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Most mainstream object-oriented languages, like C++, Java and C#, are statically
typed. In recent years, untyped languages, in particular scripting languages for the
web, have gained a lot of popularity notwithstanding the fact that the advantages of
static typing, such as earlier detection of errors, are widely accepted. We think that
one of the main reasons for their widespread adoption is that, in many situations, the
ability of ignoring types can be handy to write simpler and more readable code.
We propose an extension of Java-like languages which allows developers to forget
about typing in strategic places of their programs without losing type-safety. That
is, we allow programmers to write simpler code without sacrificing the advantages of
static typing. This is achieved by means of inferred type constraints. These constraints
describe the implicit requirements on untyped code to be correctly invoked.
This flexibility comes at a cost: field accesses and method invocations on objects of
unknown types are less efficient than regular field accesses and method invocations.
Also, our type system is currently more restrictive than it should be; its extension is
the subject of ongoing work.
We have implemented our approach on a small, yet significant, Java subset.

1 INTRODUCTION

Consider the two following (sketched) class declarations:

class List {

public void append(List list) { ... }

public Integer size() { ... }

...

}

class Archive {

public void append(Archive archive) { ... }

public Long size() { ... }

...

}

In this example, List and Archive are two unrelated classes sharing some simi-
larities: an instance of class List can be appended to another using the method
append and, likewise, an instance of Archive can be appended to another archive
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using a method named append (note that, while these two methods have the same
name, their parameter types differ). Analogously, the size of a List, an Integer,
and the size of an Archive, a Long, can be obtained invoking a method named size.
Intuitively, we should be able to append one object to another and then print the
size of the result regardless the type of the two objects as long as both are Lists or
Archives.

The following snippet of code seems to confirm this intuition:

List l1 = ...;

List l2 = ...;

l1.append(l2);

System.out.println( l1.size() );

Archive a1 = ...;

Archive a2 = ...;

a1.append(a2);

System.out.println( a1.size() );

This code can be successfully compiled, so we might decide to improve it by factoring
out the common code into a method named appAndSize. We could naively try to
write something like:

void appAndSize (x, y) {

x.append(y);

System.out.println(x.size());

}

which is simple and nice, yet incorrect because we forgot to specify the type of the
parameters x and y. The point is that there is no suitable type to be used there
because List and Archive share no common ancestor (except for Object, which
would be of no help in this context since it lacks methods append and size). Here we
are trying to address unanticipated software evolution: of course, in consistent and
well-written class libraries, like the standard Java API, useful commonalities among
classes should have been already factored out in ready-to-use (generic) interfaces.

Note that using a generic method would be not enough to do the trick either, as
we would need a type to describe “something which provides methods append and
size” in order to typecheck the method invocation inside the generic method.1

Java generics can be used to solve this problem, but we need to write both a
generic interface and a generic method, as discussed below.

Three standard ways to solve this problem are to:

• adding a common superclass;

1A requirement like this is very similar to requirements that can be expressed in PolyJ using
where-clauses [10, 3], although for different purposes; see the comparison in Section 6 for more
details.
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• adding a common interface;

• using reflection.

The first two solutions, that is, introducing a new supertype (either a superclass or
a superinterface) of List and Archive, declaring two proper methods append and
size, have the advantage of preserving type-safety but require the ability to modify
the sources of List and Archive.

By using reflection we can write a flexible solution which does not require having
or changing the sources of List and Archive, and which seamlessly works not only
for List and Archive but also for any type declaring the proper methods append

and size. However, there are two drawbacks in a reflection-based solution: a slightly
increased execution time, which would probably go unnoticed in most applications,
and losing type-safety, which is a more serious problem.

Before presenting our solution, which allows to obtain the flexibility of the
reflection-based solution without losing type-safety, let us discuss more in-depth
the other viable solutions.

A type-safe solution

Introducing a common superclass for classes List and Archive would be a design
mistake in our example since we assumed to deal with two unrelated classes. So,
the only viable option is to introduce an interface (and then to make both List and
Archive implement it).

The two methods append defined in our example classes cannot be properly
described by a single interface, because their argument types differ (an analogous
reasoning applies to methods size: in their case the return type differs). Anyway,
a generic interface can be used to describe them both:

interface AppendAndSize<T, S> {

void append(T t);

S size();

}

So, we can solve our problem making List implement AppendAndSize<List,Integer>,
Archive implement AppendAndSize<Archive, Long> and then declaring a generic
method appAndSize:

<T, S> void appAndSize(AppendAndSize<T,S> x, T y) {

x.append(y);

System.out.println(x.size());

}

While this solution works and is the most effective regarding execution speed, it is
not trivial to write and requires changing the sources of both List and Archive
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which, in some situations, could be unavailable. So, this solution does not really
support unanticipated evolution of software.

Reflection-based solution

By exploiting reflection we can write a solution which does not require any change
to classes List and Archive and that can be compiled in isolation2:

void appAndSize(Object x, Object y) {

invoke(x, "append", y);

System.out.println(invoke(x, "size"));

}

static Object invoke(Object target, String name, Object ... args) {

Class<?> [] argTypes = new Class<?> [args.length];

for(int a=0; a<argTypes.length; ++a)

argTypes[a]=args[a].getClass();

outer: for(Method m : target.getClass().getMethods())

if ( m.getName().equals(name) ) {

Class<?> [] params = m.getParameterTypes();

if (params.length==argTypes.length) {

for(int i=0; i<params.length; ++i)

if (! params[i].isInstance(argTypes[i]) )

continue outer;

try {

return m.invoke(target, args);

} catch (IllegalAccessException iae) {

return null;

} catch (InvocationTargetException ite) {

return null;

}

}

}

return null;

}

In this approach the method invoke can be written once and for all, and the method
appAndSize is quite readable. On the one hand, the flexibility of this solution, which
works for any type providing the proper methods append and size, is unbeatable.

On the other hand, the method invoke is not obvious and its execution can
take much more time than a standard method invocation. Furthermore, we have
deliberately ignored the error conditions here, returning null when something goes
wrong, but a real implementation should deal with them. Indeed, this solution

2Of course, inside a proper class omitted here.
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corresponds in practice to replace static type checking of parameters by dynamic
type checking (since the parameter types of this method are as most generic as they
can be).

