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Observer-Conditioned-Observable 
Design Pattern 

By Douglas A. Lyon and Carl Weiman 

ABSTRACT 
The Observer-Conditioned-Observable (OCO) combines digitizing and transcoding of 
numeric change events. During the processing of numeric events, the transcoder converts 
the number from one range into another while preserving the mathematical integrity of the 
value. Numeric controllers that generate such events can be based in floating point 
numbers or integer numbers. For example, the JSpinners of Swing are based in floating 
point numbers, but JSliders are based in integers. Thus, the dynamic range of the 
JSliders is typically many orders of magnitude away from the dynamic range of the 
spinners. Even worse, changes in a numeric model can propagate to an integer-based 
spinner. This leads to quantization error and back propagation of the re-quantized value. 
Interactive programs use multiple viewers and controllers to alter an underlying numeric 
model. These can update each other in an observer-observable loop that can propagate 
unintended and unmanaged digitization errors. The OCO design pattern breaks the loop 
and maintains control of the numerical values. The interception of changes is done via a 
modification of the equals method. If two numbers are equal (to within a user defined 
tolerance) propagation is suppressed. Thus, the digitizer re-samples and re-quantizes the 
numeric event. 
Another potential problem arises when multiple viewer-controllers for the same number 
model employ differing scales. For example, sliders can range between two integer 
numbers (e.g., 0...100); whereas the floating-point number that we would like to model 
ranges from 0.0 and 1.0. We demonstrate a procedure for translating one value into the 
range of another, without error or feedback. OCO also samples events in time. This band 
limits the events to a level deemed reasonable for the application. 
The veto design pattern is not new, nor, for that matter, is a numeric veto design pattern. 
However, a numeric veto design pattern that is sensitive to the magnitude and rate of the 
numeric change is new. Also new is the conversion of one numeric range into another 
during the model view controller construction. Thus, we have arrived at a new name for 
our design pattern, called the Observer-Conditioned-Observable design pattern (OCO). 
 We apply the OCO design to the input of numbers that not only are floating point, but that 
have a dynamic range. The goal of our system is to allow the user to sweep large spans 
of dynamic range and “zoom in” to very high precision variation in areas of interest, for 
example bifurcation points in a dynamical system model. Our particular application 
involves 16 degrees of freedom for controlling the compound iteration of several hundred 
Java 3D linear transformations, in real-time. Other applications include 
scientific/mathematical simulation, Monte Carlo methods and numeric solution of systems 
of equations. These applications are critically dependent on initial conditions. 
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1 INTRODUCTION  

The OCO design pattern ensures that consistency is maintained between normally 
incompatible numeric models, views and controllers. The numeric models intercept and 
convert numeric change events from integer-based controllers and from models that have 
different underlying numeric data types (i.e., conversion from floating point models to 
integer models, and back). The design is meant to provide a consistent method for allowing 
complex inter-numeric associations to communicate with integrity and without the danger 
of an endless observer-observable feedback loop. 

In comparison, the intent of the traditional veto design pattern is to ensure that an 
instance of a numeric model does not exceed its range. It has no means of translating 
numeric values, nor does it allow for dynamic updates of dynamic range. The veto design 
pattern further lacks the feature of referring the communication between different numeric 
data types (like floating and fixed-point data types). 

In the example that follows, we will show that the numeric resource provides an object-
oriented means of translating ranges and enable the user to interactively set the increment 
used to change a variable. We will also show that a large variety of controllers can be used 
for both control and view. Finally, we present a example of a command design pattern to 
communicate the change events using values that are meaningful to the application 
programmers, hiding the internally held numeric models used to update views and 
controller settings. Further, we demonstrate that the OCO design pattern implementation is 
responsible for keeping track of translations, updates and conversions, freeing the 
programmer to attend to more substantive matters. 

2 MOTIVATION 

Visually interactive programs for mathematical models require GUI elements comprising 
the view and control of the model. The Model-View-Control design pattern incorporates 
these elements. In complex models, multiple GUI elements may refer to a single numeric 
quantity: a slider, textfield, gauge and spinner may all represent, for example, a single input 
voltage in a modeled circuit. GUI elements such as the Java JSlider class and the 
SpinnerNumberModel represent both view and controller; they are manipulated to change 
voltage, and they view changes broadcast to them from other programmed sources, 
typically via the Observer design pattern. Regardless, the underlying numerical model must 
be unique and all views should display the same quantity. 

A problem arises when GUI elements with differing underlying number types interact. 
For example, Slider values are inherently fixed-point and SpinnerNumberModels can be 
floating point. If variable a updates variable b and variable b updates variable a, we have 
an update loop. The update loop will consume all the CPU resources of the given thread 
and the program will grind to a halt. Normally, we break the observer-observable update 
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loop by determining if the event creating the update represents a change of state. If there is 
no change, we do not propagate the update.  

