
Vol. 6, No. 2, Special Issue OOPS Track at SAC 2006, February 2007

Union Types for Object-Oriented Program-
ming

Atsushi Igarashi, Graduate School of Informatics, Kyoto University, Japan
Hideshi Nagira, Graduate School of Informatics, Kyoto University, Japan

We propose union types for statically typed class-based object-oriented languages
as a means to enhance the flexibility of subtyping. As its name suggests, a union
type can be considered the set union of instances of several types and behaves as
their least common supertype. It also plays the role of an interface that “factors
out” commonality—fields of the same name and methods with similar signatures—of
given types. Union types can be useful for implementing heterogeneous collections
and for grouping independently developed classes with similar interfaces, which has
been considered difficult in languages like Java. To rigorously show the safety of union
types, we formalize them on top of Featherweight Java and prove that the type system
is sound.

1 INTRODUCTION

The design of good, reusable class libraries is known to be a very hard problem
and, in mainstream object-oriented languages like Java and C++, inheritance and
subtyping (and, more recently, generics) have been used as the main mechanisms
to promote code reuse. While inheritance enables one class to reuse the implemen-
tation (declarations of instance variables and methods) of another class, subtyping
is for substitutability—the property that, if an object of one type can be used at a
certain place, then another object of a subtype can be used at the same place, too.
(Substitutability may be rephrased as reusability of contexts, in the sense that, if
some context is applicable to an object of one type, then the same context is also
applicable to any object of its subtype.) Thus, design concerns about inheritance
and subtyping relations are somewhat different: it has to be taken into account, for
inheritance, how new classes may reuse existing implementation and, for subtyping,
how objects may be used in client code.

In the mainstream languages, however, the subtyping relation is mostly based on
the inheritance relation1. It can happen that two classes used in similar contexts but
with rather different implementations are placed apart in the class (inheritance) hier-
archy, resulting in no useful supertype of those classes. Interfaces (as a programming
construct) in Java are a solution to this problem: one can define a super-interface
of classes of similar use, regardless of a given inheritance hierarchy, and enjoy the
benefits of subtyping. However, interfaces cannot be added once a class is defined, so

1A notable exception is wildcards [16] in Java 5.0.

Cite this document as follows: Atsushi Igarashi, Hideshi Nagira: Union Types for Object-
Oriented Programming, in Journal of Object Technology, vol. 6, no. 2, Special Issue OOPS
Track at SAC 2006, February 2007, pages 31–45,
http://www.jot.fm/issues/issues 2007 02/article3

http://www.jot.fm/issues/issues_2007_02/article3

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

library designers still have to do a lot of planning of their interface hierarchies before
the library is shipped. This problem has been considered a significant limitation of
type systems with declaration-based subtyping, as in Java.

In this article, we propose union types to partially address the problem of the
inability of adding supertypes to existing types (classes and interfaces). As its name
suggests, a union type denotes the set union of some given types (viewed as sets of
instances that belong to those types) and behaves as their least common supertype.
Since union types are composed from existing types, they give an ability to define
a supertype even after a class hierarchy is fixed. Union types can be used not only
by case analysis as in ML datatypes, but also by direct member access as ordinary
types. In fact, given some types, their union type can be viewed as an interface type
that “factors out” their common features, that is, the fields of the same name and
methods with similar signatures.

We expect that union types can be useful for grouping independently devel-
oped classes with similar interfaces by giving their supertype, and for implementing
heterogeneous collections like lists where, say, strings and integers are mixed as
elements.

Our contributions in this article can be summarized as follows:

• The proposal of union types for class-based object-oriented languages with a
name-based type system; and

• A formalization of a core object-oriented language FJ∨ with union types on
top of Featherweight Java [9] with a proof of type soundness of FJ∨.

We also informally discuss how union types will interact with other standard lan-
guage mechanisms such as generics and method overloading.

The rest of the article is organized as follows. We first give an overview of union
types and related constructs in Section 2 and then formalize FJ∨ and prove its
type soundness in Section 3. We discuss the interactions of union types with other
language features in Section 4, discuss related work in Section 5, and finally give
concluding remarks in Section 6.

2 UNION TYPES, PRIMER

In this section, we informally introduce union types and develop related constructs.
As a first step, we focus only on core features typically found in class-based object-
oriented languages, and defer the discussion on some other features in Section 4.

A union type can be constructed from any two types A and B by combining them
with ∨, written A∨B. We often call A and B the summands of A∨B. Intuitively, when
types A and B denote some sets of instances, A∨B denotes the union of the two sets.
Since union types are, unlike class names, not associated with an implementation,

32 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

2 UNION TYPES, PRIMER

C

D1 ∨D2

OO

D1

EE��������������
99

D2

YY33333333333333
ee

D3

``AAAAAAAAAAAAAAAAAA

E1 ∨ E2

OO

E0

FF
E1

OO

99

E2

OO

ee

Figure 1: Union Types and Subtyping.

they cannot be used to instantiate objects. So, they are closer to interface types in
Java. We forbid another class (or interface, respectively) to ‘implement’ (or ‘extend’,
respectively) union types—in the sense of Java—so as to ensure exhaustiveness of
case analysis (see below), although there are non-trivial subtypes of union types
other than their summands, as is discussed shortly.

By (naively) viewing subtyping as set inclusion, A∨B is a supertype of both A and
B. Thus, supposing there are two classes Jpg and Gif implementing image objects,
an assignment below is allowed:

Jpg∨Gif im = new Jpg("portrait.jpg");

Moreover, Jpg∨Gif is a least supertype among supertypes of A and B in the sense
that any common supertype of A and B is also a supertype of A∨B. So,

Image x = im; // assuming Jpg and Gif extend Image

is also allowed. The least subtype property can be explained in terms of the types-
as-sets interpretation above: A∨B includes only instances that belong to A or B and
nothing else, while other supertypes may include instances belonging to classes other
than A and B. Figure 1 shows an example of a subtyping hierarchy. In this figure,
C, Di, and Ei are class names and solid arrows represent inheritance relations, which
are also subtyping relations. For example, D1 extends C and so D1 is a subtype of
C. Dotted arrows represent subtyping relations induced by union types: D1∨D2 is a
supertype of D1 and D2 and also a subtype of C, which is also a common supertype
of D1 and D2, but D3 is not related to D1∨D2. Moreover, the union type constructor ∨
preserves subtyping relations of its summands. That is, E1∨E2, a union of subclasses
of D1 and D2, is a subtype of D1∨D2, which is derived by the leastness condition.