Our proposed solution

We propose to add a feature allowing programmers to forget about typing in strategic
places of their code. This untyped code is much simpler to write and maintain than
the typed one. Sticking to our example, we propose to allow developers to specify as
parameter and/or result type of a method the special unknown type, indicated with
“?”, wherever they do not want to commit to a certain type3. Method appAndSize,
discussed above, can be written in our language, Just (for “Java unknown safe
types”), as:

void appAndSize (? x, ? y) {

x.append(y);

System.out.println(x.size());

}

We think that, from programmers’ point of view, this is clearly the most natural
(and easiest) solution.

Because we do not want to trade ease of coding with type-safety, we simplify the
task of developers at the cost of a more complex type-checking algorithm.

Our idea is to translate methods having parameters/result of unknown types
using reflection, generating, at the same time, type constraints that describe when
such methods can be correctly invoked. These constraints contain type variables, in
place of actual type names, to represent the unknown types.

In this particular example, method void appAndSize (? x, ? y) would be
translated to method void appAndSize (Object x, Object y) shown when de-
scribing the reflection-based solution, along with a couple of type constraints with
the following informal meaning: “the type of parameter x must provide a method
called append that can be called with an argument of the type of parameter y, and
a parameterless method size”.

In these settings, the correctness of an actual invocation of method appAndSize

can be checked evaluating its type constraints, after having substituted the type
variables contained in the constraints with the actual types that are known in the
context of the caller.

3An alternative supported syntax consists in omitting these types altogether. Note that even
though the symbol “?” is used by Java wildcards, there can be no ambiguity: our “?” can be used
only to mark the absence of programmer specified types, as opposed to compiler inferred types,
for method parameters while Java wildcards are only used when types are indeed specified. So,
technically our “?” is not a type, rather it is a way not to specify a type.
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P ::= cd1 . . . cdn

cd ::= class c extends c′ { md } (c 6= Object)

md ::= md1 . . . mdn

md ::= mh {return e;}
mh ::= t0 m(t1 x1, . . . , tn xn) (m 6= reflInvk)

e ::= new c() | x | (c)e | e0.m(e1, . . . , en)
t ::= c | α

where method and parameter names in md and mh are
distinct and t0 can be α only if at least one ti is α′

Figure 1: Syntax of Just

For instance, an invocation like appAndSize(new List(), new List()) can be
proved to be type-correct, while an invocation appAndSize("hello", "world") is
rejected as type-incorrect (because type String provides neither method append

nor size).

The rest of the paper is structured as follows. In Section 2 we introduce a minimal
syntax for Just and informally describe how our type system works on an example.
In Section 3 we give the formal definition of typechecking and translation of Just
programs into plain Java programs, for which we prove the soundness in Section 4.
In Section 5 we briefly describe the implementation and finally in Section 6 we
outline related and further work.

This paper is an extended and improved version of [9].

2 JUST: AN INFORMAL INTRODUCTION

We illustrate our approach on a minimal syntax for Just, given in Figure 1.

This language is basically Featherweight Java [7] (shortly FJ), a tiny Java subset
which has become a standard example to illustrate extensions and new technologies
for Java-like languages; here we even omit fields, since they are not relevant for our
aim. The only new feature we introduce is the fact that parameter and/or result
types of methods can be, besides class names, type variables α.4

Before giving the formal definition of the typechecking and the translation of a
program in Just to a program in plain FJ, let us introduce a small example on which
we will illustrate the technique. Suppose we want to compile the following program:

4However, as shown in the previous section, in the concrete syntax the user can either use a
special symbol such as “?” or simply omit these types, and fresh type variables are automatically
generated by the compiler.
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class A {

A m(A anA) { return anA; }

}

class B {

B m(B aB) { return aB; }

}

class Example {

Object print(Object o) { return this; }

? printM(? x,? y) {

return this.print(x.m(y));

}

Object okA() {

return this.printM(new A(), new A());

}

Object okB() {

return this.printM(new B(), new B());

}

Object notOk() {

return this.printM(new A(), new B());

}

}

First of all, we distinguish between polymorphic methods, that is, methods with at
least a parameter of unknown type, and standard (or monomorphic) methods (whose
parameters are all of known types). In this example, method Example.printM is
the only polymorphic method, all the others are standard methods. Polymorphic
methods can be safely applied to arguments of different types; however, their possible
argument types are determined by a set of constraints, rather than by a common
signature as in Java generic methods.

The intuition is that the typechecking of methods Example.okA and Example.okB

should succeed, while the typechecking of Example.notOk should fail because it in-
vokes printM with arguments of types A and B, so, in turn, printM requires a method
m in A which can receive a B (and there is no such method in the example).

Note that classes can be still separately compiled as standard Java compilers
do if inferred type constraints of polymorphic methods are inserted in .class files
(they could be written as annotations, for instance). That is, to typecheck a class
C we need to know only the type signatures of the classes used by C (provided that
these signatures include type constraints too).

In this paper, we consider a type system that imposes a rather severe restriction
on polymorphic methods: they cannot invoke other polymorphic methods. This
restriction ensures that we can first typecheck polymorphic methods, generating the
constraints describing the requirements on their argument types, then typecheck
all standard methods. We are currently working on less restrictive type systems;
see the conclusions for further comments. Also, for sake of simplicity, we assume
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here no overriding for polymorphic methods; allowing this feature would require,
roughly, to associate to a polymorphic method all the constraints generated for
its redefined versions. Alternatively, in order to achieve separate compilation, a
polymorphic method which overrides another should generate weaker constraints,
making in practice desirable programmer-declared constraints, similarly to what
happens for checked exceptions in Java (again, see the conclusions).

The typechecking and translation of a program P consists of the following steps:

• checking the well-formedness of P (this step is as in plain FJ, except for the
additional check that overriding of polymorphic methods is forbidden);

• typechecking and translation of polymorphic methods (in this phase, con-
straints are generated);

• typechecking and translation of monomorphic methods (in this phase, con-
straints are checked).

In our example, assuming that type variables in Example.printM are as follows:

α printM (α1 x, α2 y) { ... }

typechecking of the method succeeds, generating the following constraints:

γ = {µ(α1, m, α2, α3), α3 ≤ Object, α ≡ Object}.

The first constraint, µ(α1, m, α2, α3), is generated when typechecking the invocation
x.m(y) and has the following informal meaning: α1 must provide a method named
m which can receive an argument of type α2 returning a result of type α3. Type
variable α3 is a fresh variable generated during the typechecking and corresponds to
the type of the whole method invocation.

The second constraint, that is, α3 ≤ Object, is generated by the invocation
this.print(x.m(y)) because the invoked method is
Example.print and the type of its argument (α3) must be a subtype of its parameter
type (Object). The type of this expression is Object because method print returns
an Object.

Finally, the variable α, which represents the return type, is equated5 to the type
found by typechecking its body, that is, Object.

