame states.

• In the Boogie methodology, method frame conditions are expressed as equal-
ities between field values. We express method frame conditions as equalities
between object frame states. Together with the previous modification, this en-
ables a theorem prover to carry information regarding inspector method call
return values across method calls.
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• Instead of introducing a single committed bit and a single inv field per object,
and storing in the inv field the name of the most derived type whose object
frame is valid, we introduce separate inv and committed bits in each object
frame.

Method calls in specifications Darvas and Müller [4] identify and propose so-
lutions for problems that arise when method calls are used in specifications. Specif-
ically, the authors show how to deal with abrupt termination, object creation, and
inconsistent axiomatization due to unsatisfiable postconditions. Methods called in
specifications must be pure, which means they do not modify existing objects. In-
spector methods are like pure methods, with the additional constraint that they
depend only on the state of the receiver object and objects passed as arguments
for parameters marked state (and their transitively owned objects), so that they
can be used for state abstraction. A restriction of our approach is that we do not
allow inspector methods to declare a postcondition and that we derive the axiom
that defines the corresponding function from the inspector method’s body rather
than its postcondition. We avoid the abrupt termination issue by verifying that the
inspector method body does not throw any exceptions.

Darvas and Müller’s solution to the object creation issue is to pass the heap
as an argument to the function and have the function return a new heap together
with its result value. We did not adopt this solution because it is incompatible with
our approach to framing; specifically, our approach requires that only the state of
the dependee objects is passed to the inspector method’s function, rather than the
entire heap. Therefore, we disallow object creation in inspector methods.

We avoid the problem of inconsistent axiomatization by imposing a partial order
on classes and by allowing nested inspector method calls to proceed along this partial
order only. This ensures that inspector method calls always terminate and have a
return value under Java semantics, and the return values thus obtained always
satisfy the system of equations that defines the inspector method functions of a
given program.

Cok [3] supports pure methods that throw exceptions, which we do not. However,
we believe it is preferable to simply rule out exceptions in inspector methods.

State abstraction in ownership systems Müller [9] combines a notion of model
fields with an ownership type system called Universes. Model fields are comparable
with parameterless inspector methods. The Universes ownership system is less flex-
ible than that of the Boogie methodology; for example, it does not allow ownership
transfer. On the other hand, Müller allows model fields of an object o to depend on
fields of peer objects of o, i.e. objects that have the same owner as o, provided that
the model field definitions are visible to the field declarations, i.e. both are in the
same module. We intend to add support for visibility-based inspector methods to
our approach as future work.
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Leino and Müller [8] achieve state abstraction by combining the Boogie ownership
system with another notion of model fields, similar to but distinct from that of Müller
[9]. Model fields in [8] are encoded in the verification logic as if they are stored in
the heap along with concrete fields. Each model field declaration specifies a model
field constraint that serves as an abstraction relation. The constraint for a model
field o.m needs to hold only when o is valid. As part of executing a pack statement
on an object o, the constraints of the model fields of o are checked and, if they do
not hold, a new value that satisfies the constraint is assigned to the model field. If
no such value exists, the pack statement is considered invalid.

A constraint may underspecify a model field, and subclasses may strengthen an
inherited model field’s constraint. As a result, packing an object for a subclass
may assign a new value to a model field declared in a direct or indirect superclass.
An underspecified model field is similar to an abstract inspector method with a
dynamic invariant, and a strengthening of an inherited model field’s constraint by
a subclass is similar to an inspector method that overrides an abstract inspector
method. However, “overriding” a fully specified model field with another differently
fully specified model field, similar to overriding a non-abstract inspector method, is
not supported in [8]. This means that a subclass is forced to adopt fully specified
public superclass model fields as part of its own abstract state, without the ability
to provide a different abstraction function. Alternatively, if a class leaves a model
field underspecified and does not tie it to its own concrete state, so that subclasses
have maximum freedom in providing an abstraction function, then the class cannot
use the model field to abstractly expose its own state. Therefore, it also is not able
to fully implement methods specified using the model field. As a result, in practice,
classes with underspecified model fields are effectively abstract. In other words,
[8] does not fully support specification of classes that may be used both for direct
instantiation and as superclasses, while leaving subclasses free to provide their own
abstraction functions for superclass model fields. (For example, see class Cell in
Figure 5.)

To support the kind of specifications enabled in our approach by parameterized
inspector methods, such as the getItem method in the IntList example of Figure 2,
[8] would have to use model fields containing special-purpose immutable objects
such as immutable list objects (known as model types in JML [7]).