Note that the subtyping relation here is not anti-symmetric as in usual object-
oriented languages. In fact, there are two syntactically different types that are
subtypes of each other. For example, A∨B and B∨A are syntactically different and
subtypes of each other. A more interesting example is C∨D and C when C is a

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 33

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

superclass of D. We often call such types compatible types, which denote the same
set of instances, though they are syntactically different.

We provide two kinds of operations on union types: case analysis and direct
member access. Case analysis is a conditional construct that branches according to
the run-time class of the value of an expression being tested. For example,

case im:
instanceof(Jpg x) { x.draw(); }
instanceof(Gif y) { y.zoom(2); y.draw(); }

invokes method draw() if the value of im is an instance of Jpg (or one of its sub-
classes) or methods zoom() and draw() if it is of Gif (or one of its subclasses).
We adopt the first-matching semantics; if two cases overlap, the first one has a
precedence. Here, x and y are bound to the value of im but their static type infor-
mation is more refined than Jpg∨Gif. In this sense, it can be considered (at least,
operationally) a combination of dynamic test of run-time types (instanceof) and
typecasts. So, it could be written:

if (im instanceof Jpg) { Jpg x = (Jpg)im; x.draw(); }
else { Gif y = (Gif)im; y.zoom(2); y.draw(); }

One benefit of providing this combining construct is that the type system can check
the exhaustiveness of branching conditions against the expression being tested. In
fact, we require that the type of the test expression be a subtype of the union of the
types appearing in the branches (in the example above, Jpg and Gif). This require-
ment will guarantee that either branch will be taken and its execution succeeds. On
the other hand, the success of typecasts in the second code will not be guaranteed
by standard type systems.

Direct member access allows field access directly on union types if its summands
have fields of the same name. For example, consider concrete definitions of Jpg and
Gif:

class Jpg extends Image {
Integer hsize; Integer ncolors;
void zoom(Integer x) { ... }

}
class Gif extends Image {

Integer hsize; Byte ncolors;
void zoom(Number x) { ... }

}

Then, directly accessing field hsize on im (of type Jpg∨Gif) is allowed:

Integer i = im.hsize;

Moreover, even when field types are different, it is allowed to read from a field of a
common name:

Integer∨Byte x = im.ncolors;

34 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

2 UNION TYPES, PRIMER

We can use union types again to type the result.

We need be a little more careful about method invocation since methods of the
same name may have different signatures. There are several plausible conditions
when direct method invocation should be allowed. Perhaps, a most restrictive con-
dition is to require the method signatures of the summands be exactly the same;
a little relaxed is to require that argument types be compatible (and to allow re-
turn types to be different), as formalized in the conference version of this article [8].
Here, we will further relax the condition for the sake of flexibility in programming
and allow argument types to be different, as long as each actual argument type is
respectively a subtype of the corresponding formal of both method signatures. For
example,

im.zoom(new Integer(100));

will be well typed because the actual argument type Integer is a subtype of both
Integer and Number, which are formal argument types of zoom() of Jpg and Gif,
respectively. When return types are object types (not void), they can be different
as in field access; the type of the whole method invocation will be the union of those
return types.

In this way, direct member access provides a much more concise way to write
a simple member access than using case analysis, when summands have members
of common names. By this mechanism, a union type can be considered a sort of
interface type that “factors out” common members from the summands. We expect
that this mechanism would be useful when independently developed classes with
similar functionality are combined. For example, Jpg and Gif might have been
developed separately, there is no class like Image, and a common superclass of Jpg
and Gif might have been only Object. Even in such a case, instances of these
two classes can be handled together by using Jpg∨Gif and, moreover, instances of
other image formats cannot be mixed (unless they are subclasses of Jpg or Gif).
Compared with a usual idiom of adapter classes to handle this kind of situations,
one advantage of using union types is in subtyping—a union type is also a subtype of
common supertypes of their summands, while adapter classes introduce new types,
not necessarily related to common supertypes of summands.

Before concluding this section, let us compare our union types with union types
in other languages. The notion of union types in programming languages can usually
be classified into two categories: tagged (or disjoint) union types and untagged union
types. The former, found for instance in ML’s datatypes or Pascal’s variant records,
usually requires an explicit operation of tagging (or constructor applications) to form
an expression of a union type, while the latter [2, 13] does not (and uses subtyping
and subsumption, instead). A language with tagged unions is equipped with a case
analysis construct to use tagged values, while an untagged union can usually be used
with only operations that are valid for both summands. Our union types can be con-
sidered a hybrid of the two kinds; thanks to the fact that every object is inherently
tagged by the name of the class from which it was instantiated, explicit tagging is

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 35

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

not needed to construct an expression of a union type and, furthermore, both case
analysis and direct member access are supported. However, in our language, unlike
ML datatypes, forming a union of the same type results in a compatible type of the
original type, so it is not meaningful to perform case analysis on such a type (the
first branch will always be taken).

Although we criticized Java-style interface types in the introduction, we think
Java-style interfaces are complementary, rather than conflicting, mechanisms. On
the one hand, explicitly declared interfaces are useful to abstract out class implemen-
tations and also for documentation purposes: an interface gives not only method sig-
natures but also more semantic (or behavioral) concerns of its implementing classes,
like “method sort() should really do sorting” (if not enforced by programming
languages). On the other hand, union types are more useful to give a posteriori
interfaces for legacy or third-party classes, over which programmers do not always
have control.