Having found the constraints for polymorphic methods, we can now typecheck all
remaining methods. Methods A.m, B.m and Example.print can be trivially checked;
let us directly discuss the interesting ones, starting from Example.okA.

In Example.okA we find an invocation to a polymorphic method: printM. In
this invocation the arguments have both type A, so to decide whether the invocation

5We use the symbol ≡ in constraints to avoid possible confusion with the equality symbol used
at the meta-level.
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is safe we need to check whether γ, the constraints of printM, are satisfied under
a suitable substitution which maps parameter type variables to their respective
(known) argument types. A constraint µ(c0, m, c1 . . . cn, c) is satisfied whenever in
P class c0 has an (either directly declared or inherited) method m whose parameter
types are supertypes of c1, . . . , cn and whose return type is c. We can find the
needed substitution σ (or find out that it does not exist) by an algorithm which is
essentially that described in [1]. The algorithm iterates through the constraints γ,
starting from the initial substitution of parameter type variables with their argument
types. At each step, the algorithm considers a type constraint γ and, because of
the way constraints are processed, there are only two possible outcomes: either σ
is enriched (with one or more mappings found by evaluating γ) or γ cannot be
satisfied by any substitution. In the case of our example, our algorithm starts with:
σ = {α1 7→ A, α2 7→ A}.

The constraints to be checked, after having applied the initial substitution, are:

γ′ = {µ(A, m, A, α3), α3 ≤ Object, α ≡ Object}

Checking the first constraint, µ(A, m, A, α3), we find that it is satisfied for α3 = A. The
remaining constraints are now trivially satisfied, so the whole method invocation is
safe and has type Object (that is, the value associated to α).

Method Example.okB is found to be safe with the same reasoning. Typecheck-
ing of method Example.notOk, on the other hand, should fail. In this case, the
substitution of the argument types in γ produces:

γ′′ = {µ(A, m, B, α3), α3 ≤ Object, α ≡ Object}

The first constraint cannot be satisfied this time, as class A does not provide any
method which can receive an argument of type B, so the invocation of printM is
correctly forbidden.

In Section 3 we present a formal model that makes these ideas precise and has
been the basis for the implemented prototype (described in Section 5). Section 4
proves the correctness of the approach, showing that no well-typed program can get
stuck due to the downcasts or reflInvk invocations inserted by the translation.

3 FORMALIZATION

The formal definition of the typechecking and the translation from a program in
Just to a program in plain FJ (that is, with no type variables) is given from Figure 2
to Figure 6.

The typechecking and translation of a program P is shown in Figure 2. For sim-
plifying the notations, a program P is represented here as a pair 〈<, MT〉 where < is
the (direct) inheritance relation and MT is the method table, which maps pairs of class
and method names into the corresponding method declaration (this representation
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(prog)

P; c`MT(c, m) : Γ(c, m);MT′(c, m) ∀〈c, m〉 ∈ poly(MT)
P; Γ; c`MT(c, m);MT′(c, m) ∀〈c, m〉 ∈ mono(MT)

`P ; P′ : Γ

P = 〈<, MT〉
P′ = 〈<, MT′〉
wellFormed(P)
def(MT′) = def(Γ)

= def(MT)
〈c, m〉 ∈ mono(MT) =⇒

Γ(c, m) = ∅

poly(MT) = {〈c, m〉 ∈ def(MT) | isPoly(MT(c, m))}
mono(MT) = def(MT) \ poly(MT)
isPoly(t0 m(t1 x1, . . . , tn xn) {. . .}) = (∃i : ti = α)

Figure 2: Typechecking and translation of a program

makes sense since we have assumed that a class cannot declare two methods with
the same name). We denote by def the domain of a mapping.

The judgment
`P ; P′ : Γ

has the following informal meaning: program P is translated to P′ generating the
constraint environment Γ for polymorphic methods. A constraint environment maps
pairs of class and method names to their constraints.

First, the well-formedness of the program P is checked: the judgment wellFormed(P)
consists of the following checks, whose obvious formal definition is omitted:

• the inheritance hierarchy is acyclic and has root Object,

• Object has no methods, apart from the method reflInvk which will be used
to model reflection,

• every class name appearing anywhere in MT must appear in <,

• a polymorphic method cannot be overridden,

• a monomorphic method can be overridden by another which has the same
parameter types and return type.

Polymorphic methods are typechecked first: this ensures that all constraints,
needed to typecheck the method invocations of polymorphic methods, are inferred
before the typechecking of monomorphic methods6.

Constraints and entailment are defined in Figure 3. As formally expressed by
the (straightforward) rules defining entailment, the first three forms of constraint

6Note that this splitting in two phases is only possible under the assumption that polymorphic
methods cannot invoke other polymorphic methods.
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γ ::= γ1 . . . γn

γ ::= t ≤ t′ | t ∼ t′ | t ≡ t′ | µ(t, m, t1 . . . tn, t
′)

(≤-refl)
P`c ≤ c

P = 〈<, MT〉
c < c′

(≤-inh)
P`c ≤ c′

P = 〈<, MT〉
c < c′

(≤-trans)
P`c1 ≤ c2 P`c2 ≤ c3

P`c1 ≤ c3

(∼-up)
P`c ≤ c′

P`c ∼ c′
(∼-down)

P`c′ ≤ c

P`c ∼ c′
(≡)

P`c ≡ c

(µ)
P`µ(c, m, c1 . . . cn, c′)

monomtype(P, c, m) = c′1 . . . c′n → c′

∀i ∈ 1..n P`ci ≤ c′i

Figure 3: Constraints and entailment

mean that t and t′ are, respectively, in subtyping relation, comparable, and exactly
the same type; the last form means that type t must provide method m applicable
to arguments of types t1, . . . , tn with result type t′.

The phase of typechecking and translation of polymorphic methods is described
in Figure 4, and formally consists of two judgments:

• P; c ` md : γ ; md′, with informal meaning: in program P, inside class c

(needed to type this), method declaration md is well-typed and is translated
to md′; in order to be correctly invoked, constraints γ (on the argument types)
must hold.

• P; Π ` e : t | γ ; e′, with informal meaning: in program P and parameter
environment Π, expression e has type t and is translated to e′; in order to be
type-correct, the constraints γ must hold. A parameter environment Π maps
parameter names to their types and this to the class being typed.

The constraints found in this step are assembled into the constraint environment
Γ, that is used in the following step to typecheck the invocations of polymorphic
methods.