This works fine when the numerical types of variables a and b are commensurate; they 
both settle to the same state and no change event is emitted. But if a floating point variable 
triggers a fixed point observer, the latter will introduce a digitization error and return a new 
(state changed) value to the former, which in turn, returns a new value to the latter, and so 
on. 

A better solution is to make a design pattern that is responsible for keeping track of the 
instances created from numeric models. The pattern manages publish-subscribe 
relationships and provides a consistent means of controlling updates (with parametric 
control over precision). The new design pattern is called the OCO design pattern and it 
provides a way to link multiple controllers and viewers to a numeric quantity. 

3 APPLICABILITY 

Use the OCO design pattern when: 
1. Fixed-point controllers must control floating-point variables. 
2. Variables with different ranges must track each other. 
3. Floating point variables must control fixed-point variables. 
4. Floating point precision must be considered during the update process. 

4 STRUCTURE 
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Figure 4.1 A diagram for the OCO design pattern. 

 

Figure 4.1 shows a floating-point model with a standard MVC design [Cooper]. A 
translational converter takes the model, alters its range, increment and type, creating a 
quantized version of the model, suitable for the fixed-point representation. The fixed-point 
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model is subjected to a similar MVC design, using a fixed-point view and fixed-point 
controller. However, to keep the systems from back propagating to the floating-point 
model, a tolerance is introduced. Thus, updates from the fixed-point model to the floating-
point model are filtered so that they exceed a given tolerance. This prevents observer-
observable feedback leading to "dither" around the integral set point. 

We use switching control in place of dither to improve the quality of our state variable 
tracking. By placing bounds on the tracking error, we create a boundary layer so that we 
control high frequency chatter in our MVC designs. 

The tolerance that we have selected is set to a constant that may be changed by the user. 
However, this presents itself as a possibly slowly varying or uncertain parameter that gives 
rise to adaptive control. Additionally, we have not band limited the update rate and thus 
numeric tolerance is independent of time, making our present implementation autonomous. 

5 PARTICIPANTS  

The participants are the OCO design pattern clients that need consistency to be maintained 
between different numeric data types. 

The OCO design pattern updates an instance when a change occurs, if, and only if, the 
change is of an order of magnitude larger than some given amount. The pattern propagates 
the change after translation into the target variable’s range. The pattern is responsible for 
keeping track of the observers and their unique properties (range, fixed vs. floating point, 
increment, tolerance for change, etc.).  

6 COLLABORATIONS 

Clients obtain a reference to a numeric model and add themselves as observers of this 
model. If the client has its own numeric model, then the mediator links the two models 
using a publish-subscribe relationship. The rules of the update between the two models are 
made explicit at mediator link time. If a numeric instance is left in an improper state (e.g., 
the numeric state variables are out of sync with one another) it is NOT the role of the 
mediator to propagate the updates, but rather the role of the numeric models to update one 
another, according to the update rules. 

Further, it is not the role of the OCO Pattern to manage the creation of numeric model 
resources. That is, multiple numeric resource creations can be had as a side effect of the 
creation of new controllers and views. These can be linked, via the mediator or be 
delegated to some other part of the system of the system.  
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7 CONSEQUENCES 

The OCO Design Pattern has several benefits: 
1. The OCO Design Pattern controls updates between numeric instances. The pattern 

uses translates numeric values into the correct range before propagating the value.  
2. Centralized and hidden complexity. The pattern avoids distributing numeric 

business logic throughout the application, centralizing the translation of valued 
between variables as well as the policy for updating them.  

3. Ensure consistent variables. The pattern maps valued from one variable into 
another uses the publish-subscribe relationship.  

4. Variable precision setting. The pattern allows for variable precision on the input 
spinner, to enable the user more control over variable increments 

8 IMPLEMENTATION  

Here are implementation issues to consider when using the OCO design pattern: 
1. Invertability of the mapping of values. The OCO design pattern requires that there 

be a means to map a variable’s value into a new parameter space and that the value 
be able to be mapped back (to within an given error). 

 

 
 

Figure 8.1-1. OCO GUI for control/view of sinusoid parameters. 
 

Figure 8.1-1 illustrates the broad range and high precision of the OCO GUI. Each panel 
shows the GUI of one of the three parameters representing a sinusoid. The sliders span the 
entire range of the parameters. The lower spinner (gray background text field) defines the 
size of the increment of the upper spinner. The upper spinner refers to the parameter itself. 
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The button under the slider resets the value of the parameter to its initial value, a valuable 
tool when exploration of parameter space leads to dead ends. 