3 FJ∨: A FORMAL MODEL OF UNION TYPES

In this section, we formalize union types in a small calculus FJ∨ as an extension of
Featherweight Java (FJ) [9], which is a functional core of class-based object-oriented
languages. Thus, we model only a minimal set of features: classes, inheritance, fields,
virtual method invocation, this, and, of course, union types. FJ∨ does not model,
among other features, field shadowing, overloading, and super. Since case analysis
can be substituted for typecasts, we have dropped typecasts in FJ∨.

Syntax

The abstract syntax of FJ∨ is as follows:

L ::= class C extends C {T f; K M} classes
T, S, U ::= C | T∨T types
K ::= C(T f){super(f); this.f=f;} constructors
M ::= T m(T x){ return e; } methods
e ::= x | e.f | e.m(e) | new C(e)

| (case e of (T x) e | (T x) e) expressions

Here, the metavariables C, D, and E range over class names; f and g range over field
names; m ranges over method names; and x and y range over variables.

We put an over-line for a possibly empty sequence. Furthermore, we abbre-
viate pairs of sequences in a similar way, writing “C f” for “C1 f1,. . . ,Cn fn”,
where n is the length of C and f, and “this.f=f;” as shorthand for
“this.f1=f1;. . . ;this.fn=fn;” and so on. Sequences of type variables, field dec-
larations, variables, and method declarations are assumed to contain no duplicate

36 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

3 FJ∨: A FORMAL MODEL OF UNION TYPES

names. We write the empty sequence as • and denote concatenation of sequences
using a comma.

A class declaration L consists of its name, its superclass, field declarations, a
constructor, and methods. A type T (S or U) is either a class name or a union type
T1∨T2; only class names can be used to instantiate objects, so they play the role of
run-time types of objects. As in FJ, a constructor K is given in a stylized syntax and
just takes initial (and final) values for the fields, delegate the initialization of the
fields inherited from the superclass (super(f);), and assigns the rest of them to
the new fields (this.f=f;). As we will see, typing rules enforce this behavior. The
body of a method M is a single return statement since the language is functional.
An expression e is either a variable, field access, method invocation, object creation,
or case analysis. We assume that the set of variables includes the special variable
this, which cannot be used as the name of a parameter to a method. A case
analysis expression case e0 of (T1 x1) e1 | (T2 x2) e2 (in which the syntax is
slightly changed from the last section for brevity) first evaluates e0 to an object
new C(...), and execute e1 if the object is a subtype of T1 or e2 if the object is
not a subtype of T1 but T2, with xi being bound to the object. In the execution
of a well-typed program, the second subtype check can be omitted, thanks to the
type system that checks the exhaustiveness of the case analysis. Here, x1 and x2 are
bound variables in e1 and e2, respectively.

A class table CT is a mapping from class names to class declarations. A program
is a pair (CT , e) of a class table and an expression. To lighten the notation in what
follows, we always assume a fixed class table CT . As in FJ, we assume that Object
has no members and its definition does not appear in the class table. We also
assume other usual sanity conditions on CT : (1) CT (C) = class C ... for every
C ∈ dom(CT); (2) for every class name C (except Object) appearing anywhere in
CT , we have C ∈ dom(CT); and (3) there are no cycles in the transitive closure
of extends relation. Given these conditions, we can identify a class table with a
sequence of class declarations in an obvious way. Thus, in what follows, we write
simply class C ... to mean CT (C) = class C

Lookup functions

As in FJ, we use auxiliary functions, defined in Figure 2, to look up field and method
definitions: fields(C) to enumerate field names of class C with their types; ftype(f, T)
to look up the type of field f that type T has; mbody(m, C) to look up the body of
method m in class C; and mtype(m, T) to look up the signature of method m of T.

The definitions of fields(C) and mbody(m, C), which will be used to define the
operational semantics of FJ∨, are straightforward and essentially the same as those
in FJ: the former collects all the field declarations with their types from C and its
superclasses; and the latter looks for the definition of m by ascending the inheritance
chain and returns x.e, in which x are the formal parameters and e is the method
body to be evaluated. Here, m 6∈ M means the method of name m does not exist in M.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 37

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

Field lookup:

fields(Object) = •

class C extends D {T f; K M} fields(D) = S g

fields(C) = S g, T f

Field type lookup:

fields(C) = T f

ftype(fi, C) = Ti

ftype(f, T1) = U1 ftype(f, T2) = U2

ftype(f, T1∨T2) = U1∨U2

Method body lookup:

class C extends D {T f; K M} S0 m(S x){ return e; } ∈ M

mbody(m, C) = x.e

class C extends D {T f; K M} m 6∈ M mbody(m, D) = x.e

mbody(m, C) = x.e

Method type lookup:

class C extends D {T f; K M} S0 m(S x){ return e; } ∈ M

mtype(m, C) = {S→S0}

class C extends D {T f; K M} m 6∈ M mtype(m, D) = {S→S0}
mtype(m, C) = {S→S0}

mtype(m, T1) = S1 mtype(m, T2) = S2

mtype(m, T1∨T2) = S1 ∪ S2

Figure 2: FJ∨ (1)—Lookup functions.

38 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

3 FJ∨: A FORMAL MODEL OF UNION TYPES

Note that they take only class names as an input because there is no instance of a
union type.

ftype(f, T) and mtype(m, T) are key functions to realize direct member access
on union types in typing. They take types as an argument because the receiver
expression of a field/method access may be of a union type. There are two rules
for ftype(f, T). In the case where the type of a field f in class C is retrieved, the
result of fields(C) is used. When a field f of an expression of a union type T1∨T2 is
accessed, the types of f for the summands are retrieved; if both retrievals succeed,
their union is the result type, as described in the last section. There are three rules
for mtype(m, T), which collects all signatures of m from the summands in T. The first
two rules, in which T is a class name, are essentially the same as mbody(m, C) except
that this function returns the singleton set consisting of the method signature T→T,
consisting of argument types T and a return type T. The last rule, which is similar
to the second rule of ftype(f, T), collects signatures from the summands and returns
their union. Here, S1 and S2 denote a set of signatures.