The judgment P; c`md : γ ;md′ is defined by the last three rules in Figure 4.
The first one, (kkMeth), models the case in which both the type of the body and
the return type are classes, hence the former must be a subtype of the latter. The
second one, (kuMeth), models the case in which the type of the body is unknown,
that is, is a type variable α, whereas the return type is a class c0: in this case,
a constraint is added expressing the fact that α must be a subtype of c0 in each
invocation of the method. Moreover, a cast is inserted since in the translation the
body will have type Object. Finally, the last one, (uMeth), models the case in

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 81



JUST: SAFE UNKNOWN TYPES IN JAVA-LIKE LANGUAGES

(new)
P; Π`new c() : c | ∅;new c()

(param)
P; Π`x : t | ∅;x

Π(x) = t

(kCast)
P; Π`e : c | γ;e′

P; Π`(c′)e : c′ | γ;(c′)e′
P ` c ∼ c′

(uCast)
P; Π`e : α | γ;e′

P; Π`(c)e : c | γ ∪ {α ∼ c};(c)e′

(uInvk)

P; Π`e0 : α | γ0 ;e′0
P; Π`ei : ti | γi ;e′i ∀i ∈ 1..n

P; Π` e0.m(e1, . . . , en) : α′ | {µ(α, m, t1 . . . tn, α
′)} ∪ (

⋃
i∈0..n γi);

e′0.reflInvk(”m”, e
′
1, . . . , e

′
n)

α′ fresh

(kInvk)

P; Π`e0 : c0 | γ0 ;e′0
P; Π`ei : ti | γi ;e′i ∀i ∈ 1..n

P; Π` e0.m(e1, . . . , en) : c | {αi ≤ c′i|αi = ti} ∪ (
⋃

i∈0..n γi)
;e′0.m((c

′
1)e

′
1, . . . , (c

′
n)e′n)

monomtype(P, c0, m) =
c′1 . . . c′n → c

∀i ∈ 1..n ti = ci =⇒
P ` ci ≤ c′i

(kkMeth)
P; {this 7→ c, x1 7→ t1, . . . , xn 7→ tn}`e : c′ | γ;e′

P; c` c0 m(t1 x1, . . . , tn xn) { return e ; } : γ;

c0 m(t̃1 x1, . . . , t̃n xn) { return e′ ; }

P ` c′ ≤ c0

(kuMeth)
P; {this 7→ c, x1 7→ t1, . . . , xn 7→ tn}`e : α | γ;e′

P; c` c0 m(t1 x1, . . . , tn xn) { return e ; } : γ ∪ {α ≤ c0};

c0 m(t̃1 x1, . . . , t̃n xn) { return (c0)e
′ ; }

(uMeth)
P; {this 7→ c, x1 7→ t1, . . . , xn 7→ tn}`e : t | γ;e′

P; c` α m(t1 x1, . . . , tn xn) { return e ; } : γ ∪ {α ≡ t};

Object m(t̃1 x1, . . . , t̃n xn) { return e′ ; }

Figure 4: Typechecking and translation of polymorphic methods
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which the return type is unknown, that is, is a variable α; in this case, a constraint
is added expressing the fact that α will be equal to the type t of the body in each
invocation of the method.

In all three cases, unknown parameter types (that is, type variables) are replaced
by Object in the translated code. We have used the notation:

t̃ =

{
c if t = c

Object otherwise

The judgment P; Π ` e : t | γ ; e′ is defined by the first six rules in Figure 4.
The most interesting rules are the last two of the group, (uInvk) and (kInvk), that
model method invocations.

The former models the case in which the target has an unknown type, that
is, a type variable α. In this case, a constraint is added expressing the fact that
(each instantiation of) α must provide an applicable method, and the invocation
is translated by using reflection. We model reflection in FJ in an abstract way
by assuming that the predefined class Object has a reflInvk primitive method
which takes a string representing a method name as first parameter. The run-time
behaviour of a call to this method is to invoke the corresponding method, if any, on
the receiver with the given arguments, or to give a run-time error (formally, a stuck
term) in case the method is absent. The resulting type of the method invocation
will be in turn an unknown type, that is, a fresh type variable α′.

The latter rule models the case in which the type of the target is a class. In this
case, this class must provide an applicable monomorphic method (indeed, recall that
invocations of polymorphic methods inside polymorphic methods are forbidden).
The (standard) definition of monomorphic method types mmt and of the function
monomtype which returns the monomorphic method type associated to a pair of class
and method names, if any, is given in Figure 5.

Note that applicable means, in this case, that whenever the argument type is a
class ci, the corresponding parameter type c′i must be a supertype; instead, when
the argument type is unknown, that is, is a type variable αi, a constraint is added
expressing the fact that (each instantiation of) αi must be a subtype of c′i. Moreover,
a cast is inserted7 since in the translation the argument will have type Object. The
cast will always succeed since the method invocation will only be executed when the
constraints hold.

The phase of typechecking and translation of monomorphic methods is described
in Figure 6. The judgment

P; Γ; c`md;md′

has the following informal meaning: in the program P and constraint environment
Γ (piecewise found in the previous step for polymorphic methods), inside class c,
method declaration md is correct and translated to md′. As in the polymorphic case,

7In the rule casts are inserted for all arguments for simplicity.
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mmt ::= c1 . . . cn → c

mt ::= γ ⇒ t1 . . . tn → t

(monomtype-1)
monomtype(P, c, m) = c1 . . . cn → c0

P = 〈<, MT〉
MT(c, m) =

c0 m(c1 x1, . . . , cn xn) {. . .}

(monomtype-2)
monomtype(P, c′, m) = mmt

monomtype(P, c, m) = mmt

P = 〈<, MT〉
〈c, m〉 6∈ def(MT)
c < c′

(mtype-1)
mtype(P, Γ, c, m) = γ ⇒ t1 . . . tn → t

P = 〈<, MT〉
MT(c, m) =

t0 m(t1 x1, . . . , tn xn) {. . .}
Γ(c, m) = γ

(mtype-2)
mtype(P, Γ, c′, m) = mt

mtype(P, Γ, c, m) = mt

P = 〈<, MT〉
〈c, m〉 6∈ def(MT)
c < c′

Figure 5: Monomorphic and polymorphic method types

(new)
P; Γ; Π`new c() : c;new c()

(param)
P; Γ; Π`x : c;x

Π(x) = c

(cast)
P; Γ; Π`e : c;e′

P; Γ; Π`(c′)e : c′;(c′)e′
P ` c ∼ c′

(invk)
P; Γ; Π`ei : ci ;e′i ∀i ∈ 0..n

P; Γ; Π` e0.m(e1, . . . , en) : σ(t);
(σ(t)) (e′0.m(e

′
1, . . . , e

′
n))

mtype(P, Γ, c0, m) = γ ⇒ t1 . . . tn → t

∀i ∈ 1..n P ` ci ≤ σ(ti)
P`σ(γ)

(meth)
P; Γ; {this 7→ c, x1 7→ c1, . . . , xn 7→ cn}`e : c′;e′

P; Γ; c` c0 m(c1 x1, . . . , cn xn) { return e ; };

c0 m(c1 x1, . . . , cn xn) { return e′ ; }

P ` c′ ≤ c0

Figure 6: Typechecking and translation of standard methods
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this judgment is defined in term of another judgment used to type expressions, that
is, P; Γ; Π`e : c;e′. Figure 6 contains the rules defining both these judgments.