 
 

Figure 8.1-2. Multiple Views and Controllers 
 

Figure 8.1-2 shows multiple viewers and controllers for a single number model. The 
increment on the number is controlled using the lower spinner and moves in powers of 10. 
A reset button appears below one slide, and this resets the default value to 0. The spinners 
respond to up and down keyboard or mouse arrow input by changing the number model in 
a manner consistent with the increment. Page-up and page-down keys are used to change 
the number model faster. Floating-point to fixed-point conversions are handled internally 
by those views and controllers that require it. A new number model, that contains semantic 
information about the number (range and increment) is used to keep the viewer and 
controllers properly bound: 

 
public static void main(String[] args) { 
        RunNormalizedSpinnerNumberModel snm = 
                new RunNormalizedSpinnerNumberModel(0, 
                        -1 / Math.sqrt(2), 1 / Math.sqrt(2), 
                        0.001) { 
                    public void run() { 
                    } 
                }; 
        ClosableJFrame cf = new ClosableJFrame(); 
        cf.setContainerLayout(new FlowLayout()); 
        Container c = cf.getContentPane(); 
        c.add(RunSliderDouble.getRunSliderDouble(snm, "+-1/sqrt(2)")); 
        c.add(RunPercentageSlider.getRunPercentageSlider(snm)); 
        c.add(AnalogMeter.getAnalogMeter(snm)); 
        c.add(RunKnob.getRunKnob(snm)); 
        c.add(RunKnob.getRunKnob(snm)); 
        c.add(RunShuttle.getRunShuttle(snm)); 
        cf.pack(); 
        cf.setVisible(true); 
    } 

 
The getter factory methods have use the OCO design pattern to link the external number 
model with the internal number model. For example, the RunShuttle was design to work 
with numbers that range from zero to one. In order to provide a proper scale, the factory 
method uses the OCO design pattern for scaling and limiting propagation of feedback: 
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public static RunShuttle getRunShuttle( 
     RunNormalizedSpinnerNumberModel rnsnm) { 
        final RunNormalizedSpinnerNumberModel  
       zeroToOne = new RunNormalizedSpinnerNumberModel(0, 0, 1, 0.1) { 
            public void run() { 
            } 
        }; 
        // OCO DP 
        rnsnm.publishToSpinnerNumberModel(zeroToOne); 
        zeroToOne.publishToSpinnerNumberModel(rnsnm); 
        return new RunShuttle(zeroToOne) { 
            public void run() { 
            } 
        }; 
    } 

Run methods are used for all components, in a manner consistent with the Imperion project 
[Lyon]. 

9 SAMPLE CODE - THE VERNIER 

We are presented with two interfaces, a slider and a spinner. The slider allows easy access 
to a large range of numbers, but with low precision. The spinner allows slow access to a 
small range of numbers, but with high precision. Thus, we observe that precision is 
inversely related to speed and range of access, in these components. The sliders access of 
numbers lacks precision because it uses a fixed-point increment (limiting its dynamic 
range). This is due, in part, to the problem of the resolution of the mouse and its so-called 
mouse coordinate system. The spinner, on the other hand, has no such limit, as a number 
with 64 bit precision may be typed in to its text field. However, the up and down arrows 
limit the precision with which the spinner may sweep through a range of number. To alter 
the step-size used during the increment and decrement actions, we add another spinner, 
which we call the vernier. The following code uses the OCO design pattern to create 
several controllers and viewers for a 16 dimensional 3D compound iterated system.  
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Figure 9.1-1. Trajectory of non-linear system in state space. 
 

Figure 9.1-1 shows the behavior of an iterated system of transformations (rendered with 
Java3D) whose 15 parameters are interactively controlled by the user via OCO control. The 
behavior is critically dependent on initial conditions, necessitating both the wide range and 
vernier control provided by the OCO GUI. 

10 RELATED WORK 

The veto, observable and mediator design patterns are not new [Gamma et Al.]. However, 
the OCO design pattern is new, as far as we know. While both the mediator and observer-
observable design patterns are association patterns, the observer-observable ensures that the 
update instance is always propagated [Goldfedder]. In comparison, the OCO ensures that 
the update is only sent if the change is greater than a given magnitude. 

There are other extensions to the observer-observable design pattern, such as vetoable 
change listener (a listener that can overrule property change events). However, the vetoable 
change listener is not generally applied to numeric events (particularly with a precision) 
[Allen] [Grand]. 
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11 SUMMARY 

This paper presents a solution to multiple coupled number models of different type and 
different range. Digitization and observer design pattern are coupled to provide a design 
that controls feedback rates and re-quantized signals. The OCO’s role in signal processing 
is to transcode, quantized and re-sample (i.e. digitize and condition) the signal.  

We are concerned that the OCO design pattern may create zombie objects (i.e., objects 
that are never reclaimed by the garbage collector). This can lead to memory leaks [Javatip 
79]. We have yet to demonstrate this problem in our implementations, and, should it arise, 
the question of how to address it remains open. 
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