Typing

The subtype relation S <: T, which is defined in Figure 3, includes the reflexive
transitive closure of inheritance relation as in Java. The last three rules together
mean that a union type T∨U is a least upper bound of T and U. As mentioned
in the last section, the subtype relation is not anti-symmetric: for example, if
class C extends D {...}, then both C∨D <: D and D <: C∨D. The former relation
can be derived by the following reasoning:

(1) C <: D since C extends D;

(2) D <: D by reflexivity; and

(3) C∨D <: D by (1), (2), and the last subtyping rule.

In what follows, we write S ∼= T if S <: T and T <: S; S <: T as an abbreviation of
S1 <: T1, . . . , Sn <: Tn; and S ∼= T as an abbreviation of S1

∼= T1, . . . , Sn
∼= Tn.

A type judgment for an expression is of the form Γ ` e : T, read “in the type
environment Γ expression e has type T.” Here, Γ is a type environment, which is
a finite mapping from variables to types, written x:T. We abbreviate a sequence
Γ ` e1 : T1, . . . , Γ ` en : Tn to Γ ` e : T.

Thanks to lookup functions, typing rules, presented also in Figure 3, are simple
and the same as FJ except for T-Invk and T-Case, which require some explanation.
In T-Invk, the set of signatures of possible methods is retrieved by using the type
of the receiver e0, and it is checked that actual argument types are respectively
subtypes of the corresponding formal for any signature. The type of the whole
expression is the union of possible return types, which we write

∨
(T→T∈S) T. The

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 39

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

Subtyping:

T <: T
S <: T T <: U

S <: U

class C extends D {...}

C <: D

S <: S∨T T <: S∨T S <: U T <: U

S∨T <: U

Expression typing:

Γ ` x : Γ(x) (T-Var)

Γ ` e0 : T0 ftype(f, T0) = T

Γ ` e0.fi : T
(T-Field)

Γ ` e0 : T0 mtype(m, T0) = S Γ ` e : S for any (T→T ∈ S), S <: T

Γ ` e0.m(e) :
∨

(T→T∈S) T

(T-Invk)

fields(C) = T f Γ ` e : S S <: T

Γ ` new C(e) : C
(T-New)

Γ ` e0 : T0 T0 <: S1∨S2 Γ, x1:S1 ` e1 : T1 Γ, x2:S2 ` e2 : T2

Γ ` case e0 of (S1 x1) e1 | (S2 x2) e2 : T1∨T2

(T-Case)

Method and class typing:

x : T, this : C ` e0 : S0 S0 <: T0 class C extends D {...}

if mtype(m, D) = {U→U0}, then T ∼= U and T0 <: U0

T0 m(T x){ return e0; } ok in C
(T-Meth)

K = C(S g, T f){super(g); this.f=f;} fields(D) = S g M ok in C

class C extends D {T f; K M} ok
(T-Class)

Figure 3: FJ∨ (2)—Subtyping and Typing.

40 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

3 FJ∨: A FORMAL MODEL OF UNION TYPES

rule T-Case for case analysis is explained as follows: since each branch covers the
case where the value of e0 is an instance of (a subtype of) Si, the type of the test
expression e0 must be a subtype of the union of S1 and S2. Since xi in each branch
is bound to the object after being tested, it can be assumed to have type Si.

Following the tradition of FJ, the usual subsumption rule, which says, if e is of
type T and T is a subtype of T′, then e is of type T′, is merged into other rules, such
as, the rules for method invocation and case analysis.

A judgment of method typing is of the form M ok in C, read “method definition
M is well formed in class C”, derived by T-Meth. It is checked that the given
method body expression is well typed under the assumption that formal arguments
are subtypes of declared types and that this is of C, in which the method is defined.
It also checks that the signature of an overriding method is compatible with the
overridden; as in Java 5.0, we allow covariant overriding of return types.

Finally, a judgment of class typing is of the form L ok and derived by T-Class,
which checks that field types agree with the constructor definition and that all
methods are well formed.

Operational Semantics

The operational semantics is given by the reduction relation of the form e −→ e′,
read ”expression e reduces to expression e′ in one step.” Here, we write [d/x, e/y]
for capture avoiding substitution of d and e for x and y, respectively. There are
four reduction rules, one for field access, one for method invocation, and two for
case expressions, of which the last two are new. The rule R-Case1 means that if
the first test (whether C is a subtype of T) succeeds, the first branch is taken; and
the rule R-Case2 is for the other case. These rules show that the first branch has
a precedence over the second when two types overlap. Note that the test C <: T2

could be omitted since the type system guarantees that it succeeds; the inclusion of
this condition makes the type soundness theorem easier to state. In what follows,
we write −→∗ for the reflexive and transitive closure of −→.

Type Soundness

The type system is sound with respect to the operational semantics, as expected.
Type soundness is proved in the standard manner via subject reduction and progress [17,
9], which are also proved similarly to FJ. (Recall, in the statement of Theorems 2
and 3, that values are defined by: v ::= new C(v), where v can be empty.) See
Appendix A for proofs of the first two theorems, of which Theorem 3 is a simple
consequence.

Theorem 1 (Subject Reduction) If Γ ` e : T and e −→ e′, then for some
T′ <: T, Γ ` e : T′.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 41

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

Computation:

fields(C) = T f

new C(e).fi −→ ei

(R-Field)

mbody(m, C) = x.e0

new C(e).m(d) −→ [d/x, new C(e)/this]e0

(R-Invk)

C <: T1

case new C(d) of (T1 x1)e1 | (T2 x2)e2 −→ [new C(d)/x1]e1

(R-Case1)

C 6<: T1 C <: T2

case new C(d) of (T1 x1)e1 | (T2 x2)e2 −→ [new C(d)/x2]e2

(R-Case2)

Congruence:

e0 −→ e0
′

e0.f −→ e0
′.f

(RC-Field)

e0 −→ e0
′

e0.m(e) −→ e0
′.m(e)

(RC-Invk-Recv)

ei −→ ei
′

e0.m(. . . ,ei, . . .) −→ e0.m(. . . ,ei
′, . . .)