These rules are standard rules for typechecking FJ expressions, except in one
case, that is, in method invocation (rule (invk)). In this rule, σ denotes a substitution
mapping type variables into class names. The method invocation is correct if the
following conditions hold:

• There exists a method for the given target type and name (first side condition).
Since this method can be polymorphic, its method type also keeps track of the
constraint sequence associated to the method in Γ (empty if the method is
monomorphic). The formal definition of (possibly polymorphic) method types
mt and of the function mtype which returns the method type associated to a
pair of class and method names, if any, is given in Figure 5.

• There exists a substitution (mapping the type variables possibly present in
the method type into classes) such that the method turns out to be applicable
to the invocation, that is, argument types are subtypes of parameter types
(second side condition), and, moreover, constraints turn out to be satisfied
(third side condition).

In this case, the resulting type of the method invocation is obtained by applying
the substitution to the return type of the method t; moreover, a cast needs to be
inserted since, if t is a type variable, then it is translated to Object. Note that, if
t is a class already, then σ(t) gives t and the cast is redundant (in the rule we do
not distinguish this case for simplicity).

The (standard) definition of satisfaction of constraints is given in Figure 3. Note
that a µ constraint is satisfied only if there is a monomorphic method applicable to
the invocation; this is due again to the fact that we forbid invocations of polymor-
phic methods inside polymorphic methods, as illustrated by the following example.
Consider

class Self{

? apply(? x){return x.apply(x);}

}

class Main{

void main(){

Self x=new Self();

x.apply(x);

}

}

Typechecking of class Self succeeds and method type µ(α, apply, α, β) ⇒ α → β is
associated to method apply (which corresponds to the lambda-term λx.xx). How-
ever, invocation x.apply(x) in method main is not correct, since invoking method
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Self.apply with an argument of type Self would lead to a recursive call of the
same method. Formally, in order to typecheck invocation x.apply(x), a constraint
µ(Self, apply, Self, . . .) should be satisfied, and this is not the case since method
Self.apply is polymorphic.

4 RESULTS

The soundness of our approach is expressed by two results. The former states that
well-typed Just programs are translated into well-typed FJ programs, hence guar-
antees that Java code generated by the Just translator can be successfully compiled
by a standard Java compiler. The latter states that no run-time errors are intro-
duced by the translation. That is, execution of downcasts and reflInvk invocations
inserted by the translation always succeeds.

In order to formally express these results, first of all let us introduce notations
for typechecking-only judgments: we write `P : Γ for ` P ; P′ : Γ, P; Γ; c`md for
P; Γ; c`md;md′, and P; Γ; Π`e : c for P; Γ; Π`e : c;e′.

It is easy to see that on monomorphic programs (that is, when Γ = ∅) these
judgments are just a rephrasing of the original FJ type system. Hence, we can
express that well-typed Just programs are translated into well-typed FJ programs
as follows.

Theorem 1 (Translation preserves well-typedness) If `P ; P̃ : Γ then ` P̃ : ∅.

Proof:
Easy induction on the typing rules, proving analogous properties for method decla-
rations and expressions. Namely, assuming`P ; P̃ : Γ, for method declarations we
prove:

• if P; c`md : γ;m̃d, then P̃; ∅; c`m̃d

• if P; Γ; c`md;m̃d, then P̃; ∅; c`m̃d.

For expressions, assuming Π̃(x) = Π̃(x), we prove:

• if P; Π`e : t | γ; ẽ, then P̃; ∅; Π̃` ẽ : t̃

• if P; Γ; Π`e : c; ẽ, then P̃; ∅; Π̃` ẽ : c.

These properties can be easily proved since, briefly, on monomorphic code types are
preserved, and on polymorphic code type variables are mapped into Object, in such
a way that reflInvk invocations and casts inserted by the translation are trivially
well-typed.
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(cast)
(c′)new c() →P new c()

P`c ≤ c′

(invk)
new c().m(e1, . . . , en) →P e[ei/xi][new c()/this]

m 6= reflInvk

mbody(P, c, m) =
〈x1, . . . , xn, e〉

(refl)
new c().reflInvk(”m”, e1, . . . , en) →P e[ei/xi][new c()/this]

mbody(P, c, m) =
〈x1, . . . , xn, e〉

(mbody-1)
mbody(P, c, m) = 〈x1, . . . , xn, e〉

P = 〈<, MT〉
MT(c, m) =

t0 m(t1 x1, . . . , tn xn) {return e;}

(mbody-2)
mbody(P, c′, m) = 〈x1, . . . , xn, e〉
mbody(P, c, m) = 〈x1, . . . , xn, e〉

P = 〈<, MT〉
〈c, m〉 6∈ def(MT)
c < c′

Figure 7: Reduction rules

In order to state the safety result, first of all we give in Figure 7 the reduction
rules for Just programs. They are standard FJ reduction rules (obvious propagation
rules are omitted), extended with a rule for reflInvk invocations which, as expected,
behave as regular invocations. Note that, whereas for regular method invocations
the standard FJ type system guarantees that a method is always found, invocations
of reflInvk are potentially unsafe, and the same holds for casts.

