
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6. No. 4, May - June 2007

Cite this column as follows: Douglas A. Lyon and Carl Weiman “Observer-Conditioned-Observable Design
Pattern”, in Journal of Object Technology, vol. 6. no. 4, Mai - June 2007, pp. 15-24
http://www.jot.fm/issues/issue_2007_05/column2

Observer-Conditioned-Observable
Design Pattern

By Douglas A. Lyon and Carl Weiman

ABSTRACT
The Observer-Conditioned-Observable (OCO) combines digitizing and transcoding of
numeric change events. During the processing of numeric events, the transcoder converts
the number from one range into another while preserving the mathematical integrity of the
value. Numeric controllers that generate such events can be based in floating point
numbers or integer numbers. For example, the JSpinners of Swing are based in floating
point numbers, but JSliders are based in integers. Thus, the dynamic range of the
JSliders is typically many orders of magnitude away from the dynamic range of the
spinners. Even worse, changes in a numeric model can propagate to an integer-based
spinner. This leads to quantization error and back propagation of the re-quantized value.
Interactive programs use multiple viewers and controllers to alter an underlying numeric
model. These can update each other in an observer-observable loop that can propagate
unintended and unmanaged digitization errors. The OCO design pattern breaks the loop
and maintains control of the numerical values. The interception of changes is done via a
modification of the equals method. If two numbers are equal (to within a user defined
tolerance) propagation is suppressed. Thus, the digitizer re-samples and re-quantizes the
numeric event.
Another potential problem arises when multiple viewer-controllers for the same number
model employ differing scales. For example, sliders can range between two integer
numbers (e.g., 0...100); whereas the floating-point number that we would like to model
ranges from 0.0 and 1.0. We demonstrate a procedure for translating one value into the
range of another, without error or feedback. OCO also samples events in time. This band
limits the events to a level deemed reasonable for the application.
The veto design pattern is not new, nor, for that matter, is a numeric veto design pattern.
However, a numeric veto design pattern that is sensitive to the magnitude and rate of the
numeric change is new. Also new is the conversion of one numeric range into another
during the model view controller construction. Thus, we have arrived at a new name for
our design pattern, called the Observer-Conditioned-Observable design pattern (OCO).
 We apply the OCO design to the input of numbers that not only are floating point, but that
have a dynamic range. The goal of our system is to allow the user to sweep large spans
of dynamic range and “zoom in” to very high precision variation in areas of interest, for
example bifurcation points in a dynamical system model. Our particular application
involves 16 degrees of freedom for controlling the compound iteration of several hundred
Java 3D linear transformations, in real-time. Other applications include
scientific/mathematical simulation, Monte Carlo methods and numeric solution of systems
of equations. These applications are critically dependent on initial conditions.

OBSERVER-CONDITIONED-OBSERVABLE DESIGN PATTERN

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

1 INTRODUCTION

The OCO design pattern ensures that consistency is maintained between normally
incompatible numeric models, views and controllers. The numeric models intercept and
convert numeric change events from integer-based controllers and from models that have
different underlying numeric data types (i.e., conversion from floating point models to
integer models, and back). The design is meant to provide a consistent method for allowing
complex inter-numeric associations to communicate with integrity and without the danger
of an endless observer-observable feedback loop.

In comparison, the intent of the traditional veto design pattern is to ensure that an
instance of a numeric model does not exceed its range. It has no means of translating
numeric values, nor does it allow for dynamic updates of dynamic range. The veto design
pattern further lacks the feature of referring the communication between different numeric
data types (like floating and fixed-point data types).

In the example that follows, we will show that the numeric resource provides an object-
oriented means of translating ranges and enable the user to interactively set the increment
used to change a variable. We will also show that a large variety of controllers can be used
for both control and view. Finally, we present a example of a command design pattern to
communicate the change events using values that are meaningful to the application
programmers, hiding the internally held numeric models used to update views and
controller settings. Further, we demonstrate that the OCO design pattern implementation is
responsible for keeping track of translations, updates and conversions, freeing the
programmer to attend to more substantive matters.

2 MOTIVATION

Visually interactive programs for mathematical models require GUI elements comprising
the view and control of the model. The Model-View-Control design pattern incorporates
these elements. In complex models, multiple GUI elements may refer to a single numeric
quantity: a slider, textfield, gauge and spinner may all represent, for example, a single input
voltage in a modeled circuit. GUI elements such as the Java JSlider class and the
SpinnerNumberModel represent both view and controller; they are manipulated to change
voltage, and they view changes broadcast to them from other programmed sources,
typically via the Observer design pattern. Regardless, the underlying numerical model must
be unique and all views should display the same quantity.