(RC-Invk-Arg)

ei −→ ei
′

new C(. . . ,ei, . . .) −→ new C(. . . ,ei
′, . . .)

(RC-New-Arg)

e0 −→ e0
′

case e0 of (T1 x1)e1 | (T2 x2)e2 −→ case e0
′ of (T1 x1)e1 | (T2 x2)e2

(RC-Case)

e1 −→ e1
′

case e0 of (T1 x1)e1 | (T2 x2)e2 −→ case e0 of (T1 x1)e1
′ | (T2 x2)e2

(RC-Case1)

e2 −→ e2
′

case e0 of (T1 x1)e1 | (T2 x2)e2 −→ case e0 of (T1 x1)e1 | (T2 x2)e2
′

(RC-Case2)

Figure 4: FJ∨ (3)—Operational Semantics.

42 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

4 INTERACTIONS WITH OTHER LANGUAGE FEATURES

Theorem 2 (Progress) If ∅ ` e : T and e is not a value, then there exists e′ such
that e −→ e′.

Theorem 3 (Type Soundness) If ∅ ` e : T and e −→∗ e′ with e′ being a normal
form, then e′ is a value new C(v) and C <: T.

As a special case of Type Soundness, a “disjunction property,” one of important
properties of intuitionistic logic with disjunction, holds for FJ∨. Namely, if ∅ ` e :
C∨D and e reduces to a normal form e′, then e is of the form new E(v) and E is a
subclass of either C or D.

4 INTERACTIONS WITH OTHER LANGUAGE FEATURES

We briefly discuss interactions of union types with other common language features,
found in Java. Integrating with generics seems fairly straigtforward, while field
shadowing and overloading have some subtleties.

Generics and Variant Parametric Types

Union types are useful to represent heterogeneous collections like lists where each
element is a string or integer and it is natural to combine them with generics: a
heterogeneous collection is nothing more than a generic collection class instantiated
with a union type as the element type parameter, such as List<Integer∨String>.
Here, we will argue that variant parametric types [10] (a.k.a. wildcards [16] in Java
5.0) give powerful subtyping.

First, let us briefly review the variance problem and the idea of variant parametric
types. In general, one instantiation of a generic class is neither a subtype nor a
supertype of a different instantiation of the same generic class. For example, the
fact that String is a subtype of Object does not mean List<String> is a subtype
of List<Object>, as the following code reveals.

List<String> list1 = new List<String>("a",null);
List<Object> list2 = list1; // List<String> <: List<Object> ??
list2.setHead(new Integer(1)); // an Integer is inserted to a string list!

Here, setHead() is assumed to take an argument of the element type, which is given
as a type variable; since list2 is of type List<Object>, this invocation can take
any Object such as an Integer. Notice that this is the same problem as covariant
subtyping for array types in Java, in which run-time checks will be performed at
every assignment to arrays to ensure run-time safety. Variant parametric types are
proposed to ensure static type safety by introducing distinction between invariant
and covariant types.2

2Even contravariant and bivariant types have been introduced [10].

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 43

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

Covariant parametric types, which are of the form C<+T>, allow covariant sub-
typing in the type argument position but do not allow any invocations of meth-
ods whose argument types include the type parameter of the class C: for example,
List<String> is a subtype of List<+Object> as in

List<String> list1 = new List<String>("a",null);
List<+Object> list2 = list1; // legal assignment

but the type system prohibits the invocation of method setHead() on list2, since
the argument type is a type parameter of List. So, List<+Object> behaves as if it
is a read-only list of Objects. Giving list2 the invariant type List<Object> would
allow the method invocation but assignment of list1 to list2 would be prohibited,
so type safety is guaranteed statically, without run-time checks.

By using this typing mechanism and union types, we can promote, by subtyp-
ing, a type of homogeneous lists of one type of elements to a type of read-only
heterogeneous lists consisting of that element type and another. For example, both
List<Jpg> and List<Gif> can be regarded as subtypes of List<+(Jpg∨Gif)> since
Jpg <: Jpg∨Gif and Gif <: Jpg∨Gif. So, the following method can be applied to a
list of Jpgs, a list of Gifs, or even a heterogeneous list containing Jpgs and Gifs:

void draw_all(List<+(Jpg∨Gif)> l) { for (Jpg∨Gif img : l) l.draw(); }

Note that neither List<Jpg> nor List<Gif> should be a subtype of List<Jpg∨Gif>
(without +), exactly for the same reason above: if it were allowed, a list of Jpgs
could be given type List<Jpg∨Gif>, which allows one to write both Jpgs and Gifs
as elements.

Field Shadowing and Overloading

In the last section, the operational semantics for direct member access on union
types was actually nothing more than usual member access because the receiver is
eventually evaluated to an object and its run-time class determines which method
is invoked. Another possible semantics is to consider a direct member access merely
an abbreviation of case analysis: for example, e.m() where e is an expression of
type S∨T can be expanded into case e of (S x) x.m() | (T y) y.m(). Indeed,
in FJ∨, there is no difference between the two semantics and the two expressions
above will result in the same value. In Java, however, it would not be really the case,
since static type information of a receiver matters in the presence of field shadowing
and overloading. Here, we discuss subtleties of those features, along with possible
semantics of direct member access.

In Java, a subclass can declare a new field, whose name is the same as another
in a superclass. In that case, the field in a superclass is hidden by the new field in
a subclass and can be accessed only by using upcasting. For example, consider the
code below:

class Foo { Integer f; ... }

44 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

4 INTERACTIONS WITH OTHER LANGUAGE FEATURES

class Bar extends Foo { String f; ... }
Bar bar = ...;

Then, bar.f accesses the field of String declared in Bar while ((Foo)bar).f ac-
cesses that of Integer in Foo. So, static types determine which field to access at
run-time.