In order to express that a program is safe, we introduce auxiliary judgments
safe

`
for programs, method declarations and expressions which are inductively defined ex-
actly as those we have previously defined, except that only upcasts are allowed and
reflInvk invocations are typed as they were regular method invocations. In Fig-
ure 8, Figure 9 and Figure 10 we give the rules for expressions which are different
from those in Figure 4 and in Figure 6 (rules for programs and method declarations
do not change). The fact that only upcasts are allowed is modeled by changing the
side condition in the corresponding rules. The fact that reflInvk invocations are
typed as they were regular method invocations is modeled by adding a side condition
m 6= reflInvk in rules for method invocation and adding ad-hoc rules for reflInvk
invocations

Now, the fact that the translation does not introduce run-time errors can be
expressed as follows. Assume to typecheck and translate a safe program P, getting
a translated program P̃ and constraints Γ. Take a (ground) expression e which
can be proved to be safe by using the original type information (indeed, in the
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(safe-kcast)
P; Π

safe

` e : c | γ;e′

P; Π
safe

` (c′)e : c′ | γ;(c′)e′
P`c ≤ c′

(safe-uInvk)

P; Π
safe

` e0 : α | γ0 ;e′0

P; Π
safe

` ei : ti | γi ;e′i ∀i ∈ 1..n

P; Π
safe

` e0.m(e1, . . . , en) : α′ | {µ(α, m, t1 . . . tn, α
′)} ∪ (

⋃
i∈0..n γi);

e′0.reflInvk(”m”, e
′
1, . . . , e

′
n)

α′ fresh
m 6= reflInvk

(safe-kInvk)

P; Π
safe

` e0 : c0 | γ0 ;e′0

P; Π
safe

` ei : ti | γi ;e′i ∀i ∈ 1..n

P; Π
safe

` e0.m(e1, . . . , en) : c | {αi ≤ c′i|αi = ti} ∪ (
⋃

i∈0..n γi)
;e′0.m((c

′
1)e

′
1, . . . , (c

′
n)e′n)

monomtype(P, c0, m) =
c′1 . . . c′n → c

∀i ∈ 1..n ti = ci =⇒
P ` ci ≤ c′i

m 6= reflInvk

Figure 8: Safe expressions (polymorphic methods) - part 1
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(safe-uInvk)

P; Π
safe

` e0 : α | γ0 ;e′0

P; Π
safe

` ei : ti | γi ;e′i ∀i ∈ 1..n

P; Π
safe

` e0.m(e1, . . . , en) : α′ | {µ(α, m, t1 . . . tn, α
′)} ∪ (

⋃
i∈0..n γi);

e′0.reflInvk(”m”, e
′
1, . . . , e

′
n)

α′ fresh

(safe-krefl)

P; Π
safe

` e0 : c0 | γ0 ;e′0

P; Π
safe

` ei : ti | γi ;e′i ∀i ∈ 1..n

P; Π
safe

` e0.reflInvk(”m”, e1, . . . , en) : c | {αi ≤ c′i|αi = ti} ∪ (
⋃

i∈0..n γi);
e′0.reflInvk(”m”, (c

′
1)e

′
1, . . . , (c

′
n)e′n)

monomtype(P, c0, m) = c′1 . . . c′n → c

∀i ∈ 1..n ti = ci =⇒ P ` ci ≤ c′i

(safe-urefl)

P; Π
safe

` e0 : α | γ0 ;e′0

P; Π
safe

` ei : ti | γi ;e′i ∀i ∈ 1..n

P; Π
safe

` e0.reflInvk(”m”, e1, . . . , en) : α′ | {µ(α, m, t1 . . . tn, α
′)} ∪ (

⋃
i∈0..n γi)

;e′0.reflInvk(”m”, e
′
1, . . . , e

′
n)

α′ fresh

Figure 9: Safe expressions (polymorphic methods) - part 2

(safe-cast)
P; Γ; Π

safe

` e : c;e′

P; Γ; Π
safe

` (c′)e : c′;(c′)e′
P`c ≤ c′

(safe-invk)
P; Γ; Π

safe

` ei : ci ;e′i ∀i ∈ 0..n

P; Γ; Π
safe

` e0.m(e1, . . . , en) : σ(t);
(σ(t)) (e′0.m(e

′
1, . . . , e

′
n))

mtype(P, Γ, c0, m) = γ ⇒ t1 . . . tn → t

∀i ∈ 1..n P ` ci ≤ σ(ti)
P`σ(γ)
m 6= reflInvk

(safe-refl)
P; Γ; Π

safe

` ei : ci ;e′i ∀i ∈ 0..n

P; Γ; Π
safe

` e0.reflInvk(”m”, e1, . . . , en) : σ(t);
(σ(t)) (e′0.reflInvk(”m”, e

′
1, . . . , e

′
n))

mtype(P, Γ, c0, m) =
γ ⇒ t1 . . . tn → t

∀i ∈ 1..n P ` ci ≤ σ(ti)
P ` σ(γ)�

Figure 10: Safe expressions (monomorphic methods)
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translation some type information is lost, since type variables are always translated
to Object). Then, execution of e never gets stuck. This can be expressed by the
standard progress (Theorem 3) and subject reduction (Theorem 6) properties. The
proof schema is similar to that given in [8].

Before giving the formal statements and proofs of these theorems, let us briefly
illustrate their meaning on the following program P consisting of the three classes
introduced in Section 2:

P ≡
class A {

A m(A anA) { return anA; }

}

class B {

B m(B aB) { return aB; }

}

class Example {

Object print(Object o) { return this; }

α printM(α1 x,α2 y) {

return this.print(x.m(y));

}

}

The translation P̃ and the generated constraint Γ are the following:

P̃ ≡
class A {

A m(A anA) { return anA; }

}

class B {

B m(B aB) { return aB; }

}

class Example {

Object print(Object o) { return this; }

Object printM(Object x,Object y) {

return this.print(x.reflInvk("m",y));

}

}

Γ ≡
〈A, m〉 7→ ∅
〈B, m〉 7→ ∅
〈Example, print〉 7→ ∅
〈Example, printM〉 7→ {µ(α1, m, α2, α3), α3 ≤ Object, α ≡ Object}

Program P is clearly well-typed (judgment`P : Γ holds8 ). However, program P

8Recall that this is an abbreviation for`P ; P̃ : Γ for some P̃.
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is more than well-typed, is safe in the sense that no run-time errors can be raised

by its execution (judgment
safe

` P : Γ holds). This is trivially the case since P does not
contain downcasts or reflInvk invocations.

Assume now to reduce a (ground) expression e in the context of the translated
program, say e ≡ new Example().printM(new A(), new A()). It is easy to see
that reduction →eP of e does not get stuck since, intuitively, constraints on method
printM are satisfied. Formally, e can be proved to be safe w.r.t. the original type

information P and Γ (P; Γ; ∅
safe

` e : Object holds). Notably, we can only assign
type Object to the expression new A().reflInvk("m",new A()) by using the type
information from the translated program P̃ and ∅, and this does not guarantee
absence of run-time errors. However, by using the original type information P and
Γ, where method printM has type {µ(α1, m, α2, α3), α3 ≤ Object, α ≡ Object} ⇒
α1α2 → α, we can prove that the same expression is safe and has type A since
constraints hold under a suitable substitution. Theorem 3 and Theorem 6 state
that this implies that execution of e does not get stuck.