A problem arises when GUI elements with differing underlying number types interact.
For example, Slider values are inherently fixed-point and SpinnerNumberModels can be
floating point. If variable a updates variable b and variable b updates variable a, we have
an update loop. The update loop will consume all the CPU resources of the given thread
and the program will grind to a halt. Normally, we break the observer-observable update

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 17

loop by determining if the event creating the update represents a change of state. If there is
no change, we do not propagate the update.

This works fine when the numerical types of variables a and b are commensurate; they
both settle to the same state and no change event is emitted. But if a floating point variable
triggers a fixed point observer, the latter will introduce a digitization error and return a new
(state changed) value to the former, which in turn, returns a new value to the latter, and so
on.

A better solution is to make a design pattern that is responsible for keeping track of the
instances created from numeric models. The pattern manages publish-subscribe
relationships and provides a consistent means of controlling updates (with parametric
control over precision). The new design pattern is called the OCO design pattern and it
provides a way to link multiple controllers and viewers to a numeric quantity.

3 APPLICABILITY

Use the OCO design pattern when:
1. Fixed-point controllers must control floating-point variables.
2. Variables with different ranges must track each other.
3. Floating point variables must control fixed-point variables.
4. Floating point precision must be considered during the update process.

4 STRUCTURE

Observer-observable control system

tolerance
based update

fixed point
viewer

fixed point
controller

fixed point
model

quantizing
update

translational
converter

floating point
viewer

floating point
model

floating point
controller

Figure 4.1 A diagram for the OCO design pattern.

Figure 4.1 shows a floating-point model with a standard MVC design [Cooper]. A
translational converter takes the model, alters its range, increment and type, creating a
quantized version of the model, suitable for the fixed-point representation. The fixed-point

OBSERVER-CONDITIONED-OBSERVABLE DESIGN PATTERN

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

model is subjected to a similar MVC design, using a fixed-point view and fixed-point
controller. However, to keep the systems from back propagating to the floating-point
model, a tolerance is introduced. Thus, updates from the fixed-point model to the floating-
point model are filtered so that they exceed a given tolerance. This prevents observer-
observable feedback leading to "dither" around the integral set point.

We use switching control in place of dither to improve the quality of our state variable
tracking. By placing bounds on the tracking error, we create a boundary layer so that we
control high frequency chatter in our MVC designs.

The tolerance that we have selected is set to a constant that may be changed by the user.
However, this presents itself as a possibly slowly varying or uncertain parameter that gives
rise to adaptive control. Additionally, we have not band limited the update rate and thus
numeric tolerance is independent of time, making our present implementation autonomous.

5 PARTICIPANTS

The participants are the OCO design pattern clients that need consistency to be maintained
between different numeric data types.

The OCO design pattern updates an instance when a change occurs, if, and only if, the
change is of an order of magnitude larger than some given amount. The pattern propagates
the change after translation into the target variable’s range. The pattern is responsible for
keeping track of the observers and their unique properties (range, fixed vs. floating point,
increment, tolerance for change, etc.).

6 COLLABORATIONS

Clients obtain a reference to a numeric model and add themselves as observers of this
model. If the client has its own numeric model, then the mediator links the two models
using a publish-subscribe relationship. The rules of the update between the two models are
made explicit at mediator link time. If a numeric instance is left in an improper state (e.g.,
the numeric state variables are out of sync with one another) it is NOT the role of the
mediator to propagate the updates, but rather the role of the numeric models to update one
another, according to the update rules.

Further, it is not the role of the OCO Pattern to manage the creation of numeric model
resources. That is, multiple numeric resource creations can be had as a side effect of the
creation of new controllers and views. These can be linked, via the mediator or be
delegated to some other part of the system of the system.

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 19

7 CONSEQUENCES

The OCO Design Pattern has several benefits:
1. The OCO Design Pattern controls updates between numeric instances. The pattern

uses translates numeric values into the correct range before propagating the value.
2. Centralized and hidden complexity. The pattern avoids distributing numeric

business logic throughout the application, centralizing the translation of valued
between variables as well as the policy for updating them.