Now, let us consider how the expressions ((Foo)foo).f, ((Bar∨Foo)foo).f and
((Foo∨Bar)foo).f (where foo is a variable of Foo) should behave. We believe the
first expression should always access f declared in Foo regardless of foo’s run-time
class so that the original Java semantics is preserved. As for the second and third,
we have come up with three possibilities with different rationales:

• Both Bar∨Foo and Foo∨Bar are compatible with Foo and compatible types
should behave the same. Hence, both of them are equivalent to ((Foo)foo).f,
which returns f in Foo.

• They can be expanded to case expressions by a simple transformation that puts
case branches in the same order that summands occur in a type expression.
Thus, they are equivalent to case foo of (Bar x) x.f | (Foo y) y.f and
case foo of (Foo x) x.f | (Bar y) y.f, respectively, and so the second
can return a different f—depending on foo’s run-time class—but the third
always returns f in Foo (remember the first-matching semantics of case).

• It looks easy to arrange these case branches in an “appropriate” order by taking
possible values of foo into account and both of them should be equivalent to
case foo of (Bar x) x.f | (Foo y) y.f so that they return a different f.

The first alternative is not very easy to understand because one always has to
“canonicalize” types into a simpler form, while the other alternatives mean that
compatible types are not really compatible. The second one looks most weird due
to the loss of commutativity of ∨, although this very simple expansion scheme is easy
to explain. The third one looks most natural at this moment, but, before drawing
any conclusion, let us consider method overloading.

In Java, overloading allows one class to have methods of the same name but
different signatures. It takes two steps to determine which method to invoke. For
example, consider the following code:

class Foo { ...
void m(Number x) {... /* 1 */ }
void m(Integer x){... /* 2 */ }

}
class Bar extends Foo { ...

void m(Number x) {... /* 3 */ } // overriding 1
void m(Integer x){... /* 4 */ } // overriding 2

}
Foo foo = ...; foo.m(new Integer(10));

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 45

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

At compile-time, the signature of the invoked method is determined from static
type information; in this case, void m(Integer x) will be chosen since it is more
“specific” than the other, which takes Number, a supertype of Integer. So, we can
know at compile-time that neither method body marked /* 1 */ nor /* 3 */ will
be executed. At run-time, the run-time class of the receiver will determine which
method body to execute: if foo is an instance of Bar at run-time, then the method
body marked /* 4 */ will be executed. Note that the compiler signals error if the
most specific method signature does not exist: for example,

class Baz {
void m(Integer x, Number y) {...}
void m(Number x, Integer y) {...}

}
Baz baz = ...; baz.m(new Integer(1), new Integer(2));

will be an error, since both method signatures match the actual argument but neither
is more specific than the other. See Ancona, Zucca, and Drossopoulou [1] for more
detailed accounts on interactions between overloading and overriding.

Although method invocation like ((Bar∨Foo)foo).m(new Integer(10)) could
be discussed exactly the same as field shadowing, there is an even more subtle case
when interfaces are taken into account. Consider two interfaces

interface I { void m(Integer x); }
interface J { void m(Number x); }

and reexamine the three possibilities discussed above for ((I∨J)x).m(new Integer(1))

and ((J∨I)x).m(new Integer(1)). The first one is not relevant here since I and
J are not comparable. As for the third one, one might imagine an expansion like
case x of (I x) x.m(new Integer(1)) | (J y) y.m(new Integer(1)) and ex-
pect it does not matter which case branch comes first. However, it does matter, in
fact—x may be an instance of a class that implements both I and J and, in this
case, the first branch will always be taken and different behavior will be exposed,
depending on which branch to put first. So, it seems that it is required to investigate
even overloaded method signatures in finding an “appropriate” order of branches,
which will be a rather complex process.

Having discovered those subtleties, we are inclined to advocate the second al-
ternative (to expand direct member access to case expressions in the order of the
occurrences of summands) as the semantics of direct member access in the presence
of shadowing and overloading in favor of accessibility, even though it loses behavioral
compatibility of compatible types and commutativity of the union type constructor.

As a final remark, let us mention that problems in overloading seem to go away
when direct method invocation requires all possibly invoked methods to have the
compatible argument types (as formalized in the conference version of the paper [8]):
under this rule, the above code fragments will be illegal, as the most specific version
of m in Foo (or I) and that of m in Bar (or J, respectively) have different argument

46 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

6 CONCLUSION AND FUTURE WORK

types. So, although allowing different signatures for direct method invocation is
type safe and would make more flexible programming, it may be worth restricting
it (if we have to live with overloading).

5 RELATED WORK

We already compared our union types with similar traditional language features in
Section 2. In this section, we briefly discuss other related work in the literature.

Kyas discussed the introduction of union types (as well as their dual notion of
intersection types) to the type system for the Object Constraint Language (OCL),
which is a formal specification language [12]. However, no formal semantics of the
extended OCL is given and so type soundness issues are not discussed.

More recently, untagged union types have been studied in the context of program-
ming languages for semi-structured data such as XML [4, 7]. Subtyping supports
distributivity of unions over record field types, exemplified as

{a:S,b:T}∨{a:U,c:V} <: {a:S∨U},

({a:S,b:T} is a type for records that have a field a of type S and b of T). This
has inspired us in the development of our direct member access mechanism. The
type system of Xtatic [5], an extension of C# with mechanisms for native XML
processing, is equipped with regular expression types [7, 6], which include the union
type constructor. In Xtatic, however, types for XML documents and those for
objects are separated and so there are not union types for object types.

A mechanism called intertype declarations [15] to add supertypes to existing
classes can be found in the AspectJ language [11], an aspect-oriented extension of
Java. Our direct access mechanism, which allows access to members of the same
name but different types, provides more than just the ability to add supertypes.