The following lemma is needed to prove progress.

Lemma 2 If
safe

` P ; P̃ : Γ, and mtype(P, Γ, c, m) = γ ⇒ t1, . . . , tn → t, then
mbody(P̃, c, m) = 〈x1, . . . , xn, e〉.

Proof:
We prove the thesis by induction on the derivation of mtype(P, Γ, c, m), with P =
〈<, MT〉, P̃ = 〈<, M̃T〉.

• Assume we have applied typing rule (mtype-1), then
MT(c, m) = t0 m(t1 x1, . . . , tn xn) {. . .}. The thesis follows since in this case
mbody(P, c, m) = 〈x1, . . . , xn, . . .〉, and it is immediate to see that if
mbody(P, c, m) = 〈x1, . . . , xn, . . .〉 then mbody(P̃, c, m) = 〈x1, . . . , xn, . . .〉.

• Assume we have applied rule (mtype-2), then
mtype(P, Γ, c, m) = mtype(P, Γ, c′, m), with 〈c, m〉 6∈ def(MT), P ` c ≤ c′. The
thesis follows by inductive hypothesis since in this case it is immediate to see
that 〈c, m〉 6∈ def(M̃T) and P̃`c ≤ c′, hence mbody(P̃, c, m) = mbody(P̃, c′, m).

Theorem 3 (Progress) If
safe

` P ; P̃ : Γ, and P; Γ; ∅
safe

` e : c, then either e =
new c() or e →eP e′ for some e′.

Proof:
By induction on the structure of e. The cases to be checked are:

(c′)e If e →eP e′ , then we get the thesis by propagation; otherwise, since we have

applied typing rule (safe-cast), P; Γ; ∅
safe

` e : c holds, hence by inductive hy-
pothesis e = new c(). In order to apply reduction rule (cast), we must show
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that P̃ ` c ≤ c′, and it is immediate to see that this follows from the side
condition P`c ≤ c′ of the typing rule (safe-cast).

e0.m(e1, . . . , en), m 6= reflInvk If e0 →eP e′0 , then we get the thesis by propagation;

otherwise, since we have applied typing rule (safe-invk), P; Γ; ∅
safe

` e0 : c0 holds,
hence by inductive hypothesis e0 = new c0(). In order to apply reduction rule
(invk), we must show that mbody(P̃, c0, m) = 〈x1, . . . , xn, e〉. Since we have
applied typing rule (safe-invk), mtype(P, Γ, c0, m) = γ ⇒ t1, . . . , tn → t, and
we conclude by Lemma 2.

e0.reflInvk(”m”, e1, . . . , en) The proof is analogous to the previous case, considering
typing rule (safe-refl) and reduction rule (refl).

The following lemmas are needed to prove subject reduction.

Lemma 4 If
safe

` P ; P̃ : Γ, mtype(P, Γ, c, m) = γ ⇒ t1, . . . , tn → t, mbody(P̃, c, m) =
〈x1, . . . , xn, e〉, and P`σ(γ), then, for some tb, cb,

P; Γ; {this 7→ cb, x1 7→ σ(t1), . . . , xn 7→ σ(tn)}
safe

` e : tb; moreover, P `
c ≤ cb, and P`tb ≤ σ(t).

Lemma 5 (Term substitution) If P; Γ; Π, x1 7→ c1, . . . , xn 7→ cn

safe

` e : c, and for

i ∈ 1..n P; Γ; Π
safe

` ei : c′i with P`c′i ≤ ci, then P; Γ; Π
safe

` e[ei/xi] : c′ with P`c′ ≤ c.

Theorem 6 (Subject reduction) If
safe

` P ; P̃ : Γ, P; Γ; Π
safe

` e : c, and e →eP e′,

then P; Γ; Π
safe

` e′ : c′ with P`c′ ≤ c.

Proof:
By induction on the derivation of the judgment e →eP e′, with a case analysis on the
reduction rule used. We show one case.

(safe-invk) We have

new c().m(e1, . . . , en) →eP e[ei/xi][new c()/this],
m 6= reflInvk,
mbody(P̃, c, m) = 〈x1, . . . , xn, e〉.

Moreover, since we have applied typing rules (safe-invk) and (new), we have
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P; Γ; Π
safe

` new c().m(e1, . . . , en) : σ(t)

P; Γ; Π
safe

` new c() : c

P; Γ; Π
safe

` ei : ci ∀i ∈ 1..n
mtype(P, Γ, c, m) = γ ⇒ t1 . . . tn → t

∀i ∈ 1..n P ` ci ≤ σ(ti)
P`σ(γ)

By Lemma 4, we get that, for some cb, tb

P; Γ; {this 7→ cb, x1 7→ σ(t1), . . . , xn 7→ σ(tn)}
safe

` e : tb, and
P`tb ≤ σ(t).

By Lemma 5

P; Γ; Π
safe

` e[ei/xi][new c()/this] : c′ with P`c′ ≤ σ(tb),

and we can conclude by applying rule (≤-trans).

5 IMPLEMENTATION

We have developed a prototype compiler that compiles closed programs using un-
known types into standard .class files, which can be run on any JVM. We have
written a small compiler, instead of trying to modify the standard Java one, to be
able to experiment with some examples in a short time; of course, if the full Java
language was to be supported, then modifying the standard compiler would be a
better choice.

The prototype can be directly tested (using any Java-enabled web browser) at
the following web page:

http://www.disi.unige.it/person/LagorioG/just/

The information for obtaining the sources of the prototype can be found at the same
URL.

Our compiler applies the ideas described in Section 3 to a larger subset of Java
including: constructors, fields, some statements, some primitive types (integers and
booleans) and void methods. Fortunately, our approach has scaled smoothly to
these additional features.

We decided to support constructor overloading, differently from methods. Indeed
method overloading can be simulated/avoided by renaming, whereas this solution
would have been awkward for constructors. However, for the sake of simplicity, we
forbid the use of unknown type parameters in constructors. We may consider to
extend overloading resolution to unknown types in future versions.
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Fields must be declared of a known type and their accesses are handled like
method invocations are: through reflection when unknown (target) types are in-
volved and with standard field accesses everywhere else. The only major difference
is that we need to distinguish between read and write accesses invoking, respectively,
a (reflective) getter or a (reflective) setter method. Supporting fields of unknown
types is a very challenging issue to be investigated in the future.