Ownership-free approaches Kassios [6] also uses abstraction functions, but in-
stead of an ownership system he proposes dynamic frames to abstractly specify
an abstraction function’s dependencies and a mutator method’s effects. Dynamic
frames are themselves abstraction functions that return sets of locations. A module
specification may specify a frame (i.e., an upper bound on the set of locations that
an abstraction function depends on) for each abstraction function separately.

The dynamic frames approach subsumes our approach on an abstract level. How-
ever, it is formulated in the context of an idealized logical framework; for example,
it does not show how to apply the approach to Java-like inheritance. Also, the
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proposed approach has not been applied in the context of an automatic program
verifier.

Parkinson and Bierman [11] and Parkinson [10] extend separation logic with ab-
stract predicates and apply it to Java to achieve state abstraction for Java programs.
Abstract predicates are similar to inspector methods that return a boolean value.
However, as in the case of the aforementioned dynamic frames approach, Parkinson
and Bierman do not restrict the set of locations that an abstract predicate may
depend on. Rather, it is up to client code to track the separation between abstract
predicates. Parkinson and Bierman solve the problem of well-definedness of abstract
predicates by allowing abstract predicates to appear inside other abstract predicates
only in positive positions, and by taking the least fixpoint of a set of abstract pred-
icate definitions as their meaning. Subclassing is addressed by introducing abstract
predicate families ; that is, an abstract predicate name may be subscripted by a class
name, and a separate definition may be given for each subscript. For example, the
abstract predicate saying that a Cell instance o holds the value v could be written
cell type(o)(o, v).

The use of abstract predicates in method contracts typically requires the use
of universally quantified logical variables whose scope extends across both the pre-
and post-state. For example, the contract for a method that that increments the
value of a cell would say that for each value v, if cell(o, v) holds in the pre-state,
then cell(o, v + 1) holds in the post-state. This could be a disadvantage compared
to model fields or inspector methods, in particular for run-time checking.

Redundant invariants Our derived invariants and dynamic invariants are similar
to JML’s [7] redundant invariants, in that an object’s redundant invariants must be
implied by its invariants. However, the interaction between JML’s different kinds of
invariants and JML model fields is not clear. Specifically, on which invariants is a
JML model field’s represents clause, which defines its abstraction relation, allowed
to depend to prove absence of evaluation errors such as null dereferences or divisions
by zero? And which invariants are allowed to mention model fields of this?

8 FUTURE WORK

We are investigating relaxations of the requirement that nested inspector method
calls follow a partial order. One relaxed rule would be that for each nested call,
the callee must depend on fewer objects (or object frames) than the caller. Or
alternatively, that the size of the argument list, defined as the total number of
object states, including duplicates and internal owned object states, must decrease.

Further relaxations would include allowing direct recursion controlled by a mea-
sure function, and allowing statements, including loops, in inspector method bodies.

Another area of extension is to allow inspector methods to depend on non-owned
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peer objects of classes declared in the same module.

9 CONCLUSION

We proposed an approach to the verification of object-oriented programs that use
inspector methods for state abstraction in specifications.

We solve the problem of encoding in the verification logic whether a given method
call or field assignment affects a given inspector method call’s return value, by

• modeling the heap as a function that maps object references to object states,

• logically (but not physically) storing a copy of the state of owned objects in
special fields of the owner object, and

• encoding inspector method calls as function applications whose arguments
include the object states on which the inspector method depends.

We support multi-dependent inspector methods, i.e. inspector methods that de-
pend on the state of objects passed as arguments. To enable the specification of the
return values of all possible calls of a multi-dependent inspector method, we support
quantification over object states.

Our approach to subclassing is to separate its two aspects: superclass inter-
face re-implementation and superclass implementation inclusion. Subclasses may
override superclass inspector methods; our approach preserves soundness by bind-
ing inspector method calls statically or dynamically as appropriate. A distinction
is made between derived invariants, which apply only to the declaring class, and
dynamic invariants, which apply to subclasses as well.

We implemented the core of our approach in a custom build of the Spec# pro-
gram verifier [2]. This will allow us to gain experience and validate the approach on
larger programs.

Currently, we restrict inspector method bodies to be of the form { return E; }
and we forbid recursive inspector methods. We hope to relax these restrictions in
future work.

A soundness proof of the approach is available [5].
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