6 CONCLUSION AND FUTURE WORK

We have discussed a possible introduction of union types for class-based object-
oriented languages. Union types can be used to represent a group of classes by
forming their supertype after those classes are defined. A union type allows direct
member access by playing a role of an interface consisting of common features of
classes. Also, case expressions provide exhaustive case analysis on the run-time
types of objects; we believe that exhaustive case analysis would be useful even for
a language without union types. As far as we have investigated, union types can
smoothly integrate with generics and variance (in the style of variant parametric
types), but field shadowing and method overloading—already notorious for its com-
plex semantics [1]—have been discovered to expose subtle interactions with union

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 47

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

types. We have also formalized the core of the type system on top of Featherweight
Java and proved that the type system is sound.

Although we expect it is useful as it is, the mechanism of direct member access
may be criticized that it heavily depends on member name equality, which can be
purely coincidental. To remedy the situation, member renaming operations as found
in the recent proposal of traits [14] may be applied.

We do not discuss implementation issues in this article and leave them for future
work. Straightforward implementation would be by erasure [3, 9]: a union type C∨D
can be translated to a common superclass of C and D (or simply to Object); case
and direct member access can be expressed in terms of instanceof and downcasts.
Efficient implementation of direct member access is an interesting research topic.

ACKNOWLEDGMENTS

Comments from anonymous reviewers help improve the final presentation of the
present article. The first author would like to thank members of the Kumiki project
for fruitful discussions on this subject. This work was supported in part by Grant-
in-Aid for Scientific Research on Priority Areas Research No. 13224013 from MEXT
of Japan and Grant-in-Aid for Young Scientists (B) No. 18700026 from JSPS.

REFERENCES

[1] Davide Ancona, Elena Zucca, and Sophia Drossopoulou. Overloading and in-
heritance. In Proceedings of the International Workshop on Foundations of
Object-Oriented Languages (FOOL8), London, England, January 2001.

[2] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Inter-
section and union types: Syntax and semantics. Information and Computation,
119(2):202–230, 1995.

[3] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Mak-
ing the future safe for the past: Adding genericity to the Java programming
language. In Proceedings of the ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’98), pages 183–200,
October 1998.

[4] Peter Buneman and Benjamin Pierce. Union types for semistructured data. In
Proceedings of the the International Database Programming Languages Work-
shop (DBPL7), September 1999.

[5] Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce, and Alan Schmitt.
The Xtatic experience. In Proceedings of the Wokrshop on Programming Lan-
guage Technology for XML (PLAN-X), Long Beach, CA, January 2005.

48 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

6 CONCLUSION AND FUTURE WORK

[6] Vladimir Gapeyev and Benjamin C. Pierce. Regular object types. In
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP2003), volume 2743 of LNCS, pages 151–175, Darmstadt, Germany,
July 2003. Springer-Verlag.

[7] Haruo Hosoya, Jérôme Voullion, and Benjamin Pierce. Regular expression types
for XML. In Proceedings of the ACM International Conference on Functional
Programming (ICFP’00), pages 11–22, September 2000.

[8] Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented program-
ming. In Proceedings of the 21st Annual ACM Symposium on Applied Comput-
ing (SAC2006), pages 1435–1441, Dijon, France, April 2006.

[9] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, May 2001.

[10] Atsushi Igarashi and Mirko Viroli. Variant parametric types: A flexible sub-
typing scheme for generics. ACM Transactions on Programming Languages and
Systems, 28(5):795–847, September 2006.

[11] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP2001), volume 2072 of
LNCS, pages 327–353, Budapest, Hungary, June 2001. Springer-Verlag.

[12] Marcel Kyas. An extended type system for OCL supporting templates and
transformations. In Proceedings of the 7th IFIP International Conference on
Formal Methods for Open Object-Based Distributed Systems (FMOODS2005),
volume 3535 of LNCS, pages 83–98. Springer-Verlag, 2005.

[13] Benjamin C. Pierce. Programming with intersection types, union types, and
polymorphism. Technical Report CMU-CS-91-106, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, February 1991.

[14] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black.
Traits: Composable units of behaviour. In Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP2003), volume 2743 of LNCS,
pages 248–174, Darmstadt, Germany, July 2003. Springer-Verlag.

[15] The AspectJ Team. The AspectJ programming guide. Available online at
http://www.eclipse.org/aspectj/doc/released/progguide/index.html.

[16] Mads Torgersen, Erik Ernst, Christian Plesner Hansen, Peter von der Ahé,
Gilad Bracha, and Neal Gafter. Adding wildcards to the Java programming
language. Journal of Object Techonolgy, 3(11), December 2004. Special issue:
OOPS track at SAC 2004, pp. 97–116.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 49

http://www.eclipse.org/aspectj/doc/released/progguide/index.html

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

[17] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, November 1994.

A PROOF OF SUBJECT REDUCTION THEOREM

In this appendix, we detail proofs of Subject Reduction Theorem (Theorem 1) and
Progress Theorem (Theorem 2). Before giving the proofs, we develop a number of
required lemmas. The first three lemmas below can be proved by straightforward
induction.

Lemma 1 (Weakening) If Γ ` e : T, then Γ, x : S ` e : T.

Lemma 2 If ftype(f, T) = U then, ftype(f, S) <: U for any S <: T.

Lemma 3 If mtype(m, T) = S, then, for any S <: T and U′→U′0 ∈ mtype(m, S), there
exist U→U0 ∈ S such that U ∼= U′ and U0

′ <: U0.

Lemma 4 (Term Substitution Preserves Typing) If Γ, x : T ` e : U, and
Γ ` d : S with S <: T, then Γ ` [d/x]e : U′ for some U′ <: U.

Proof: By induction on the derivation of Γ, x : T ` e : U.

Case T-Var: e = x U = Γ(x)

If x 6∈ x, then the conclusion is immediate, since [d/x]x = x. On the other hand, if
x = xi and U = Ti, then, letting U′ = Si finishes the case, because [d/x]x = [d/x]xi =
di and Γ ` di : Si by assumption.