Including primitive types, though straightforward, required to take care of the
fact that unknown types are represented by the standard type Object in the transla-
tion. That is, values of primitive types need to be boxed and unboxed when they are,
respectively, passed-to or returned-from a polymorphic method. Although our pro-
totype generates a Java source that is compiled invoking javac, the standard Java
compiler, we need to deal with this issue anyway because autoboxing conversions of
Java 5 cannot implicit convert from the type Object to primitive types.

Our running example, along with its translation, generated by our prototype
compiler, can be found in the Appendix.

6 CONCLUSIONS

We have proposed an extension of Java-like languages enabling programmers to for-
get about typing in strategic places of their programs without losing type safety. The
initial motivation has been allowing simpler and more maintainable code. However,
using type constraints rather than standard Java types also makes the language
more flexible. Indeed, there are cases where no suitable (standard Java) types could
be used in place of the unknown types, even considering Java generics, so the mech-
anism can do more than just making programs more concise. In essence, it supports
quantification over types by means of the inferred constraints, in contrast to Java
generics that provide quantification over types described by explicitly named bounds.

Ideally unknown types and Java generics should be independent, not competing,
approaches that can be freely mixed and matched. In this ideal view, programmers
would use our “?” annotations where they do not want to fix the types of parameters,
regardless the involved constructor or method is itself generic or declared inside
a generic type. Alas, in practice this view falls short because the inferred type
constraints need to take generic types into considerations. This could make the
approach much more complex, so studying the interactions between our approach
and standard generics is the subject of further work.

We achieved our goal mixing known technologies like reflection and inferred
type constraints for Java-like languages [1] in a novel way. As required for true
applicability, there is zero runtime overhead on code which does not take advantage
of the new features.

An alternative implementation technique9 could be an heterogenous translation

9Suggested by an anonymous referee of [9].
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of our extension. That is, a translation where each polymorphic method is translated
to a set of standard methods where the unknown types have been replaced by the
types used by the various callers. This translation is indeed appealing from the
standpoint of runtime efficiency, as there would be no overhead in using the new
features, at the cost of a possible bloat in code size.

Another interesting alternative to be considered is allowing constraints to be
explicitly written by programmers, presumably in the shape of where-clauses (see
below) about the argument types of polymorphic methods. Indeed, from a software
engineering point of view, it is always debatable whether type inference is a good
choice as there is a trade-off between conciseness and maintainability, since changes
to the details of the implementation of a method might (accidentally) invalidate call
sites for the method. In Java this means that binary compatibility is not preserved.
Also, in an extension allowing overriding of polymorphic methods, this choice would
allow programmers to describe constraints which are intended to hold in all future
redefinitions, exactly as it happens for throws clauses in Java.

As already mentioned, the type system we have presented imposes a rather
severe restriction on polymorphic methods, which avoids having to solve recursive
constraint sets. Indeed, here we are more interested in proposing a rather lightweight
extension to Java-like languages, allowing more flexibility to the programmer at the
price of a relatively small complication in the type system and implementation,
rather than proposing a new full polymorphic language. However, we believe this
direction is very interesting as well, and we are currently working on it [2]. Previous
work on inferring type constraints for object oriented languages includes [12, 5, 4,
11, 13].

Our type constraints are somewhat reminiscent of where-clauses [3, 10] used in
the PolyJ language. In PolyJ programmers can write parameterized classes and
interfaces where the parameter has to satisfy constraints (the where-clauses) which
state the signatures of methods and constructors that objects of the actual argument
type must support. The fact that our type constraints are related to methods rather
than classes poses the additional problem of handling recursion. Moreover, our
constraints for a method may involve type variables which correspond not only to
the parameters, but also to intermediate result types of method calls.

Union types [6] are an interesting approach to handle objects of different types
via their common interface in a Java-like language. Using union types programmers
can exploit the commonalities among different types without any need to modify
them. In other words, these types are not required to implement an explicitly
named interface, as it would be the case in standard Java. On the other hand, the
common interface is sometimes not enough: the common interface of our example
classes List and Archive contains only the method size (returning the union type
Integer∨ Long). The method append is missing in the union type List∨ Archive

since the two versions have different parameter types. This fact prevents a method
like our example appAndSize to be typechecked.
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As mentioned above, we are currently working on exploiting the ideas in this
paper to get a full polymorphic language. Another important subject of future work
is the study of the impact of our proposed extension on the various aspects of the
full Java language. In particular, exception handling, overloading and overriding of
polymorphic methods are important features which are to be taken into account in
order to obtain a practical extension of Java.
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A APPENDIX

This appendix contains the running example of the paper and its translation, gen-
erated by our prototype compiler.

Source code

class Integer {}

class Long {}

class List {

void append(List l) {

/* ... */

}

Integer size() {

return new Integer();

}

}

class Archive {

void append(Archive a) {

/* ... */

}

Long size() {

return new Long();

}

}

class Test {

void appAndSize(x, y) {

x.append(y);

System.out.println(x.size());

}

void main() {

List l1 = new List();

List l2 = new List();

Archive a1 = new Archive();

Archive a2 = new Archive();

appAndSize(l1, l2);

appAndSize(a1, a2);

}

}
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Translated code

class Integer extends Object { public Integer () { } }

class Long extends Object { public Long () { } }

class List extends Object {

public List () { }

public void append (List l) { }

public Integer size () {

return new Integer() ;

}

}

class Archive extends Object {

public Archive () { }

public void append (Archive a) { }

public Long size () {

return new Long() ;

}

}

class Test extends Object {

public void appAndSize (Object /* ’a */ x, Object /* ’b */ y) {

RuntimeLibrary.reflectiveInvoke(x,"append",y) ;

System.out.println(""+(RuntimeLibrary.reflectiveInvoke(x,"size"))+"") ;

} // constraints:

// !void ’e

// method(’a.size(<>)=<> returns ’e)

// method(’a.append(<’b>)=<’c> returns ’d)

public static void main(String [] args) { new Test().main() ; }

// trampoline method for program startup

public Test () { }

public void main () {

List l1 = new List() ;

List l2 = new List() ;

Archive a1 = new Archive() ;

Archive a2 = new Archive() ;

/* in: [’a->List, ’b->List] */

/* out: [’c->List, ’e->Integer, ’d->void] */

this.appAndSize(l1,l2) ;

/* in: [’a->Archive, ’b->Archive] */

/* out: [’c->Archive, ’e->Long, ’d->void] */

this.appAndSize(a1,a2) ;

}

}
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