3. Ensure consistent variables. The pattern maps valued from one variable into
another uses the publish-subscribe relationship.

4. Variable precision setting. The pattern allows for variable precision on the input
spinner, to enable the user more control over variable increments

8 IMPLEMENTATION

Here are implementation issues to consider when using the OCO design pattern:
1. Invertability of the mapping of values. The OCO design pattern requires that there

be a means to map a variable’s value into a new parameter space and that the value
be able to be mapped back (to within an given error).

Figure 8.1-1. OCO GUI for control/view of sinusoid parameters.

Figure 8.1-1 illustrates the broad range and high precision of the OCO GUI. Each panel
shows the GUI of one of the three parameters representing a sinusoid. The sliders span the
entire range of the parameters. The lower spinner (gray background text field) defines the
size of the increment of the upper spinner. The upper spinner refers to the parameter itself.

OBSERVER-CONDITIONED-OBSERVABLE DESIGN PATTERN

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

The button under the slider resets the value of the parameter to its initial value, a valuable
tool when exploration of parameter space leads to dead ends.

Figure 8.1-2. Multiple Views and Controllers

Figure 8.1-2 shows multiple viewers and controllers for a single number model. The
increment on the number is controlled using the lower spinner and moves in powers of 10.
A reset button appears below one slide, and this resets the default value to 0. The spinners
respond to up and down keyboard or mouse arrow input by changing the number model in
a manner consistent with the increment. Page-up and page-down keys are used to change
the number model faster. Floating-point to fixed-point conversions are handled internally
by those views and controllers that require it. A new number model, that contains semantic
information about the number (range and increment) is used to keep the viewer and
controllers properly bound:

public static void main(String[] args) {
 RunNormalizedSpinnerNumberModel snm =
 new RunNormalizedSpinnerNumberModel(0,
 -1 / Math.sqrt(2), 1 / Math.sqrt(2),
 0.001) {
 public void run() {
 }
 };
 ClosableJFrame cf = new ClosableJFrame();
 cf.setContainerLayout(new FlowLayout());
 Container c = cf.getContentPane();
 c.add(RunSliderDouble.getRunSliderDouble(snm, "+-1/sqrt(2)"));
 c.add(RunPercentageSlider.getRunPercentageSlider(snm));
 c.add(AnalogMeter.getAnalogMeter(snm));
 c.add(RunKnob.getRunKnob(snm));
 c.add(RunKnob.getRunKnob(snm));
 c.add(RunShuttle.getRunShuttle(snm));
 cf.pack();
 cf.setVisible(true);
 }

The getter factory methods have use the OCO design pattern to link the external number
model with the internal number model. For example, the RunShuttle was design to work
with numbers that range from zero to one. In order to provide a proper scale, the factory
method uses the OCO design pattern for scaling and limiting propagation of feedback:

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 21

public static RunShuttle getRunShuttle(
 RunNormalizedSpinnerNumberModel rnsnm) {
 final RunNormalizedSpinnerNumberModel
 zeroToOne = new RunNormalizedSpinnerNumberModel(0, 0, 1, 0.1) {
 public void run() {
 }
 };
 // OCO DP
 rnsnm.publishToSpinnerNumberModel(zeroToOne);
 zeroToOne.publishToSpinnerNumberModel(rnsnm);
 return new RunShuttle(zeroToOne) {
 public void run() {
 }
 };
 }

Run methods are used for all components, in a manner consistent with the Imperion project
[Lyon].

9 SAMPLE CODE - THE VERNIER

We are presented with two interfaces, a slider and a spinner. The slider allows easy access
to a large range of numbers, but with low precision. The spinner allows slow access to a
small range of numbers, but with high precision. Thus, we observe that precision is
inversely related to speed and range of access, in these components. The sliders access of
numbers lacks precision because it uses a fixed-point increment (limiting its dynamic
range). This is due, in part, to the problem of the resolution of the mouse and its so-called
mouse coordinate system. The spinner, on the other hand, has no such limit, as a number
with 64 bit precision may be typed in to its text field. However, the up and down arrows
limit the precision with which the spinner may sweep through a range of number. To alter
the step-size used during the increment and decrement actions, we add another spinner,
which we call the vernier. The following code uses the OCO design pattern to create
several controllers and viewers for a 16 dimensional 3D compound iterated system.