Case T-Field: e = e0.fi Γ, x : T ` e0 : U0 ftype(f, U0) = U

By the induction hypothesis, there is some U0
′ such that Γ ` [d/x]e0 : U0

′ and U0
′ <:

U0. By Lemma 2, ftype(f, U0
′) <: ftype(f, U0). Therefore, letting U′ = ftype(f, U0

′)
finishes the case because Γ ` ([d/x]e0).fi : U′ by the rule T-Field.

Case T-Invk: e = e0.m(e) Γ, x : T ` e0 : U0 mtype(m, U0) = S
Γ, x : T ` e : W ∀(V→U ∈ S). W <: V T =

∨
V→U∈S U

By the induction hypothesis, there are some U0
′ and W′ such that Γ ` [d/x]e0 : U0

′ and
U0

′ <: U0 and Γ ` [d/x]e : W′ and W′ <: W. Let S ′ be mtype(m, U0
′). By Lemma 3, W′ <:

W <: V′ for any V′→V′ ∈ S ′. Therefore, by the rule T-Invk, Γ ` [d/x]e0.m([d/x]e) :∨
V′→V′∈S′ V

′. Finally, by Lemma 3,
∨

V′→V′∈S′ V
′ <:

∨
V→U∈S U.

Case T-New: e = new D(e) fields(D) = U f

Γ, x : T ` e : V V <: U U = D

By the induction hypothesis, there are V′ such that Γ ` [d/x]e : V′ and V′ <: V. Then,
V′ <: U, by transitivity of <:. Therefore, by the rule T-New, Γ ` new D([d/x]e) : D.

50 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

A PROOF OF SUBJECT REDUCTION THEOREM

Case T-Case: e = case e0 of (V1 y1)e1 | (V2 y2)e2 Γ, x : T ` e0 : U0

Γ, x : T, yi : Vi ` ei : Ui (for i = 1, 2) U0 <: V1∨V2

U = U1∨U2

By the induction hypothesis, there is U0
′ such that Γ ` [d/x]e0 : U0

′ and U0
′ <: U0.

Similarly, there are U1
′ and U2

′ such that Γ, yi : Vi ` [d/x]ei : Ui
′ and Ui

′ <: Ui for
i = 1, 2. By transitivity, U0

′ <: V1∨V2. Then, by rule T-Case, Γ ` [d/x]e : U1
′∨U2

′.
Letting U′ = U1

′∨U2
′ finishes the case since U1

′∨U2
′ <: U1∨U2. �

Lemma 5 If mtype(m, C0) = {T→T0}, then, there exist x, e, D0 and T0
′ such that

mbody(m, C0) = x.e and C0 <: D0 and x : T, this : D0 ` e : T0
′ and T0

′ <: T0.

Proof: By induction on the derivation of mtype(m, C0). The base case (where m is
defined in C0) is easy, since m is defined in CT (C0) and x : T, this : C0 ` e : T0

′ by
T-Method. The induction step is also straightforward. �

Proof of Subject Reduction Theorem: By induction on a derivation of e −→
e′, with a case analysis on the reduction rule used.

Case R-Field: e = new C0(e).fi e′ = ei fields(C0) = T f

By rule T-Field and the definition of ftype, we have Γ ` new C0(e) : D0 and T = Ti

for some D0. Again, by the rule T-New, Γ ` e : S and S <: T and D0 = C0. In
particular, Γ ` ei : Si, finishing the case, since Si <: Ti = T.

Case R-Invk: e = new C0(e).m(d) mbody(m, C0) = x.e0

e′ = [d/x, new C0(e)/this]e0

By the rules T-Invk and T-New, we have Γ ` new C0(e) : C0 and mtype(m, C0) =
T→T and Γ ` d : S and S <: T for some S and T. By Lemma 5, x : T, this : D0 ` e0 :
T0 for some D0 and T0 where C0 <: D0 and T0 <: T. By Lemma 1, Γ, x : T, this : D0 `
e0 : T0. Then, by Lemma 4, Γ ` [d/x, new C0(e)/this]e0 : T0

′ for some T0
′ <: T0.

Then T0
′ <: T by transitivity of <:. Finally, letting T′ = T0

′ finishes this case.

Case R-Case1: e = case new C0(d) of (T1 x1)e1 | (T2 x2)e2 C0 <: T1

e′ = [new C0(d)/x1]e1

By the rules T-Case and T-New, we have Γ ` new C0(d) : C0 and Γ, xi : Ti `
ei : Si for i = 1, 2 and T = S1∨S2. By Lemma 4, there exists S1

′ such that
Γ ` [new C0(d)/x1]e1 : S1

′ and S1
′ <: S1. Letting T′ = S1

′ finishes the case.

The case for R-Case2 is similar. The cases for congruence rules are easy. �

Proof of Progress Theorem: Since e is a closed non-value term, we have the
following cases, each of which are easy to prove:

(i) The case where e contains a subterm of the form new C(e).f: Then, by
T-Field, there exist T and f such that fields(C) = T f and f ∈ f and |f| = |e|.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 51

UNION TYPES FOR OBJECT-ORIENTED PROGRAMMING

(ii) The case where e contains a subterm of the form new C(e).m(d): Then, by
Lemma 5, there exist x and e0 such that mbody(m, C) = x.e0 and |x| = |d|.

(iii) The case where e contains a subterm of the form case new C(e) of (T1 x1)d1

| (T2 x2)d2: Then, by T-Case, either C<:T1 or C<:T2 holds. �

ABOUT THE AUTHORS

Atsushi Igarashi is an associate professor at Kyoto University. His home page is
at http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/.

Hideshi Nagira is a Ph.D student at Graduate School of Informatics, Kyoto Uni-
versity.

52 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/
http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/
http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/

	www.sato.kuis.kyoto-u.ac.jp
	¸Þ½½Íò ½ß (Atsushi IGARASHI)
	Atsushi IGARASHI
	¸Þ½½Íò ½ß (Atsushi IGARASHI)