OBSERVER-CONDITIONED-OBSERVABLE DESIGN PATTERN

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

Figure 9.1-1. Trajectory of non-linear system in state space.

Figure 9.1-1 shows the behavior of an iterated system of transformations (rendered with
Java3D) whose 15 parameters are interactively controlled by the user via OCO control. The
behavior is critically dependent on initial conditions, necessitating both the wide range and
vernier control provided by the OCO GUI.

10 RELATED WORK

The veto, observable and mediator design patterns are not new [Gamma et Al.]. However,
the OCO design pattern is new, as far as we know. While both the mediator and observer-
observable design patterns are association patterns, the observer-observable ensures that the
update instance is always propagated [Goldfedder]. In comparison, the OCO ensures that
the update is only sent if the change is greater than a given magnitude.

There are other extensions to the observer-observable design pattern, such as vetoable
change listener (a listener that can overrule property change events). However, the vetoable
change listener is not generally applied to numeric events (particularly with a precision)
[Allen] [Grand].

VOL. 6, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 23

11 SUMMARY

This paper presents a solution to multiple coupled number models of different type and
different range. Digitization and observer design pattern are coupled to provide a design
that controls feedback rates and re-quantized signals. The OCO’s role in signal processing
is to transcode, quantized and re-sample (i.e. digitize and condition) the signal.

We are concerned that the OCO design pattern may create zombie objects (i.e., objects
that are never reclaimed by the garbage collector). This can lead to memory leaks [Javatip
79]. We have yet to demonstrate this problem in our implementations, and, should it arise,
the question of how to address it remains open.

REFERENCES

[Allen] Mitch Allen and John B. Harvie. Hands on Java Beans. Prima Publishing, 1997.

[Beck97] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1998.

[Cooper] James W. Cooper. Java Design Patterns. Addison-Wesley, 2000.

[Gamma et Al.] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[Goldfedder] Brandon Goldfedder. The Joy of Patterns. Addison-Wesley, 2002.

[Grand] Mark Grand. Patterns in Java, Volume 1. John Wiley & Sons, Inc. 1998.

[Java Tip 79] Raimond Reichert. “Java Tip 79: Interact with garbage collector to avoid
memory leaks. Use reference objects to prevent memory leaks in applications
built on the MVC pattern” JavaWorld.com, 10/20/99.
http://www.javaworld.com/javaworld/javatips/jw-javatip79.html Last accessed
March 26, 2007.

[Lyon] Douglas Lyon. Project Imperion: New Semantics, Facade and Command Design
Patterns for Swing, Journal of Object Technology, vol. 3, no. 5, May-June 2004,
pp. 51-64. http://www.jot.fm//issues/issue_2004_05/column6

OBSERVER-CONDITIONED-OBSERVABLE DESIGN PATTERN

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 4

About the authors

Douglas A. Lyon (M'89-SM'00) received the Ph.D., M.S. and B.S.
degrees in computer and systems engineering from Rensselaer
Polytechnic Institute (1991, 1985 and 1983). Dr. Lyon has worked at
AT&T Bell Laboratories at Murray Hill, NJ and the Jet Propulsion
Laboratory at the California Institute of Technology, Pasadena, CA. He is
currently the Chairman of the Computer Engineering Department at

Fairfield University, in Fairfield CT, a senior member of the IEEE and President of
DocJava, Inc., a consulting firm in Connecticut. Dr. Lyon has authored or co-authored
three books (Java, Digital Signal Processing, Image Processing in Java and Java for
Programmers). He has authored over 30 journal publications. Email: lyon@docjava.com.
Web: http://www.DocJava.com.

Carl Weiman is adjunct Associate Professor at Fairfield University
where he teaches courses in Java including Voice and Signal Processing
and 3D Computer Graphics in the Computer Engineering Department. He
has also been visiting professor at the Cooper Union for the Advancement
of Science in Art, team-teaching an interdisciplinary course on Robotics
and Theater, sponsored by an NSF grant of which he was PI.

In his previous career as Director of Research at HelpMate Robotics, he won $2M in
grants from NASA, NSF and DoD for robot vision and navigation. This work led to 9
patents and numerous publications. Prior to that he was Systems Engineer in GE flight
simulation systems, designing graphics algorithms. His Ph. D. thesis from Ohio State
University was titled “Pattern Recognition by Retina-Like Devices”. A driving force in all
his work is visualization and algorithms for modeling neurophysiological mechanisms of
biological vision.

